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Introduction

Calculus consists of the study of limits of various sorts and the systematic exploitation
of the completeness axiom. It was developed by physicists and engineers over a period
of several hundred years in order to solve problems from the physical sciences. It is the
language by which precision and quantitative predictions for many complicated problems
are obtained. It is used to find lengths of curves, areas and volumes of regions which are not
bounded by straight lines. It is used to predict and account for the motion of satellites. It
is essential in order to solve many maximization problems and it is prerequisite material in
order to understand models based on differential equations. These and other applications
are discussed to some extent in this book.

It is assumed the reader has a good understanding of algebra on the level of college
algebra or what used to be called algebra II along with some exposure to geometry and
trigonometry although the book does contain an extensive review of these things. I have
tried to keep the book a manageable length in order to focus more on the important ideas.
I have also tried to give complete proofs of all theorems in one variable calculus and to
at least give plausibility arguments for those in multiple dimensions. Physical models are
derived in the usual way through the use of differentials leading to differential equations
which are introduced early and used throughout the book as the basis for physical models.

I expect the reader to be able to use a calculator whenever it would be helpful to do so.
Many of the exercises will be very troublesome without one. Having said this, calculus is not
about using calculators or any other form of technology. I believe that when the syntax and
arcane notation associated with technology are presented, these things become the topic of
study rather than the concepts of calculus. This is a book on calculus and should not be
considered an instruction manual for the use of technology.

Pictures are often helpful in seeing what is going on and there are many pictures in this
book for this reason. However, calculus is not about drawing pictures and ultimately rests
on logic and definitions. Algebra plays a central role in gaining the sort of understanding
which generalizes to higher dimensions where pictures are not available. Therefore, I have
emphasized the algebraic aspects of this subject far more than is usual, especially linear
algebra which is absolutely essential to understand in order to do multivariable calculus.
I have also featured the repeated index summation convention and the usual reduction
identities which allow one to discover vector identities.

11



12

INTRODUCTION



Part 1

Preliminaries

13






The Real Numbers

An understanding of the properties of the real numbers is essential in order to understand
calculus. This section contains a review of the algebraic properties of real numbers.

2.1 The Number Line And Algebra Of The Real Num-
bers

To begin with, consider the real numbers, denoted by R, as a line extending infinitely far in
both directions. In this book, the notation, = indicates something is being defined. Thus

the integers are defined as
Z={--—1,01,---},

the natural numbers,
N={1,2,---}

and the rational numbers, defined as the numbers which are the quotient of two integers.
m
(@E{— such that m,n € Z,n;é()}
n

are each subsets of R as indicated in the following picture.

-4 -3 -2 -1 0 1 2 3 4
|
[

A

Y

As shown in the picture, % is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 2.1.1 z +y =y + x, (commutative law for addition)
Axiom 2.1.2 x+ 0=z, (additive identity).

Axiom 2.1.3 For each x € R, there exists —x € R such that x + (—x) = 0, (existence of
additive inverse).

15



16 THE REAL NUMBERS

Axiom 2.1.4 (z+y)+z=x+ (y + 2), (associative law for addition).
Axiom 2.1.5 zy = yz, (commutative law for multiplication).

Axiom 2.1.6 (zy)z = z (yz) , (associative law for multiplication).
Axiom 2.1.7 lz = z, (multiplicative identity).

Axiom 2.1.8 For each x # 0, there exists =% such that xz—! = 1.(existence of multiplica-
tive inverse).

Axiom 2.1.9 z (y + z) = xy + zz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by t—y = z+(—y) and z/y = = (yfl) . It is assumed
that the reader is completely familiar with these axioms in the sense that he or she can do
the usual algebraic manipulations taught in high school and junior high algebra courses. The
axioms listed above are just a careful statement of exactly what is necessary to make the
usual algebraic manipulations valid. A word of advice regarding division and subtraction
is in order here. Whenever you feel a little confused about an algebraic expression which
involves division or subtraction, think of division as multiplication by the multiplicative
inverse as just indicated and think of subtraction as addition of the additive inverse. Thus,
when you see x/y, think (y_l) and when you see x —y, think z + (—y) . In many cases the
source of confusion will disappear almost magically. The reason for this is that subtraction
and division do not satisfy the associative law. This means there is a natural ambiguity in
an expression like 6 —3 —4. Do youmean (6 —3) —4=—-1or6—(3—4)=6—(—1) =77
It makes a difference doesn’t it? However, the so called binary operations of addition and
multiplication are associative and so no such confusion will occur. It is conventional to
simply do the operations in order of appearance reading from left to right. Thus, if you see
6 — 3 — 4, you would normally interpret it as the first of the above alternatives.

In doing algebra, the following theorem is important and follows from the above axioms.
The reasoning which demonstrates this assertion is called a proof. Proofs and definitions
are very important in mathematics because they are the means by which “truth” is deter-
mined. In mathematics, something is “true” if it follows from axioms using a correct logical
argument. Truth is not determined on the basis of experiment or opinions and it is this
which makes mathematics useful as a language for describing certain kinds of reality in a
precise manner.! It is also the definitions and proofs which make the subject of mathemat-
ics intellectually worth while. Take these away and it becomes a gray wasteland filled with
endless tedium and meaningless manipulations.

In the first part of the following theorem, the claim is made that the additive inverse
and the multiplicative inverse are unique. This means that for a given number, only one
number has the property that it is an additive inverse and that, given a nonzero number,
only one number has the property that it is a multiplicative inverse. The significance of this
is that if you are wondering if a given number is the additive inverse of a given number, all
you have to do is to check and see if it acts like one.

Theorem 2.1.10 The above azioms imply the following.

1. The multiplicative inverse and additive inverses are unique.

IThere are certainly real and important things which should not be described using mathematics because
it has nothing to do with these things. For example, feelings and emotions have nothing to do with math.
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2. 0x =0, — (—x) ==z,
3 (-)(-1)=1,(-)z=—x
4. If xzy = 0 then either xt =0 or y = 0.

Proof: Suppose then that x is a real number and that x +y = 0 = x 4 z. It is necessary
to verify y = z. From the above axioms, there exists an additive inverse, —x for z. Therefore,

—r 0= (—a) + (@ +y) = (—2) + (2 +2)
and so by the associative law for addition,
(=2)+2)+y=((-z)+z)+=

which implies
0+y=0+=z.

Now by the definition of the additive identity, this implies y = 2. You should prove the
multiplicative inverse is unique.

Consider 2. It is desired to verify 0z = 0. From the definition of the additive identity
and the distributive law it follows that

0z = (0 +0) z = 0z + Ox.
From the existence of the additive inverse and the associative law it follows

0 = (—0z) + 0z = (—0x) + (0z + 0z)
= ((—0z) + 0z) + 0z = 0+ 0z = Oz
To verify the second claim in 2., it suffices to show x acts like the additive inverse of —x

in order to conclude that — (—z) = x. This is because it has just been shown that additive
inverses are unique. By the definition of additive inverse,

x+(—z)=0

and so z = — (—x) as claimed.
To demonstrate 3.,
DA+ (=1))=(-1)0=0

and so using the definition of the multiplicative identity, and the distributive law,
=D+ (=D (=) =0
It follows from 1. and 2. that 1 = —(—1) = (—=1) (—1). To verify (—1)z = —z, use 2. and
the distributive law to write
z+(-aez=z(1+(-1))=20=0.

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (—1)z = —z as
claimed.

To verify 4., suppose  # 0. Then z~! exists by the axiom about the existence of
multiplicative inverses. Therefore, by 2. and the associative law for multiplication,

y=(27'2)y=2""(zy)=2"'0=0.
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This proves 4. and completes the proof of this theorem.

Recall the notion of something raised to an integer power. Thus y? = y xy and b3 = b%
etc.

Also, there are a few conventions related to the order in which operations are performed.
Exponents are always done before multiplication. Thus zy? = = (yz) and is not equal

to (xy)2 Division or multiplication is always done before addition or subtraction. Thus
z—y(z+w) =x— [y(z+w)] and is not equal to (z —y) (2 + w) . Parentheses are done
before anything else. Be very careful of such things since they are a source of mistakes.
When you have doubts, insert parentheses to resolve the ambiguities.

Also recall summation notation. If you have not seen this, the following is a short review
of this topic.

Definition 2.1.11 Let x1,x2,- - -, z,, be numbers. Then

ijle—i—mg—i—---—i—mm.

=1

Thus this symbol, Z;nzl x; means to take all the numbers, x1,x2,- - -, Ty and add them all
up. Note the use of the j as a generic variable which takes values from 1 up to m. This
notation will be used whenever there are things which can be added, not just numbers.

As an example of the use of this notation, you should verify the following.
Example 2.1.12 22:1 (2k +1) = 48.

Be sure you understand why

m—+1 m

k=1 k=1

As a slight generalization of this notation,
m
Zajj =T+ Ty
j=k

It is also possible to change the variable of summation.

m
Z:ﬂj:x1+x2+~~+xm
Jj=1

while if r is an integer, the notation requires

m—+r
E Tjp =21 +T2+ -+ Ty
j=14r

and so )i x; = Z;n:llr Ty

Summation notation will be used throughout the book whenever it is convenient to do
S0.

Another thing to keep in mind is that you often use letters to represent numbers. Since
they represent numbers, you manipulate expressions involving letters in the same manner
as you would if they were specific numbers.
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Example 2.1.13 Add the fractions

You add these just like they were numbers. Write the first expression as 0

g+
z(x—1)
Py and

v(=?+v)

the second as (EEsy R Then since these have the same common denominator, you add
them as follows.

T LY z(z—1) y (=* +y)
2ty -1 (@2 +y)(z—-1) (v—-1)(2? +y)
22 — x4 ya® + o2
(22 +y)(x—1)

2.2 Exercises

10.

11.

12.

13.

14.

. Consider the expression x +y (z+y) —z(y —z) = f (z,y). Find f(-1,2).
. Show — (ab) = (—a)b.

Show on the number line the effect of adding two positive numbers, = and y.

Show on the number line the effect of subtracting a positive number from another
positive number.

Show on the number line the effect of multiplying a number by —1.

: —1
Add the fractions %5 + 775-

Find a formula for (z +y)*, (z +y)®, and (z +y)*. Based on what you observe for
these, give a formula for (z + 1)°.

When is it true that (z +y)" = 2™ + y™?

Find the error in the following argument. Let 2 = y = 1. Then zy = 2 and so
xy — 22 = y? — 22, Therefore, 2 (y — ) = (y — ) (y + x) . Dividing both sides by
(y — x) yields x = x+y. Now substituting in what these variables equal yields 1 = 1+1.

Find the error in the following argument. 22 +1 = 2 + 1 and so letting z = 2,
V/5 = 3. Therefore, 5 = 9.

Find the error in the following. Let x = 1 and y = 2. Then % = ﬁ = % +

<@ =

1+ % = % Then cross multiplying, yields 2 = 9.

22ytz 6
2y~ 1z

Simplify

Simplify the following expressions using correct algebra. In these expressions the
variables represent real numbers.

20 b+
() g
(b) a:2y+zy2+a:

Yy

3 2.
(C) x +2zm+1m 2

Find the error in the following argument. Let x =3 and y = 1. Then 1 =3 -2 =
3-B-D=a-y@-y=@-y(z-y=22=4
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15. Verify the following formulas.

(a) (z—y)(z+y) =2y

(b) (z—y) (@® +ay+y?) =2° -y

(c) (@+y) (2* —ay+y°) =2° +4°
16. Find the error in the following.

Yy +y

=y+y=2y.

Now let z = 2 and y = 2 to obtain
3=14

17. Show the rational numbers satisfy the field axioms. You may assume the associative,
commutative, and distributive laws hold for the integers.

2.3 Order

The real numbers also have an order defined on them. This order can be defined very
precisely in terms of a short list of axioms but this will not be done here. Instead, properties
which should be familiar are listed here as axioms.

Definition 2.3.1 The expression, © < y, in words, (x is less than y) means y lies to the
right of x on the number line. The expression x >y, in words (r is greater than y) means
x is to the right of y on the number line. x < y if either x =y or x < y. x > y if either
x>y orxz=y. A number, x, is positive if x > 0.

If you examine the number line, the following should be fairly reasonable and are listed
as axioms, things assumed to be true. I suggest you plug in some numbers to reassure
yourself about these axioms.

Axiom 2.3.2 The sum of two positive real numbers is positive.
Axiom 2.3.3 The product of two positive real numbers is positive.

Axiom 2.3.4 For a given real number x, one and only one of the following alternatives
holds. Either x is positive, x = 0, or —x is positive.

Axiom 2.3.5 Ifx <y and y < z then x < z (Transitive law).
Axiom 2.3.6 Ifx <y then x + z <y + z (addition to an inequality).
Axiom 2.3.7 Ifx <0 and y <0, then xy > 0.

Axiom 2.3.8 Ifx > 0 then x~' > 0.

Axiom 2.3.9 Ifx <0 then z—! <0.

Axiom 2.3.10 Ifxz <y then xz < yz if z > 0, (multiplication of an inequality by a positive
number).

Axiom 2.3.11 If x < y and z < 0, then xz > zy (multiplication of an inequality by a
negative number).
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Axiom 2.3.12 FEach of the above holds with > and < replaced by > and < respectively
except for 2.8.8 and 2.5.9 in which it is also necessary to stipulate that x # 0.

Axiom 2.3.13 For any = and y, exactly one of the following must hold. Fither x = vy,
x <y, orx >y (trichotomy).

Note that trichotomy could be stated by saying x < y or y < x.
Example 2.3.14 Solve the inequality 2z +4 < x — 8

Subtract 2x from both sides to yield 4 < —z—8. Next add 8 to both sides to get 12 < —z.
Then multiply both sides by (—1) to obtain < —12. Alternatively, subtract = from both
sides to get x + 4 < —8. Then subtract 4 from both sides to obtain z < —12.

Example 2.3.15 Solve the inequality (z + 1) (22 — 3) > 0.

If this is to hold, either both of the factors, z + 1 and 2x — 3 are nonnegative or they
are both nonpositive. The first case yields t +1 >0 and 2x —3 >0so z > —1 and = > %
yielding x > % The second case yields x +1 < 0 and 2x — 3 < 0 which implies x < —1 and
r < % Therefore, the solution to this inequality is z < —1 or z > %

Example 2.3.16 Solve the inequality (x) (x +2) > —4

Here the problem is to find x such that x? + 2z + 4 > 0. However, 22 4+ 2z + 4 =
(x + 1)2 + 3 > 0 for all x. Therefore, the solution to this problem is all z € R.

To simplify the way such things are written, involves set notation. This is described
next.

2.3.1 Set Notation

A set is just a collection of things called elements. For example {1,2,3,8} would be a set
consisting of the elements 1,2,3, and 8. To indicate that 3 is an element of {1,2, 3,8}, it is
customary to write 3 € {1,2,3,8}. 9 ¢ {1,2,3,8} means 9 is not an element of {1,2,3,8}.
Sometimes a rule specifies a set. For example you could specify a set as all integers larger
than 2. This would be written as S = {# € Z: x > 2}. This notation says: the set of all
integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B,
then A is a subset of B. For example, {1,2,3,8} is a subset of {1,2,3,4,5,8}, in symbols,
{1,2,3,8} C {1,2,3,4,5,8}. The same statement about the two sets may also be written
as {1,2,3,4,5,8} 2 {1,2,3,8}.

The union of two sets is the set consisting of everything which is contained in at least
one of the sets, A or B. As an example of the union of two sets, {1,2,3,8} U {3,4,7,8} =
{1,2,3,4,7,8} because these numbers are those which are in at least one of the two sets. In
general

AUB={xz:x € Aor x € B}.

Be sure you understand that something which is in both A and B is in the union. It is not
an exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1,2,3,8} N {3,4,7,8} = {3,8} because 3 and 8 are those elements the two sets have
in common. In general,

ANB={x:zx€ Aand z € B}.
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When with real numbers, [a,b] denotes the set of real numbers, z, such that a <z <b
and [a,b) denotes the set of real numbers such that a < z < b. (a,b) consists of the set of
real numbers, x such that a < z < b and (a,b] indicates the set of numbers, x such that
a < x < b. [a,00) means the set of all numbers, x such that z > a and (—o0, a] means the
set of all real numbers which are less than or equal to a. These sorts of sets of real numbers
are called intervals. The two points, a and b are called endpoints of the interval. Other
intervals such as (—oo, b) are defined by analogy to what was just explained. In general, the
curved parenthesis indicates the end point it sits next to is not included while the square
parenthesis indicates this end point is included. The reason that there will always be a
curved parenthesis next to co or —oo is that these are not real numbers. Therefore, they
cannot be included in any set of real numbers.

A special set which needs to be given a name is the empty set also called the null set,
denoted by @. Thus ) is defined as the set which has no elements in it. Mathematicians like
to say the empty set is a subset of every set. The reason they say this is that if it were not
so, there would have to exist a set, A, such that () has something in it which is not in A.
However, ) has nothing in it and so the least intellectual discomfort is achieved by saying
0 C A.

If A and B are two sets, A\ B denotes the set of things which are in A but not in B.
Thus

A\B={x€ A:z ¢ B}.

Set notation is used whenever convenient.

To illustrate the use of this notation consider the same three examples of inequalities.
Example 2.3.17 Solve the inequality 2oz +4 < x — 8

This was worked earlier and z < —12 was the answer. This is written as (—oo, —12].

Example 2.3.18 Solve the inequality (z + 1) (22 — 3) > 0.

This was worked earlier and + < —1 or z > % was the answer. In terms of set notation
this is denoted by (—oo, —1] U [2,00).

Example 2.3.19 Solve the inequality (x) (x +2) > —4

Recall this inequality was true for any value of z. It is written as R or (—o0, 00) .

2.4 Exercises With Answers

1. Solve 3z + 1) (z —2) <O0.

This happens when the two factors have different signs. Thus either 3z +1 < 0 and
x — 2 > 0 in which case z < %1 and x > 2, a situation which never occurs, or else
3z4+1>0and z —2 < 0so x> ' and z < 2. Written as [3},2].

2. Solve (3z+ 1) (x —2) > 0.

This is just everything not included in the above problem. Thus the answer would be
(=00, F) U (2,00).

3. Solve 2"?_12 < 0.

Note that ;;*_12 is positive if x > 1, negative if x € (—1,1), and nonnegative if
x < —1. Therefore, the answer is (—1, 1) . To identify the interesting intervals, all that
was necessary to do was to look at the two factors, (z + 1) and (2z — 2) and determine

where these equal zero.
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3z+7
4. Solve 22 420+1 2 L.

On something like this, subtract 1 from both sides to get
6+x—2® (3—z)(2+x)
224+2c+1 ($+1)2 '

When « = 3 or x = —2, this equals zero. For z € (—2,3) the expression is positive
and it is negative if > 3 or if # < —2. Therefore, the answer is [—2, 3].

2.5 Exercises
1. Solve (3x +2) (z —3) <0.
2. Solve (3z 4 2) (z —3) > 0.

3. Solve 3?;22 < 0.

x+1
4. Solve%—_|r3 < 1.

5. Solve (z —1)(2x +1) < 2.
Solve (z — 1) 2z +1) > 2.

Solve 22 — 2z < 0.

2

Solve (z +2) (x —2)" <0.

© % N

3zx—4
Solve N > 0.

3x+9
10. SOIVe 212z+1 2 1.

m2+2m+1
11. Solve T 3z+7 < 1.

2.6 The Absolute Value

A fundamental idea is the absolute value of a number. This is important because the
absolute value defines distance on R. How far away from 0 is the number 37 How about the
number —3? Look at the number line and observe they are both 3 units away from 0. To
describe this algebraically,

xif x>0,

Definition 2.6.1 |z| = { v ifr <0

Thus |z| can be thought of as the distance between x and 0. It may be useful to think
of this function in terms of its graph if you recall the notion of the graph of a function.
Y

x
The following is a fundamental theorem about the absolute value.

Theorem 2.6.2 |zy| = |z||y|.
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Proof: If both z,y < 0, then |zy| = xy because in this case xy > 0 while

zlyl = (=2) (=y) = (=D z (1) y = (1) (=1) 2y = xy.

Therefore, in this case the result of the theorem is verified. You should verify the other
cases, both z,y > 0 and « < 0 while y > 0.

This theorem is the basis for the following fundamental result which is of major impor-
tance in calculus.

Theorem 2.6.3 The following inequalities hold.
|z +yl < lz[+[yl, [lz] = [yl < |z —yl.
Either of these inequalities may be called the triangle inequality.
Proof: By Theorem 2.6.2,
oyl =@+ )| = @+ y)?
=22+ + 22y < 2 + % + 2|z |y
2 2 2
= lz|” + lyl” + 2[=[ |yl = (l=| + [y])".

Now note that if 0 < a < b then 0 < a® < ab < b2 and that if a,b > 0 then if a® < b? it
follows that b2 > ba > a? and so b > a (see the above axioms. Multiply by a=! if a # 0.)
Applying this observation to the above inequality,

|z +y| < |z + |y| .

This verifies the first of these inequalities. To obtain the second one, note

|z| = |z —y +
<z —yl+ |yl
and so
lz| = |y| < |z -y (2.1)
Now switch the letters to obtain
lyl =zl <ly— 2| =z —y|. (2.2)

Therefore,
2zl = lyll < |z -yl

because if |z| — |y| > 0, then the conclusion follows from (2.1) while if |z| — |y| < 0, the
conclusion follows from (2.2). This proves the theorem.
Note there is an inequality involved. Consider the following.

B+ (=2)[=[]=1

while
13|+ [(=2)|=3+2=5.

You observe that 5 > 1 and so it is important to remember that the triangle inequality is
an inequality.

Example 2.6.4 Solve the equation |z — 1| = 2
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This will be true when x — 1 = 2 or when x — 1 = —2. Therefore, there are two solutions
to this problem, x = 3 or z = —1.

Example 2.6.5 Solve the inequality |2z — 1| < 2

From the number line, it is necessary to have 2z — 1 between —2 and 2 because the
inequality says that the distance from 2z — 1 to 0 is less than 2. Therefore, —2 < 2z —1 < 2
and so —1/2 < x < 3/2. In other words, —1/2 < z and z < 3/2.

Example 2.6.6 Solve the inequality |2z — 1| > 2.

This happens if 2z — 1 > 2 or if 22 — 1 < —2. Thus the solution is > 3/2 or z <
—1/2,(3,00) U (00, —1).

Example 2.6.7 Solve |z + 1| = |22 — 2|

There are two ways this can happen. It could be the case that x +1 = 2z — 2 in which
case x = 3 or alternatively, z + 1 = 2 — 2z in which case x = 1/3.

Example 2.6.8 Solve |x + 1| < |2z — 2|

In order to keep track of what is happening, it is a very good idea to graph the two
relations, y = |z + 1] and y = |2z — 2| on the same set of coordinate axes. This is not a
hard job. |z + 1] =2+ 1 when > —1 and |z + 1| = —1 — 2 when x < —1. Therefore, it is
not hard to draw its graph. Similar considerations apply to the other relation. The result is

-4 2 0 2 4

Equality holds exactly when x = 3 or z = % as in the preceding example. Consider

3
between % and 3. You can see these values of z do not solve the inequality. For example

x = 1 does not work. Therefore, (%, 3) must be excluded. The values of x larger than 3 do
not produce equality so either |z + 1| < |2z — 2| for these points or |2z — 2| < |z + 1] for
these points. Checking examples, you see the first of the two cases is the one which holds.
Therefore, [3,00) is included. Similar reasoning obtains (—oo, 3]. It follows the solution set
to this inequality is (—oo, £] U [3, 00).
Example 2.6.9 Obtain a number, §, such that if |z — 2| < 6, then |2* — 4| < 1/10.
If |# — 2| < 1, then ||| —|2|| < 1 and so |z| < 3. Therefore, if |z — 2| < 1,
|o> =4 = |z+2|jz—2|
< (lz[+2) ]z -2
< 5lz—2].

Therefore, if |z — 2| < %, the desired inequality will hold. Note that some of this is arbitrary.
For example, if |x — 2| < 3, then ||z] — 2| < 3 and so |z| < 5. Therefore, for such z,
|o> =4 = |z+2|lz—2|
(|2 +2) |z = 2|
7lx — 2|

IAIA
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and so it would also suffice to take |x — 2| < %. The example is about the existence of a
number which has a certain property, not the question of finding a particular such number.
There are infinitely many which will work because if you have found one, then any which is
smaller will also work.

Example 2.6.10 Suppose € > 0 is a given positive number. Obtain a number, § > 0, such
that if |x — 1| < 8, then |2* — 1| <e.

First of all, note |22 — 1| = [z —1||z+ 1| < (Jz|+1) |z — 1|. Now if [z —1| < 1, it
follows |z| < 2 and so for |z — 1| < 1,

|2? — 1| < 3|z —1].

Now let 6 = min (17 %) . This notation means to take the minimum of the two numbers, 1

and . Then if [z — 1] <4,

|x2—1]<3|x—1|<3§:5.

2.7 Exercises
1. Solve |z + 1| = |22 — 3].
2. Solve |3z + 1| < 8. Give your answer in terms of intervals on the real line.
3. Solve |z + 2| < |3z — 3].
4. Tell when equality holds in the triangle inequality.
5. Solve |z + 2| < 8+ |2z — 4].

6. Verify the axioms for order listed above are reasonable by consideration of the number
line. In particular, show that if z < z and y < 0 then zy > yz.

7. Solve (z+1) (2z —2)x > 0.

8. Solve ;;fl > 1.

x+2
9. Solve 3orT 2.

10. Describe the set of numbers, a such that there is no solution to | +1| =4 — |z + a].
11. Suppose 0 < a < b. Show a~! > b~ 1.

12. Show that if |z — 6] < 1, then |z| < 7.

13. Suppose |z — 8| < 2. How large can |z — 5| be?

14. Obtain a number, ¢ > 0, such that if |z — 1| < ¢, then ‘mQ — 1| < 1/10.

15. Obtain a number, ¢ > 0, such that if |z — 4| < 4, then |\/z — 2| < 1/10.

16. Suppose ¢ > 0 is a given positive number. Obtain a number, § > 0, such that if
|z — 1| < 4, then |\/z — 1| < e. Hint: This ¢ will depend in some way on . You need
to tell how.
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2.8 Well Ordering Principle And Archimedian Prop-
erty

Definition 2.8.1 A set is well ordered if every nonempty subset S, contains a smallest
element z having the property that z < x for all x € S.

Axiom 2.8.2 Any set of integers larger than a given number is well ordered.
In particular, the natural numbers defined as
N={1,2,---}

is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 2.8.3 (Mathematical induction) A set S C Z, having the property that a € S
and n+1 € S whenever n € S contains all integers x € Z such that x > a.

Proof: Let T = ([a,00) NZ)\ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = 0. If T #  then by the
well ordering principle, there would have to exist a smallest element of T, denoted as b. It
must be the case that b > a since by definition, a ¢ T. Then the integer, b — 1 > a and
b—1¢ S because if b € S, then b—1+1=0> € S by the assumed property of S. Therefore,
b—1¢€ (Ja,00)NZ)\ S =T which contradicts the choice of b as the smallest element of T.
(b—1 is smaller.) Since a contradiction is obtained by assuming T # ), it must be the case
that T'= 0 and this says that everything in [a,00) NZ is also in S.

Mathematical induction is a very useful devise for proving theorems about the integers.

. . n n(n+1)(2n+1
Example 2.8.4 Prove by induction that ), _, k2 = %

By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the
formula on the right. Suppose this formula is valid for some n > 1 where n is an integer.
Then

n+1

Zk’2 :Zn:k2+(n+1)2
k=1 k=1

~n(n+1)(2n+1)
B 6

+(n+1)>%.

The step going from the first to the second line is based on the assumption that the formula
is true for n. This is called the induction hypothesis. Now simplify the expression in the
second line,
n(n+1)2n+1)
6

+(n+1)%.

This equals

(n+1)(’L(2”6H)+(n+1)>
and
n{zn n n2 n
(26+1)+(”+1):6( +1);2 +

(n+2)(2n +3)
6
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Therefore,
n+1
(n+1)(n+2)(2n+3)
k* =
2 G
m+D((n+1)+1)(2(n+1)+1)

6 )
showing the formula holds for n + 1 whenever it holds for n. This proves the formula by
mathematical induction.

Example 2.8.5 Show that for alln € N, % . % S 2’;;1 < \/ﬁ

If n = 1 this reduces to the statement that < % which is obviously true. Suppose

2
then that the inequality holds for n. Then
1 3 2n—1 2n+1 1 2n+1

— . < N —
2 4 2n 2n+ 2 V2n+12n+2

Vv2n +1
2n+2

The theorem will be proved if this last expression is less than \/ﬁ This happens if and

only if

( 1 )2 L 21

V2n+3 2n+ 3 (2n—|—2)2

which occurs if and only if (2n +2)* > (2n + 3) (2n + 1) and this is clearly true which may
be seen from expanding both sides. This proves the inequality.

Lets review the process just used. If S is the set of integers at least as large as 1 for which
the formula holds, the first step was to show 1 € S and then that whenever n € S, it follows
n + 1 € S. Therefore, by the principle of mathematical induction, S contains [1,00) N Z,
all positive integers. In doing an inductive proof of this sort, the set, S is normally not
mentioned. One just verifies the steps above. First show the thing is true for some a € Z
and then verify that whenever it is true for m it follows it is also true for m + 1. When this
has been done, the theorem has been proved for all m > a.

Definition 2.8.6 The Archimedian property states that whenever x € R, and a > 0, there
ezists n € N such that na > x.

Axiom 2.8.7 R has the Archimedian property.

This is not hard to believe. Just look at the number line. This Archimedian property
is quite important because it shows every real number is smaller than some integer. It also
can be used to verify a very important property of the rational numbers.

Theorem 2.8.8 Suppose x < y and y —x > 1. Then there exists an integer, | € Z, such
that x <l <wy. If x is an integer, there is no integer y satisfying r <y < z + 1.

Proof: Let x be the smallest positive integer. Not surprisingly, z = 1 but this can be
proved. If x < 1 then 22 < x contradicting the assertion that z is the smallest natural
number. Therefore, 1 is the smallest natural number. This shows there is no integer, vy,
satisfying x < y < x + 1 since otherwise, you could subtract x and conclude 0 <y —x < 1
for some integer y — x.
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Now suppose y —x > 1 and let
S={weN:w>y}.

The set S is nonempty by the Archimedian property. Let k be the smallest element of S.
Therefore, k — 1 < y. Either k — 1 <z ork—1>x. If Kk — 1 <z, then

<0

—~ =
y—x<y—(k—-1)=y—k+1<1

contrary to the assumption that y —x > 1. Therefore, z < k — 1 < y and this proves the
theorem with [ =k — 1.

It is the next theorem which gives the density of the rational numbers. This means that
for any real number, there exists a rational number arbitrarily close to it.

Theorem 2.8.9 If x <y then there exists a rational number r such that v <r < y.
Proof: Let n € N be large enough that
n(y—x)>1
Thus (y — =) added to itself n times is larger than 1. Thus,
n(y—x)=ny+n(—z)=ny —nz>1.
It follows from Theorem 2.8.8 there exists m € Z such that
nr <m < ny

and so take r = m/n.
Definition 2.8.10 A set, S C R is dense in R if whenever a < b, S N (a,b) # 0.

Thus the above theorem says Q is “dense” in R.

You probably saw the process of division in elementary school. Even though you saw it
at a young age it is very profound and quite difficult to understand. Suppose you want to
do the following problem %. What did you do? You likely did a process of long division
which gave the following result.

% = 3 with remainder 13.

This meant
79 =3(22) +13.

You were given two numbers, 79 and 22 and you wrote the first as some multiple of the
second added to a third number which was smaller than the second number. Can this always
be done? The answer is in the next theorem and depends here on the Archimedian property
of the real numbers.

Theorem 2.8.11 Suppose 0 < a and let b > 0. Then there exists a unique integer p and
real number r such that 0 <r < a and b =pa +r.
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Proof: Let S ={n € N:an > b}. By the Archimedian property this set is nonempty.
Let p + 1 be the smallest element of S. Then pa < b because p + 1 is the smallest in S.
Therefore,

r=b—mpa>0.

If r > a then b —pa > a and so b > (p + 1) a contradicting p + 1 € S. Therefore, r < a as
desired.
To verify uniqueness of p and r, suppose p; and r;, ¢ = 1,2, both work and 7o > 71. Then

a little algebra shows
To —T1

P1— P2 = E(Oal)

Thus p; — p2 is an integer between 0 and 1, contradicting Theorem 2.8.8. The case that
r1 > r9 cannot occur either by similar reasoning. Thus r; = r5 and it follows that p; = po.
This theorem is called the Euclidean algorithm when a and b are integers.

2.9 Exercises

1. The Archimedian property implies the rational numbers are dense in R. Now consider

the numbers which are of the form % where k € Z and m € N. Using the number

line, demonstrate that the numbers of this form are also dense in R.

2. Show there is no smallest number in (0, 1) . Recall (0, 1) means the real numbers which
are strictly larger than 0 and smaller than 1.

3. Show there is no smallest number in QN (0,1).

4. Show that if S C R and S is well ordered with respect to the usual order on R then S
cannot be dense in R.

5. Prove by induction that _,_, k* = In? + In + In?.

6. It is a fine thing to be able to prove a theorem by induction but it is even better to
be able to come up with a theorem to prove in the first place. Derive a formula for
Sory k* in the following way. Look for a formula in the form An® + Bn* + Cn® +
Dn? + En + F. Then try to find the constants A, B,C, D, E, and F such that things
work out right. In doing this, show

(n+1)" =
(A(n+1)5+B(n+1)4—|—C(n+1)3+D(n+1)2+E(n—|—1)+F)

—An® + Bn*+CnP+ Dn? 4+ En+ F

and so some progress can be made by matching the coefficients. When you get your
answer, prove it is valid by induction.

7. Prove by induction that whenever n > 2,37 ﬁ > /n.

n41
T 701‘7‘
r—1 r—

8. If r # 0, show by induction that >_,_, ar® =a

[

. . n n(n+1
9. Prove by induction that >, , k = %

10. Let a and d be real numbers. Find a formula for }_;_, (a + kd) and then prove your
result by induction.
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11.

12.

13.

14.

Consider the geometric series, > ,._, ar®*~1. Prove by induction that if r # 1, then

n n
_ a — ar
E a'f'k 1 = 1 .
- T
k=1

This problem is a continuation of Problem 11. You put money in the bank and
it accrues interest at the rate of r per payment period. These terms need a little
explanation. If the payment period is one month, and you started with $100 then
the amount at the end of one month would equal 100 (1 4 ) = 100 + 100r. In this
the second term is the interest and the first is called the principal. Now you have
100 (1 4 r) in the bank. How much will you have at the end of the second month? By
analogy to what was just done it would equal

100 (14 7) + 100 (1 + )7 = 100 (1 +r)*.

In general, the amount you would have at the end of n months would be 100 (1 + 7)™ .
(When a bank says they offer 6% compounded monthly, this means r, the rate per
payment period equals .06/12.) In general, suppose you start with P and it sits in
the bank for n payment periods. Then at the end of the n** payment period, you
would have P (1 +7)" in the bank. In an ordinary annuity, you make payments, P
at the end of each payment period, the first payment at the end of the first payment
period. Thus there are n payments in all. Each accrue interest at the rate of r per
payment period. Using Problem 11, find a formula for the amount you will have in the
bank at the end of n payment periods? This is called the future value of an ordinary
annuity. Hint: The first payment sits in the bank for n — 1 payment periods and so
this payment becomes P (1 + r)nfl . The second sits in the bank for n — 2 payment
periods so it grows to P (14+7)""?, etc.

Now suppose you want to buy a house by making n equal monthly payments. Typi-
cally, n is pretty large, 360 for a thirty year loan. Clearly a payment made 10 years
from now can’t be considered as valuable to the bank as one made today. This is be-
cause the one made today could be invested by the bank and having accrued interest
for 10 years would be far larger. So what is a payment made at the end of k payment
periods worth today assuming money is worth r per payment period? Shouldn’t it be
the amount, Q which when invested at a rate of r per payment period would yield
P at the end of k payment periods? Thus from Problem 12 Q (1 + r)k = P and so
Q=P+ r)_k . Thus this payment of P at the end of n payment periods, is worth
P(1+ r)fk to the bank right now. It follows the amount of the loan should equal the
sum of these “discounted payments”. That is, letting A be the amount of the loan,

A=Y "P@a+n)7"
k=1

Using Problem 11, find a formula for the right side of the above formula. This is called
the present value of an ordinary annuity.

Suppose the available interest rate is 7% per year and you want to take a loan for
$100,000 with the first monthly payment at the end of the first month. If you want to
pay off the loan in 20 years, what should the monthly payments be? Hint: The rate
per payment period is .07/12. See the formula you got in Problem 13 and solve for P.
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15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
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Consider the first five rows of Pascal’s? triangle

1
11
121
1331
14641

What would the sixth row be? Now consider that (z +y)' = 1z + 1y , (x+1y)* =
2% + 2xy + 92, and (v + y)3 = 23 + 322y + 3zy?® + y>. Give a conjecture about that
(z +)° would be.

Based on Problem 15 conjecture a formula for (x + y)" and prove your conjecture by
induction. Hint: Letting the numbers of the n** row of Pascal’s triangle be denoted by
(8)7 (?)7 - (2) in reading from left to right, there is a relation between the numbers
on the (n + 1) row and those on the n'" row, the relation being (") = (7) + (,",)-

k k
This is used in the inductive step.

Let (}) = (nfik'),k, where 0! = 1 and (n+1)! = (n+ 1) n! for all n > 0. Prove that

whenever £ > 1 and k& < n, then (”;1) = (Z) + (kﬁl) Are these numbers, (Z) the

same as those obtained in Pascal’s triangle? Prove your assertion.

The binomial theorem states (a +b)" = 3";'_, (})a™ *b*. Prove the binomial theorem
by induction. Hint: You might try using the preceding problem.

Show that for p € (0,1),>"7_, (Z)kpk (1- p)n—k — np.

n n+1
Using the binomial theorem prove that for all n € N, (1 + %L) < (1 + n_1H> .
Hint: Show first that (}) = W By the binomial theorem,
k factors

CORMIBIOR R

k=0 k=0

n-(n—1)---(n—k+1)

Tk and note that a similar term occurs in the

Now consider the term

n+1
this occurs. Argue the term got bigger and then note that in the binomial expansion

n+1
binomial expansion for (1 + L) except that n is replaced with n + 1 whereever

n+1
for (1 + n%kl) , there are more terms.

Prove by induction that for all k > 4, 2F < k!
Use the Problems 21 and 20 to verify for all n € N, (1+ 1)" < 3.

Prove by induction that 1+ Y. ;i (i!) = (n + 1)..

I can jump off the top of the empire state building without suffering any ill effects.
Here is the proof by induction. If I jump from a height of one inch, I am unharmed.
Furthermore, if I am unharmed from jumping from a height of n inches, then jumping
from a height of n + 1 inches will also not harm me. This is self evident and provides
the induction step. Therefore, I can jump from a height of n inches for any n. What
is the matter with this reasoning?

2Blaise Pascal lived in the 1600’s and is responsible for the beginnings of the study of probability.
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25. All horses are the same color. Here is the proof by induction. A single horse is the
same color as himself. Now suppose the theorem that all horses are the same color is
true for n horses and consider n 4+ 1 horses. Remove one of the horses and use the
induction hypothesis to conclude the remaining n horses are all the same color. Put
the horse which was removed back in and take out another horse. The remaining n
horses are the same color by the induction hypothesis. Therefore, all n + 1 horses are
the same color as the n — 1 horses which didn’t get moved. This proves the theorem.
Is there something wrong with this argument?

2.10 Divisibility And The Fundamental Theorem Of Arith-
metic

It is not necessary to read this section in order to do calculus. However, it is good general
knowledge and so is included. The following definition describes what is meant by a prime
number and also what is meant by the word “divides”.

Definition 2.10.1 The number, a divides the number, b if in Theorem 2.8.11, r = 0. That
is there is zero remainder. The notation for this is alb, read a divides b and a is called a
factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1. The greatest common divisor of two positive integers, m,n is that
number, p which has the property that p divides both m and n and also if q divides both m
and n, then q diwides p. Two integers are relatively prime if their greatest common divisor
is one.

Theorem 2.10.2 Let m,n be two positive integers and define
S={zm+yneN:z,yeZ}.
Then the smallest number in S is the greatest common divisor, denoted by (m,n).

Proof: First note that both m and n are in .S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = zgm + yon. Either p divides m
or it does not. If p does not divide m, then by Theorem 2.8.11,

m=pq+r
where 0 < r < p. Thus m = (xgm + yon) ¢ + r and so, solving for r,
r=m(l—xz)+ (—yoq)n € S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly

pln.
Now suppose ¢ divides both m and n. Then m = gx and n = gy for integers, x and .
Therefore,

p =mzo + nyo = Tz + Yoqy = ¢ (ToT + Yoy)
showing ¢|p. Therefore, p = (m,n) .

Theorem 2.10.3 If p is a prime and plab then either pla or pl|b.

Proof: Suppose p does not divide a. Then since the only factors of p are 1 and p it
follows(p,a) = 1 and therefore, there exists integers, x and y such that

1 =ax + yp.
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Multiplying this equation by b yields
b = abx + ybp.
Since p|ab, ab = pz for some integer z. Therefore,
b = abx + ybp = pzx + ybp = p (xz + yb)
and this shows p divides b.

Theorem 2.10.4 (Fundamental theorem of arithmetic) Let a € N\ {1}. Then a =[[;—, p;
where p; are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a <n — 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers £ and m such that n = km where each of £ and m
are less than n. Therefore, each of these is no larger than n — 1 and consequently, each has
a prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose

n m
07 =11
i=1 j=1

where the p; and g; are all prime, there is no way to reorder the g; such that m = n and
p; = q; for all i, and n + m is the smallest positive integer such that this happens. Then
by Theorem 2.10.3, pi|g; for some j. Since these are prime numbers this requires p; = ¢;.
Reordering if necessary it can be assumed that g; = ¢;. Then dividing both sides by p1 = q1,

n—1 m—1
Hpiﬂ = H qj+1-
i=1 j=1

Since n + m was as small as possible for the theorem to fail, it follows that n — 1 =m — 1
and the prime numbers, go,- - -, ¢, can be reordered in such a way that pr = ¢ for all
k = 2,--- n. Hence p; = ¢; for all i because it was already argued that p; = ¢;, and this
results in a contradiction, proving the theorem.

The next theorem is a very nice high school theorem which characterizes all possible
rational roots for polynomials having integer coeflicients.

Theorem 2.10.5 (rational root theorem) Let
anx™ 4+ +ax+ag=0
where each a; is an integer and a, # 0. Then if the equation has any rational solutions,

these are of the form
factor of ag

factor of ay,
Proof: Let % be a rational solution. Dividing p and ¢ by (p, ¢) if necessary, the fraction
may be reduced to lowest terms such that (p,q) = 1. Substituting into the equation,

anp" + an1p" g+ -+ aipg" ! + apg” = 0.
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Hence
anpn = - (a'n—lpn_lq +e aoqn)

and ¢ divides the right side of the equation and therefore, ¢ must divide the left side also.
However, (¢,p™) = 1 and so by Theorem 2.10.3 ¢|a,, because it does not divide p™ due to
the fact that p™ and ¢ have no prime factors in common.

Similarly,

aoq" = — (anp” + -+ -+ ar1pg" ")

and so plagg™ but (p,q"™) = 1. By Theorem 2.10.3 again, p|ag and this proves the theorem.

Example 2.10.6 An irrational number is one which is not rational. Show V2 is irrational
if it exists.

V/2 is the solution of the equation z? — 2 = 0. However, from Theorem 2.10.5, the only
possible rational roots to this equation are +£2 and +1 and none of these work. Therefore,
/2 must be irrational.

2.11 Exercises

1. Using Theorem 2.10.5, show v/6, v/7,v/5 are all irrational numbers. This means they
are not rational.

2. Using the fact that V2 is irrational, (not rational) show that numbers of the form /2
where r € Q are dense in R. Then verify these numbers are irrational.

3. Euclid® showed there were infinitely many prime numbers using a very simple argu-
ment. He assumed there were only finitely many, {p1,---,p,} and then considered
the number p; - - - p, + 1 consisting of the product of all the primes plus 1. Then
this number can’t be prime because it is larger than every prime number. Therefore,
some prime number, pi from the above list must divide it. Now obtain a terrible
contradiction.

4. If a,b are integers, [a, b] will denote their least common multiple. This is the smallest
number which has both a and b as factors. Show [a,b] = ab/(a,b). Hint: Show
[a,b] must divide ab. Here is how you might proceed. If not, ab = [a,b] ¢ + r where
0 <r < [a,b]. Then verify r is a common multiple of a and b contradicting that [a, b]
is the least common multiple. Hence r = 0. Therefore, [a,b] = ab/q for some ¢ an
integer. Since [a,b] is a common multiple of a and b, argue that ¢ must divide both a
and b. Now what is the largest such ¢? This would yield the smallest ab/q. You fill in
the details.

5. Show that if {a,b, c} are three positive integers, they have a greatest common divisor
which may be written as ax 4 by + cz for some integers x, y, z.

6. Let a, = 22" +1 for n =1,2,---. Show that if n # m, then a, and a,, are relatively
prime. Either a,, is prime or it is not. If it is not, then all the numbers dividing it
other than 1 fail to divide a,, for all m < n. Explain why this shows there must be
infinitely many primes. This argument about infinitely many primes is due to Polya.
It gives more information than the argument of Euclid. The numbers, 22") 4+ 1 are

3He lived about 300 B.C.
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prime numbers for several values of n but Euler? showed that when n = 5, the number
is not prime®. When numbers of this form are prime, they are called Fermat® primes.
At this time it is unknown whether there are infinitely many Fermat primes. For
more information on these matters, you should see the book by Chahal, [4]. Hint:
To verify a,, and a,, are relatively prime for m > n,suppose they are not and that for
some number, p # 1, a,, = pky; while a,, = pko. Then letting m = n + r,explain why

n\ 2" r
phy = am:(22) F1=(ph -1 +1
= p(integer) + 2.

Consequently, p (integer) = 2. What does this say about p? How does pk; = 22" + 1
yield a contradiction?

2.12 Systems Of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that
z4+y=7T7and 2z —y = 8. (2.3)

The set of ordered pairs, (x,y) which solve both equations is called the solution set. For
example, you can see that (5,2) = (z,y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if z and y
solve the system

—3y=—6
z+y="72r—y+(-2)(z+y) =84 (-2) (7). (2.4)
The second equation was replaced by —2 times the first equation added to the second. Thus
the solution is y = 2, from —3y = —6 and now, knowing y = 2, it follows from the other

equation that x +2 =7 and so z = 5.
Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of (2.3) are of the form

Ey = fi,E,=fo (2.5)

where F4 and E5 are expressions involving the variables. The claim is that if a is a number,
then (2.5) has the same solution set as

Ey = fi, By +aby = fo+afi. (2.6)

Why is this?
If (z,y) solves (2.5) then it solves the first equation in (2.6). Also, it satisfies aF1 = af;
and so, since it also solves Fy = fo it must solve the second equation in (2.6). If (z,y)

4Leonhard Euler, born in Switzerland, lived from 1707 to 1783. He was the most prolific mathematician
ever to live. He made major contributions to number theory, analysis, algebra, mechanics, and differential
equations. He and Lagrange invented the branch of mathematics known as calculus of variations. His
collected papers take up more shelf space than a typical encyclopedia. His memory was prodigious and he
could do unbelievable feats of computation in his head. He had 13 children.

5The number in this case is 4,294,967, 297.

6Fermat lived from 1601 to 1665. He is generally regarded as the founder of number theory. His most
famous conjecture was that there is no solution to the equation z™ + y™ = 2™ if n > 3. That is there is
no analog to pythagorean triples with higher exponents than 2. This was finally proved in the 1990’s by
Andrew Wiles.
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solves (2.6) then it solves the first equation of (2.5). Also aF; = af; and it is given that
the second equation of (2.6) is verified. Therefore, Es = f2 and it follows (z,y) is a solution
of the second equation in (2.5). This shows the solutions to (2.5) and (2.6) are exactly the
same which means they have the same solution set. Of course the same reasoning applies
with no change if there are many more variables than two and many more equations than
two. It is still the case that when one equation is replaced with a multiple of another one
added to itself, the solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.

Example 2.12.1 Find the solutions to the system,

T+ 3y +6z=25
2 + Ty + 14z = 58 (2.7)
2y+52=19

To solve this system replace the second equation by (—2) times the first equation added
to the second. This yields. the system

z+ 3y +62=25
y+2z=28 (2.8)
2y +52=19

Now take (—2) times the second and add to the third. More precisely, replace the third
equation with (—2) times the second added to the third. This yields the system

x4+ 3y + 62 =25
y+2z=28 (2.9)
z=3

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y+ 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
=1

This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2z + 5 = 3x — 6. You did the
same thing to both sides of the equation thus preserving the solution set until you obtained
an equation which was simple enough to give the answer. In this case, you would add —2x
to both sides and then add 6 to both sides. This yields x = 11.

In (2.9) you could have continued as follows. Add (—2) times the bottom equation to
the middle and then add (—6) times the bottom to the top. This yields

z+3y =19
y==6
z=3

Now add (—3) times the second to the top. This yields

r=1
y==6,
z=3

a system which has the same solution set as the original system.
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It is foolish to write the variables every time you do these operations. It is easier to
write the system (2.7) as the following “augmented matrix”

1 3 6 25
2 7 14 58
0 2 5 19
It has exactly the same information as the original system but here it is understood there is
1 3 6
an x column, 2 |, ay column, 7 | and a z column, 14 | . The rows correspond
0 2 5

to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,
T+ 3y + 62 = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving (2.7) would be to take (—2) times the first
row of the augmented matrix above and add it to the second row,

1 3 6 25
01 2 8
0 2 5 19

Note how this corresponds to (2.8). Next take (—2) times the second row and add to the
third,

1 3 6 25
01 2 8
00 1 3

which is the same as (2.9). You get the idea I hope. Write the system as an augmented
matrix and follow the procedure of either switching rows, multiplying a row by a non zero
number, or replacing a row by a multiple of another row added to it. Each of these operations
leaves the solution set unchanged. These operations are called row operations.

Example 2.12.2 Give the complete solution to the system of equations, bx+10y—T7z = —2,
2z 4+ 4y — 3z = —1, and 3z + 6y + 5z = 9.

The augmented matrix for this system is

2 4 -3 -1
5 10 -7 =2
3 6 5 9

Multiply the second row by 2, the first row by 5, and then take (—1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields

2 4 -3 -1
00 1 1
3 6 5 9

Now, combining some row operations, take (—3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields.

2 4 -3 -1
00 1 1
00 1 21
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Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
the last system of equations determined by the above augmented matrix has no solution.
However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = z+1. There is clearly no solution
to this.

Example 2.12.3 Give the complete solution to the system of equations, 3x —y — 5z = 9,
y— 10z =0, and -2z +y = —6.
The augmented matrix of this system is
3 -1 -5 9

0 1 =10 0
-2 1 0 -6

Replace the last row with 2 times the top row added to 3 times the bottom row. This gives
3 -1 -5 9

0 1 -10 O
0 1 -10 O

Next take —1 times the middle row and add to the bottom.

3 -1 -5 9
0 1 -10 O

0 O 0 O
Take the middle row and add to the top and then divide the top row which results by 3.
1 0 -5 3
0 1 —-10 O
00 0 O

This says y = 10z and x = 3 4+ 5z. Apparently z can equal any number. Therefore, the
solution set of this system is z = 3 4 5¢,y = 10¢, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
This is what it is all about, finding the solutions to the system.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation z = z. It doesn’t matter what x equals.

Definition 2.12.4 A system of linear equations is a list of equations,
n
Zaijxj = fj, = 1,2,3,' c,m
j=1

where a;; are numbers, f; is a number, and it is desired to find (x1,- - -, x,) solving each of
the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. It turns out these are the only three cases which can
occur for linear systems. Furthermore, you do exactly the same things to solve any linear
system. You write the augmented matrix and do row operations until you get a simpler
system in which it is possible to see the solution. All is based on the observation that the
row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented
matrix and go to work on it. These things are all the same.
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Example 2.12.5 Give the complete solution to the system of equations, —41x + 15y = 168,
109z — 40y = —447, =3z +y = 12, and 2z + z = —1.

The augmented matrix is

—41 15 0 168
109 —40 0 —447
-3 1 0 12
2 0o 1 -1

To solve this multiply the top row by 109, the second row by 41, add the top row to the
second row, and multiply the top row by 1/109. This yields

—41 15 0 168
0 -5 0 -15
-3 1 0 12
2 0o 1 -1

Now take 2 times the third row and replace the fourth row by this added to 3 times the

fourth row.
—41 15 0 168

0 -5 0 -15
-3 1 0 12
0 2 3 21

Take (—41) times the third row and replace the first row by this added to 3 times the first
row. Then switch the third and the first rows.

123 —41 0 —492
0 -5 0 -15
0 4 0 12
0 2 3 21

Take —1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields

492 0 —1476
0 0
0 12
3 15

O = O O

9
0
0
0

It follows =z = _iggfi = -3, y=3 and z =5.

You should practice solving systems of equations. Here are some exercises.
2.13 Exercises

1. Give the complete solution to the system of equations, 3z — y + 4z = 6, y + 8z = 0,
and —2x +y = —4.

2. Give the complete solution to the system of equations, 2z + z = 511, x + 6z = 27, and
y=1.
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Consider the system —5z + 2y — z = 0 and —5z — 2y — z = 0. Both equations equal
zero and so —5x + 2y — z = —bx — 2y — z which is equivalent to y = 0. Thus « and
z can equal anything. But when x = 1, 2z = —4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

. Give the complete solution to the system of equations, 7z + 14y + 15z = 22, 2x 4+ 4y +

3z =5, and 3z + 6y + 10z = 13.

Give the complete solution to the system of equations, —5x—10y+5z = 0, 2z+4y—4z =
—2,and —4x — 8y + 13z = 8.

Give the complete solution to the system of equations, 9x —2y+4z = —17, 13z — 3y +
6z = —25, and —2z — z = 3.

Give the complete solution to the system of equations, 9x — 18y + 4z = —83, —32x +
63y — 14z = 292, and —18x + 40y — 9z = 179.

Give the complete solution to the system of equations, 65z + 84y 4+ 16z = 546, 81z +
105y 4 20z = 682, and 84z + 110y + 21z = 713.

Give the complete solution to the system of equations, 3x —y +4z = -9, y + 82 =0,
and —2x +y = 6.

Give the complete solution to the system of equations, 8x+2y+3z = —3,8x+3y+3z =
—1, and 4o +y + 3z = —9.

Give the complete solution to the system of equations, —7x — 14y — 10z = —17,
2 + 4y + 22 =4, and 2z + 4y — 7z = —6.

Give the complete solution to the system of equations, —8x + 2y + 5z = 18, —8x +
3y +5z=13, and -4z +y + 5z = 19.

Give the complete solution to the system of equations, 2z+2y—>5z = 27,2x+3y—5z =
31, and . +y — 5z = 21.

Give the complete solution to the system of equations, 3z —y — 2z =3, y — 4z =0,
and -2z +y = —2.

Give the complete solution to the system of equations, 3x —y — 2z =6, y — 4z = 0,
and —2x +y = —4.

Four times the weight of Gaston is 150 pounds more than the weight of Ichabod.
Four times the weight of Ichabod is 660 pounds less than seventeen times the weight
of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 290
pounds. Brunhilde would balance all three of the others. Find the weights of the four
girls.

Give the complete solution to the system of equations, —19x+8y = —108, —71z+30y =
—404, 2x +y=—12, dx 4+ z = 14.

Give the complete solution to the system of equations, —9z+15y = 66, —11x+18y = 79
,—r+y=4,and z = 3.
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2.14 Completeness of R

By Theorem 2.8.9, between any two real numbers, points on the number line, there exists a
rational number. This suggests there are a lot of rational numbers, but it is not clear from
this Theorem whether the entire real line consists of only rational numbers. Some people
might wish this were the case because then each real number could be described, not just as
a point on a line but also algebraically, as the quotient of integers. Before 500 B.C., a group
of mathematicians, led by Pythagoras believed in this, but they discovered their beliefs were
false. It happened roughly like this. They knew they could construct the square root of two
as the diagonal of a right triangle in which the two sides have unit length; thus they could
regard v/2 as a number. Unfortunately, they were also able to show v/2 could not be written
as the quotient of two integers. This discovery that the rational numbers could not even
account for the results of geometric constructions was very upsetting to the Pythagoreans,
especially when it became clear there were an endless supply of such “irrational” numbers.

This shows that if it is desired to consider all points on the number line, it is necessary
to abandon the attempt to describe arbitrary real numbers in a purely algebraic manner
using only the integers. Some might desire to throw out all the irrational numbers, and
considering only the rational numbers, confine their attention to algebra, but this is not the
approach to be followed here because it will effectively eliminate every major theorem of
calculus. In this book real numbers will continue to be the points on the number line, a
line which has no holes. This lack of holes is more precisely described in the following way.

Definition 2.14.1 A non empty set, S C R is bounded above (below) if there exists x € R
such that © > (<) s for all s € S. If S is a nonempty set in R which is bounded above,
then a number, I which has the property that | is an upper bound and that every other upper
bound is no smaller than 1 is called a least upper bound, l.u.b. (S) or often sup (S). If S is a
nonempty set bounded below, define the greatest lower bound, ¢.l.b. (S) or inf (S) similarly.
Thus g is the g.l.b. (S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup (S) = +oo and if S is not bounded below, inf (S) = —oo.

Every existence theorem in calculus depends on some form of the completeness axiom.

Axiom 2.14.2 (completeness) Every nonempty set of real numbers which is bounded above
has a least upper bound and every nonempty set of real numbers which is bounded below has
a greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 2.14.3 Let S be a nonempty set and suppose sup (S) exists. Then for every
6 >0,

SN (sup (S) — §,sup (9)] # 0.
If inf (S) exists, then for every § > 0,

S N [inf (S),inf (S) + 6) # 0.

Proof: Consider the first claim. If the indicated set equals (), then sup (S) — § is an
upper bound for S which is smaller than sup (S), contrary to the definition of sup (S) as
the least upper bound. In the second claim, if the indicated set equals ), then inf (S) + ¢
would be a lower bound which is larger than inf (S) contrary to the definition of inf (.5).
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2.15 Review Exercises

1.

10.

11.

Let S = [2,5]. Find sup S. Now let S = [2,5). Find sup S. Is sup S always a number
in S? Give conditions under which sup S € S and then give conditions under which

infS esS.

. Show that if S # () and is bounded above (below) then sup S (inf S) is unique. That

is, there is only one least upper bound and only one greatest lower bound. If S = ()
can you conclude that 7 is an upper bound? Can you conclude 7 is a lower bound?
What about 13.57 What about any other number?

Let S be a set which is bounded above and let —S denote the set {—z : z € S}. How
are inf (—S5) and sup (5) related? Hint: Draw some pictures on a number line. What
about sup (—5) and inf S where S is a set which is bounded below?

. Solve the following equations which involve absolute values.

(a) [ +1] = |22 + 3]
(b) |z + 1|~ |z +4]=6

Solve the following inequalities which involve absolute values.

(a) |22 — 6] < 4
(b) |z —2| <[22 + 2|

Which of the field axioms is being abused in the following argument that 0 = 27 Let
x =1y = 1. Then
2

0=2’-y’=(z—y)(z+y)

and so
O=(@-y)(z+y).
Now divide both sides by = — y to obtain

O=xz+y=14+1=2.

Give conditions under which equality holds in the triangle inequality.

Let k < n where k and n are natural numbers. P (n, k), permutations of n things
taken k£ at a time, is defined to be the number of different ways to form an ordered
list of k of the numbers, {1,2,--,n}. Show

P(mk):n-(n—l)n-(n—k—i-l):m.

Using the preceding problem, show the number of ways of selecting a set of k things
from a set of n things is (7).

Prove the binomial theorem from Problem 9. Hint: When you take (z +%)", note
that the result will be a sum of terms of the form, a2z *y* and you need to determine
what ay should be. Imagine writing (z + )" = (z +y) (z + y) - - - (x + y) where there
are n factors in the product. Now consider what happens when you multiply. Each

factor contributes either an z or a y to a typical term.

Prove by induction that n < 2" for all natural numbers, n > 1.
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. Prove by the binomial theorem and Problem 9 that the number of subsets of a given
finite set containing n elements is 2.

Let n be a natural number and let k1 + k2 + - - -k, = n where k; is a non negative

integer. The symbol
n
kiko -k,

denotes the number of ways of selecting r subsets of {1, - - -, n} which contain k1, ko -k,
elements in them. Find a formula for this number.

Is it ever the case that (a +b)" = a™ + b™ for a and b positive real numbers?
Is it ever the case that Va2 + b2 = a + b for a and b positive real numbers?
Is it ever the case that I—Jlry = % + % for z and y positive real numbers?

Derive a formula for the multinomial expansion, (>_7_, aj)" which is analogous to the
binomial expansion. Hint: See Problem 10.

Suppose a > 0 and that x is a real number which satisfies the quadratic equation,
az? +bx+c=0.

Find a formula for x in terms of a and b and square roots of expressions involving
these numbers. Hint: First divide by a to get

b
224z + S =0
a a

Then add and subtract the quantity b%/4a?. Verify that

T A

a 402 2a )
Now solve the result for x. The process by which this was accomplished in adding
in the term b?/4a? is referred to as completing the square. You should obtain the

quadratic formula”,
—b+ Vb% — 4dac
r=—.
2a

The expression b? — 4ac is called the discriminant. When it is positive there are two
different real roots. When it is zero, there is exactly one real root and when it equals
a negative number there are no real roots.

Suppose f(z) = 3x? + 7z — 17. Find the value of x at which f (z) is smallest by
completing the square. Also determine f (R) and sketch the graph of f. Hint:

1 4 4 1
flx) = 3<x2+;x37)3<x2+71:+997>

s (o 7Y %917
6/ 36 3 )°

7The ancient Babylonians knew how to solve these quadratic equations sometime before 1700 B.C. It
seems they used pretty much the same process outlined in this exercise.
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20. Suppose f (x) = —52% + 8z — 7. Find f (R). In particular, find the largest value of

21.

f (z) and the value of = at which it occurs. Can you conjecture and prove a result
about y = ax? + bx + ¢ in terms of the sign of a based on these last two problems?

Show that if it is assumed R is complete, then the Archimedian property can be proved.
Hint: Suppose completeness and let a > 0. If there exists z € R such that na <
for all n € N, then x/a is an upper bound for N. Let [ be the least upper bound and
argue there exists n € NN [l — 1/4,1] . Now what about n + 1?
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Basic Geometry And
Trigonometry

This section is a review some basic geometry which is especially useful in the study of
calculus. The purpose here is not to give a complete treatment of plane geometry, just a
suitable introduction. To do this right, you should consult the books of Euclid written about
300 B.C. [6]

3.1 Similar Triangles And Pythagorean Theorem

Definition 3.1.1 Two triangles are similar if they have the same angles. For example, in
the following picture, the two triangles are similar because the angles are the same.

B
B
c a c* a*
A b C
A C
b*

The fundamental axiom for similar triangles is the following.

Axiom 3.1.2 If two triangles are similar then the ratios of corresponding parts are the
same.

For example in the above picture, this says that

a a*

b b
Definition 3.1.3 Two lines in the plane are said to be parallel if no matter how far they
are extended, they never intersect.

Definition 3.1.4 If two lines Iy and ls are parallel and if they are intersected by a line, I3,
the alternate interior angles are shown in the following picture labeled as c.

47
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ly

I3

As suggested by the above picture, the following axiom will be used.

Axiom 3.1.5 Ifl; and Iy are parallel lines intersected by l3, then alternate interior angles
are equal.

Definition 3.1.6 An angle is a right angle if when either side is extended, the new angle
formed by the extension equals the original angle.

Axiom 3.1.7 Suppose l1 and ly both intersect a third line, I3 in a right angle. Then Iy and
lo are parallel.

Definition 3.1.8 A right triangle is one in which one of the angles is a rTight angle.

Axiom 3.1.9 Given a straight line and a point, there exists a straight line which contains
the point and intersects the given line in two right angles. This line is called perpendicular
to the given line.

Theorem 3.1.10 Let o, 3, and v be the angles of a right triangle with v the right angle.
Then if the angles, a and (B are placed next to each other, the resulting angle is a right angle.

Proof: Consider the following picture.
B

A a "o

In the picture the top horizontal line is obtained from Axiom 3.1.9. It is a line perpen-
dicular to the line determined by the line segment joining B and C' which passes through
the point, B. Then as shown in the picture, the angle formed by placing « and (§ together
is a right angle as claimed.

Definition 3.1.11 When an angle « is placed next to an angle B as shown above, then the
resulting angle is denoted by a + 5. A right angle is said to have 90° or to be a 90° angle.

With this definition, Theorem 3.1.10 says the sum of the two non 90° angles in a right
triangle is 90°.

In a right triangle the long side is called the hypotenuse. The similar triangles axiom
can be used to prove the Pythagorean theorem.

Theorem 3.1.12 (Pythagoras) In a right triangle the square of the length of the hypotenuse
equals the sum of the squares of the lengths of the other two sides.

Proof: Consider the following picture in which the large triangle is a right triangle and
D is the point where the line through C perpendicular to the line from A to B intersects
the line from A to B. Then c is defined to be the length of the line from A to B, a is the
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length of the line from B to C, and b is the length of the line from A to C. Denote by DB
the length of the line from D to B.

B

A
b C

Then from Theorem 3.1.10, § + v = 90° and (§ + v = 90°. Therefore, § = 3. Also from
this same theorem, a + § = 90° and so a = 7. Therefore, the three triangles shown in the
picture are all similar. By Axiom 3.1.2,

a c b
- = =, and - = .
a DB b ¢—DB
Therefore, cDB = a? and
c(c—ﬁ) = p?
SO
2 =cDB + b
=a? + b2

This proves the Pythagorean theorem. !

This theorem implies there should exist some such number which deserves to be called
va? + b? as mentioned earlier in the discussion on completeness of R.

3.2 Cartesian Coordinates And Straight Lines

Recall the notion of the Cartesian coordinate system. It involved an z axis, a y axis, two
lines which intersect each other at right angles and one identifies a point by specifying a pair
of numbers. For example, the number (2, 3) involves going 2 units to the right on the x axis
and then 3 units directly up on a line perpendicular to the x axis. For example, consider
the following picture.

1This theorem is due to Pythagoras who lived about 572-497 B.C. This was during the Babylonian
captivity of the Jews. Thus Pythagoras was probably a contemporary of the prophet Daniel, sometime
before Ezra and Nehemiah. Alexander the great would not come along for more than 100 years. There was,
however, an even earlier Greek mathematician named Thales, 624-547 B.C. who also did fundamental work
in geometry. Greek geometry was organized and published by Euclid about 300 B.C.



50 BASIC GEOMETRY AND TRIGONOMETRY

Because of the simple correspondence between points in the plane and the coordinates
of a point in the plane, it is often the case that people are a little sloppy in referring to these
things. Thus, it is common to see (z,y) referred to as a point in the plane. I will often
indulge in this sloppiness.

The reader has likely encountered the notion of graphing relations of the form y = 2z +3
or y = 22 + 5. Recall that you first found lots of ordered pairs which satisfied the relation.
For example (0, 3),(1,5), and (—1,1) all satisfy the first relation which describes a straight
line. Here are some simple examples which you should see that you understand. First here
is the graph of y = 22 + 1.

Now here is the graph of the relation y = 2x + 1 which is a straight line.
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Sometimes a relation is defined using different formulas depending on the location of one
of the variables. For example, consider

6+ax if z < -2
Yy = 2?2 if —2<2<3

1—2 if >3

Then the graph of this relation is sketched below.

420

-2 \

-4

A very important type of relation is one of the form y — yo = m (x — ), where m, g,

and yo are numbers. The reason this is important is that if there are two points, (x1,y1),
and (2, y2) which satisfy this relation, then

yi—y2 _ (W1 —yo) — (W2 —wo) _ m(z1—x9) —m(x2 — o)
Tl — T2 T — T2 L1 — T2
_m(ry —x2)

Ty — T2

Remember the slope of the line segment through two points is always the difference in the
y values divided by the difference in the x values, taken in the same order. Sometimes this
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is referred to as the rise divided by the run. This shows that there is a constant slope, m,
the slope of the line, between any pair of points satisfying this relation. Such a relation is
called a straight line. Also, the point (zo, yo) satisfies the relation. This is more often called
the equation of the straight line.

Example 3.2.1 Find the relation for a straight line which contains the point (1,2) and has
constant slope equal to 3.

From the above discussion, (y —2) =3 (z —1).

3.3 Exercises

1. Sketch the graph of y = 23 + 1.
2. Sketch the graph of y = 22 — 2z + 1.
3. Sketch the graph of y = 557.

4. Sketch the graph of —

1422

5. Sketch the graph of the straight line which goes through the points (1,0) and (2, 3)
and find the relation which describes this line.

6. Suppose a,b # 0. Find the equation of the line which goes through the points (0,a),
and (b,0).

7. Two lines are parallel if they have the same slope. Find the equation of the line
through the point (2, 3) which is parallel to the line whose equation is 2z + 3y = 8.

8. Sketch the graph of the relation defined as

1 if x< =2
y=4¢ l—a if -2<2x<3
1+2 if T >3

3.4 Distance Formula And Trigonometric Functions

As just explained,points in the plane may be identified by giving a pair of numbers. Suppose
there are two points in the plane and it is desired to find the distance between them. There
are actually many ways used to measure this distance but the best way, and the only way
used in this book is determined by the Pythagorean theorem. Consider the following picture.
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(w1,91)

»

(w0, 90) (71,90)

In this picture, the distance between the points denoted by (zo,yo) and (x1,y1) should
be the square root of the sum of the squares of the lengths of the two sides. The length
of the side on the bottom is |xg — 1| while the length of the side on the right is |yo — v1] -
Therefore, by the Pythagorean theorem the distance between the two indicated points is

\/(mo —21)* 4 (yo — y1)°. Note you could write

\/($1 - 960)2 +(y1 — y0)2

or even

\/(xo —21)” + (y1 — w)?

and it would make no difference in the resulting number. The distance between the two
points is written as |(zo,yo) — (1,y1)| or sometimes when P, is the point determined by
(z0,yo) and P; is the point determined by (x1,y1) , as d (Py, Py) or |PyP|.

The trigonometric functions cos and sin are defined next. Consider the following picture
in which the small circle has radius 1, the large circle has radius R, and the right side of
each of the two triangles is perpendicular to the bottom side which lies on the x axis.

(Rcos(0), Rsin(0))
< (cos(0), sin(6))

By Theorem 3.1.10 on Page 48 the two triangles have the same angles and so they are
similar. Now define by (cos 6, sin 8) the coordinates of the top vertex of the smaller triangle.
Therefore, it follows the coordinates of the top vertex of the larger triangle are as shown.
This shows the following definition is well defined.
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Definition 3.4.1 For 6 an angle, define cos® and sinf as follows. Place the vertex of the
angle (The vertex is the point.) at the point whose coordinates are (0,0) in such a way that
one side of the angle lies on the positive x axis and the other side extends upward. Extend
this other side until it intersects a circle of radius R. Then the point of intersection, is given
as (Rcos@, Rsinf). In particular, this specifies cos@ and sin6 by simply letting R = 1.

Proposition 3.4.2 For any angle, 6, cos® 0 + sin? 6 = 1.

Proof: This follows immediately from the above definition and the distance formula.
Since (cosf,sinf) is a point on the circle which has radius 1, the distance of this point to
(0,0) equals 1. Thus the above identity holds.

The other trigonometric functions are defined as follows.

ﬂ,cot@z@—sg,secf)z L csch = 1
cos 6 sin 6

It is also important to understand these functions in terms of a right triangle. Consider the
following picture of a right triangle.

tanf = (3.1)

cos@’ sinf’

B

You should verify sin A = a/e¢, cos A =b/c, tan A = a/b,sec A = ¢/b, and csc A = ¢/a.

Having defined the cos and sin there is a very important generalization of the Pythagorean
theorem known as the law of cosines. Consider the following picture of a triangle in which
a,b and c are the lengths of the sides and A, B, and C denote the angles indicated.

B

C b A
The law of cosines is the following.
Theorem 3.4.3 Let ABC' be a triangle as shown above. Then
2 =a® +b* —2abcosC

Proof: Situate the triangle so the vertex of the angle, C, is on the point whose coor-
dinates are (0,0) and so the side opposite the vertex, B is on the positive  axis as shown
in the above picture. Then from the definition of the cos C, the coordinates of the vertex,
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B are (acosC,asinC) while it is clear the coordinates of A are (b,0). Therefore, from the
distance formula, and Proposition 3.4.2,
@ = (acosC —b)* + a?sin® C
= a®cos® C' — 2abcos C + b* + a*sin® C
=a® +b? — 2abcos C

as claimed.

Corollary 3.4.4 Let ABC be any triangle as shown above. Then the length of any side is
no longer than the sum of the lengths of the other two sides.

Proof: This follows immediately from the law of cosines. From Proposition 3.4.2,
lcosf] < 1 and so 2 = a® + b2 — 2abcosC < a? + b2 + 2ab = (a+b)*>. This proves
the corollary.

Corollary 3.4.5 Suppose T and T are two triangles such that one angle is the same in
the two triangles and in each triangle, the sides forming that angle are equal. Then the
corresponding sides are proportional.

Proof: Let T = ABC with the two equal sides being AC' and AB. Let T” be labeled in
the same way but with primes on the letters. Thus the angle at A is equal to the angle at
A’. The following picture is descriptive of the situation.

C
O/
b
a /\a/
A - B Al C/ B

Denote by a,a’, b,b’,c and ¢’ the sides indicated in the picture. Then by the law of
cosines,

a® =b* + ¢ — 2bccos A
= 2b% — 2b% cos A
and so a/b = /2 (1 — cos A). Similar reasoning shows a’/b' = \/2 (1 — cos A) and so
a/b=ad/b.
Similarly, a/c = a'/c’. By assumption ¢/b=1=¢'/b'.

Such triangles in which two sides are equal are called isoceles.

3.5 The Circular Arc Subtended By An Angle

How can angles be measured? This will be done by considering arcs on a circle. To see how
this will be done, let # denote an angle and place the vertex of this angle at the center of
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the circle. Next, extend its two sides till they intersect the circle. Note the angle could be
opening in any of infinitely many different directions. Thus this procedure could yield any
of infinitely many different circular arcs. Each of these arcs is said to subtend the angle. In
fact each of these arcs has the same length. When this has been shown, it will be easy to
measure angles. Angles will be measured in terms of lengths of arcs subtended by the angle.
Of course it is also necessary to define what is meant by the length of a circular arc in order
to do any of this. First I will describe an intuitive way of thinking about this and then give
a rigorous definition and proof. If the intuitive way of thinking about this satisfies you, no
harm will be done by skipping the more technical discussion which follows.

Take an angle and place its vertex (the point) at the center of a circle of radius r. Then,
extending the sides of the angle if necessary till they intersect the circle, this determines an
arc on the circle. If  were changed to R, this really amounts to a change of units of length.
Think, for example, of keeping the numbers the same but changing centimeters to meters
in order to produce an enlarged version of the same picture. Thus the picture looks exactly
the same, only larger. It is reasonable to suppose, based on this reasoning that the way to
measure the angle is to take the length of the arc subtended in whatever units being used
and divide this length by the radius measured in the same units, thus obtaining a number
which is independent of the units of length used just as the angle itself is independent of
units of length. After all, it is the same angle regardless of how far its sides are extended.
This is in fact how to define the radian measure of an angle and the definition is well defined.
Thus, in particular, the ratio between the circumference (length) of a circle and its radius
is a constant which is independent of the radius of the circle?. Since the time of Euler in
the 1700’s, this constant has been denoted by 27. In summary, if 6 is the radian measure
of an angle, the length of the arc subtended by the angle on a circle of radius r is r6.

This is a little sloppy right now because no precise definition of the length of an arc
of a circle has been given. For now, imagine taking a string, placing one end of it on one
end of the circular arc and then wrapping the string till you reach the other end of the arc.
Stretching this string out and measuring it would then give you the length of the arc. Such
intuitive discussions involving string may or may not be enough to convey understanding.
If you need to see more discussion, read on. Otherwise, skip to the next section.

To give a precise description of what is meant by the length of an arc, consider the
following picture.

N\ )
\

In this picture, there are two circles, a big one having radius, R and a little one having
radius . The angle, 0 is situated in two different ways subtending the arcs A; and Ay as
shown.

Letting A be an arc of a circle, like those shown in the above picture, A subset of

2In 2 Chronicles 4:2 the “molten sea” used for “washing” by the priests and found in Solomon’s temple
is described. It sat on 12 oxen, was round, 5 cubits high, 10 across and 30 around. Thus the Bible, taken
literally, gives the value of 7 as 3. This is not too far off. Later, methods will be given which allow one to
calculate m more precisely. A better value is 3.1415926535 and presently this number is known to thousands
of decimal places. It was proved by Lindeman in the 1880’s that = is transcendental which is the worst sort
of irrational number.
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A, {po,- -, pn} is a partition of A if py is one endpoint, p,, is the other end point, and the
points are encountered in the indicated order as one moves in the counter clockwise direction
along the arc. To illustrate, see the following picture.

D2

b3 P1

Po

Also, denote by P (A) the set of all such partitions. For P = {po,---,pn}, denote
by |p; — pi—1| the distance between p; and p;—1. Then for P € P(A), define |P| =
> pi —pi—1| . Thus |P| consists of the sum of the lengths of the little lines joining
successive points of P and appears to be an approximation to the length of the circular
arc, A. By Corollary 3.4.4 the length of any of the straight line segments joining successive
points in a partition is smaller than the sum of the two sides of a right triangle having the
given straight line segment as its hypotenuse. For example, see the following picture.

C

=

B

The sum of the lengths of the straight line segments in the part of the picture found in
the right rectangle above is less than A + B and the sum of the lengths of the straight line
segments in the part of the picture found in the left rectangle above is less than C'+ D and
this would be so for any partition. Therefore, for any P € P (A), |P| < M where M is the
perimeter of a rectangle containing the arc, A. To be a little sloppy, simply pick M to be the
perimeter of a rectangle containing the whole circle of which A is a part. The only purpose
for doing this is to obtain the existence of an upper bound. Therefore, {|P|: P € P (A4)} is
a set of numbers which is bounded above by M and by completeness of R it is possible to
define the length of A,l(A), by [ (A) =sup{|P|: PP (A)}.

A fundamental observation following from Corollary 3.4.4 is that if P,Q € P (A) and
P C @, then |P| < |Q]. To see this, add in one point at a time to P. This effect of adding
in one point is illustrated in the following picture.
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Also, letting {po,- - -, pn} be a partition of A, specify angles, 0; as follows. The angle 6,
is formed by the two lines, one from the center of the circle to p; and the other line from the
center of the circle to p;_1. Furthermore, a specification of these angles yields the partition
of A in the following way. Place the vertex of 6, on the center of the circle, letting one side
lie on the line from the center of the circle to py and the other side extended resulting in a
point further along the arc in the counter clockwise direction. When the angles, 61,---,6,_1
have produced points, pg,- - -, p;—1 on the arc, place the vertex of #; on the center of the
circle and let one side of ; coincide with the side of the angle #;_1 which is most counter
clockwise, the other side of #; when extended, resulting in a point further along the arc, A
in the counterclockwise direction as shown below.

Now let € > 0 be given and pick P; € P (A1) such that |Py|+e > 1 (A1) . Then determin-
ing the angles as just described, use these angles to produce a corresponding partition of As,
Py. If |P2| + & > [ (As), then stop. Otherwise, pick @ € P (Az) such that |Q| + & > [ (A2)
and let Py = P> U Q. Then use the angles determined by Pj to obtain P € P (A;). Then
|P{| +¢e>1(A1),|P)| +¢ > 1(A2), and both P| and Py determine the same sequence of
angles. Using Corollary 3.4.5

Pl _ R
Pl
and so , ,
l(A2)<\P5\+5:E|P{|+e§EZ(A1)+s.

Since ¢ is arbitrary, this shows Rl (A3) < 7l (A1) . But now reverse the argument and write
R R

which implies, since € is arbitrary that Rl (As) > rl (A1) and this has proved the following
theorem.

Theorem 3.5.1 Let 0 be an angle which subtends two arcs, Ar on a circle of radius R and
A, on a circle of radius r. Then denoting by 1 (A) the length of a circular arc as described
above, Rl (A,;) =1l(AR).
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Before proceeding further, note the proof of the above theorem involved showing [ (A7) <
L1 (Ay) + £ where € > 0 was arbitrary and from this, the conclusion that [ (A1) < £ (A,).
This is a very typical way of showing one number is no larger than another. To show a < b
first show that for every € > 0 it follows that a < b+e¢. This implies a — b < ¢ for all positive
€ and so it must be the case that a — b < 0 since otherwise, you could take ¢ = “T*b and
conclude 0 < a—b< “T*b, a contradiction.

With this preparation, here is the definition of the measure of an angle.

Definition 3.5.2 Let 0 be an angle. The measure of 0 is defined to be the length of the
circular arc subtended by 0 on a circle of radius r divided by r. This is also called the radian
measure of the angle.

You should note the measure of 8 is independent of dimension. This is because the units
of length cancel when the division takes place.

Proposition 3.5.3 The above definition is well defined and also, if A is an arc subtended
by the angle 0 on a circle of radius r then the length of A, denoted by l(A) is given by
I1(A)=r0.

Proof: That the definition is well defined follows from Theorem 3.5.1. The formula also
follows from Theorem 3.5.1 and letting R = 1.

Now is a good time to present a useful inequality which may or may not be self evident.
Here is a picture which illustrates the conclusion of this corollary.

(cos(0),sin(6))

(1 —cos(#))

The following corollary states that the length of the subtended arc shown in the picture
is longer than the vertical side of the triangle and smaller than the sum of the vertical side
with the segment having length 1 — cosf. To me, this seems abundantly clear but in case it
is hard to believe, the following corollary gives a proof.

Corollary 3.5.4 Let 0 < radian measure of 0 < w/4. Then letting A be the arc on the unit
circle resulting from situating the angle with one side on the positive x axis and the other
side pointing up from the positive x axis,

(1 —cosf) +sinf >1(A) > sind (3.2)

Proof: Situate the angle, # such that one side is on the positive x axis and extend
the other side till it intersects the unit circle at the point, (cosf,sin@). Then denoting the
resulting arc on the circle by A, it follows that for all P € P (A) the inequality (1 — cos6) +
sin@ > |P| > sin@. It follows that (1 — cosf) + sin 8 is an upper bound for all the |P| where
P e P (A)andso (1 —cosf)+sinf is at least as large as the sup or least upper bound of the
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|P|. This proves the top half of the inequality. The bottom half follows because I (4) > L
where L is the length of the line segment joining (cos #, sin #) and (1,0) due to the definition
of [ (A). However, L > sinf because L is the length of the hypotenuse of a right triangle
having sin 6 as one of the sides.

3.6 The Trigonometric Functions

Now the Trigonometric functions will be defined as functions of an arbitrary real variable.
Up till now these have been defined as functions of pointy things called angles. The following
theorem will make possible the definition.

Theorem 3.6.1 Let b € R. Then there exists a unique integer p and real number r such
that 0 < r < 2w and b = p27 + 7.

Proof: First suppose b > 0. Then from Theorem 2.8.11 on Page 29 there exists a unique
integer, p such that b = 27p + r where 0 < r < 27. Now suppose b < 0. Then there exists a
unique integer, p such that —b = 2wp + r1 where 1 € [0,27). If r; = 0, then b = (—p) 2.

=r

. ,—/H
Otherwise, b= (—p)2r + (—r) = (—p— )21+ | 2r — 7y | and r =27 — ry € (0,27).
The following definition is for sinb and cosb for b € R.

Definition 3.6.2 Let b € R. Then sinb = sinr and cosb = cosr where b = 27wp + r for p
an integer, and r € [0, 2m).

Several observations are now obvious from this.

Observation 3.6.3 Let k € Z, then the following formulas hold.

sinb = —sin (—b),cosb = cos (—b), (3.3)
sin (b + 2k7) = sinb, cos (b + 2kw) = cosb

cos?bh+sin’b=1

The other trigonometric functions are defined in the usual way as in (3.1) provided they
make sense.

From the observation that the x and y axes intersect at right angles the four arcs on
the unit circle subtended by these axes are all of equal length. Therefore, the measure of a
right angle must be 27 /4 = 7/2. The measure of the angle which is determined by the arc
from (1,0) to (—1,0) is seen to equal 7 by the same reasoning. From the definition of the
trig functions, cos (7/2) = 0 and sin (7/2) = 1. You can easily find other values for cos and
sin at all the other multiples of 7/2.

The next topic is the important formulas for the trig. functions of sums and differences of
numbers. For b € R, denote by 7, the element of [0, 27) having the property that b = 2np+ry
for p an integer.

Lemma 3.6.4 Let x,y € R. Then ryqy = 14 + 1y + 2k7 for some k € Z.
Proof: By definition,

T+Y=27Tp+Tpqy, T=2TP1 + 7z, Yy =27p2 +1y.
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From this the result follows because

=—k
0=((r+y)—2)—y=2n((p—p1) —p2) + ety — (rz + 7).

Let z € R and let p(z) denote the point on the unit circle determined by the length r,
whose coordinates are cos z and sin z. Thus, starting at (1,0) and moving counter clockwise
a distance of r, on the unit circle yields p (z) . Note also that p(z) =p(r.).

Lemma 3.6.5 Let z,y € R . Then the length of the arc between p (x +y) and p () is equal
to the length of the arc between p (y) and (1,0).

Proof: The length of the arc between p (x +y) and p () is |ry4y — 74| . There are two
cases to consider here.

First assume ry4, > 7. Then |ryqy — 75| = 734y — 7 = 1y + 2k7. Since both 7,4, and
r, are in [0, 27), their difference is also in [0,27) and so k = 0. Therefore, the arc joining
p(x) and p (x + y) is of the same length as the arc joining p (y) and (1,0) . In the other case,
Tz4y < 7z and in this case |rw+y — 1| =1y — Typty = —Ty — 2km. Since r, and ry4, are both
in [0, 27) their difference is also in [0, 27) and so in this case k = —1. Therefore, in this case,
|73ty — 72| = 2m —1,. Now since the circumference of the unit circle is 27, the length of the
arc joining p (2 —ry) to (1,0) is the same as the length of the arc joining p (r,) = p (y) to
(1,0) . This proves the lemma.

The following theorem is the fundamental identity from which all the major trig. iden-
tities involving sums and differences of angles are derived.

Theorem 3.6.6 Let z,y € R. Then
cos (z + y) cosy + sin (z + y) siny = cos x. (3.6)

Proof: Recall that for a real number, z, there is a unique point, p (z) on the unit circle
and the coordinates of this point are cos z and sin z. Now from the above lemma, the length
of the arc between p(x + y) and p(z) has the same length as the arc between p(y) and
p(0). As an illustration see the following picture.

p(z+y)
(1,0)

It follows from the definition of the radian measure of an angle that the two angles
determined by these arcs are equal and so, by Corollary 3.4.5 the distance between the
points p (x + y) and p () must be the same as the distance from p (y) to p (0) . Writing this
in terms of the definition of the trig functions and the distance formula,

(cos (z +y) — cosz)” + (sin (x4 y) — sinz)? = (cosy — 1) + sin? .
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cos? (x + y) + cos? z — 2cos (z + y) cos z + sin? (x + y) + sin® z — 2sin (z + y) sinz
=cos?y —2cosy + 1 +sin’y
From Observation 3.6.3 this implies (3.6). This proves the theorem.
Letting y = 7/2, this shows that

sin (x + 7/2) = cosz. (3.7)
Now let u =z +y and v = y. Then (3.6) implies
cos ucos v + sinusinv = cos (u — v) (3.8)
Also, from this and (3.3),

cos (u 4 v) = cos (u — (—v))
= cosucos (—v) + sinusin (—v)

= cosucosv — sinusinw (3.9)
Thus, letting v = 7/2,
cos (u + g) = —sinu. (3.10)
It follows
. ™
sin (z + y) = — cos (a:—i— 3 +y)
m . ™ .
= — [cos (x + 5) COSYy — sln (x + 5) smy}
=sinzcosy +sinycosz (3.11)
Then using Observation 3.6.3 again, this implies
sin (z — y) = sinx cosy — cos zsin y. (3.12)

In addition to this, Observation 3.6.3 implies

cos 2z = cos® x — sin’ x (3.13)
=2cos’z — 1 (3.14)
=1-2sin’z (3.15)

Therefore, making use of the above identities, and Observation 3.6.3,
cos (3x) = cos 2x cos x — sin 2z sin x
= (2(3032 T — 1) cosx — 2cosxsin’® x
=4cos®s — 3cosx (3.16)

With these fundamental identities, it is easy to obtain the cosine and sine of many special
angles, called reference angles. First, cos (%) .

- ™\ _ LI 2(f)f
0 cos<2) cos(4+4) 2 cos 1 1

and so cos (%) = v/2/2. (Why do isn’t it equal to —v/2/2? Hint: Draw a picture.) Thus
sin (%) = v/2/2 also. (Why?) Here is another one. From (3.16),

0 = cos (%) = cos 3 (%)
= 4 cos® (%) — 3 cos (%) .
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Therefore, cos (%) = @ and consequently, sin (%) = % Here is a short table including
these and a few others. You should make sure you can obtain all these entries. In the table,
0 refers to the radian measure of the angle. From now on, angles are considered as real

numbers, not as pointy things.

AU EAEEERE;
cosf | 1 @ g % 0
- 1 V2 | V3
Sln9 0 5 5 5 1

3.7 Exercises
1. Find cosf and sin @ for 0 € {%’T, %’r, %’T,ﬂ', %T, %’“, %ﬂ, 37“, 5?”, %’T, 1%,277}.

1tcos26 20 and sin? § =

2. Prove cos? 6 = %.

7/12 = w/3 — /4. Therefore, from Problem 2, cos (7/12) = M On the other

hand,

e

cos (m/12) = cos (/3 — w/4) = cosw/3cos /4 + sinm/3sin7/4
and so cos (7/12) = v/2/4 + v/6/4. Is there a problem here? Please explain.
4. Prove 1+ tan? @ = sec?§ and 1 + cot? 8 = csc? 6.
5. Prove that sinz cosy = 1 (sin (z +y) + sin (z — y)) .
6. Prove that sinzsiny = 3 (cos (z — y) — cos (z +y))..
7. Prove that cosz cosy = 1 (cos (z +y) + cos (z — y)) .
8. Using Problem 5, find an identity for sinx — siny.

9. Suppose sinxz = a where 0 < a < 1. Find all possible values for

(a) sin (3z) = 3

(b) cos (5z) = ?
(c) tan(z) = V3
(d) sec(z) =2

(e) sin(z+7) = 2
(f) cos? (z) =1

(g) sint (z) = 4

11. Find a formula for tan (z + y) in terms of trig. functions of z and y.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
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Find a formula for tan (2z) in terms of trig. functions of x.
Find a formula for tan (%) in terms of trig. functions of x.
Sketch a graph of y = sin .
Sketch a graph of y = cosz.
Sketch a graph of y = sin 2z.
Sketch a graph of y = tanx.
Using Problem 2 graph y = cos? z.
If f (z) = Acosax + Bsinax, show there exists ¢ such that
f(z) = VA% + B2sin (az + ¢) .
Show there also exists ¢ such that f(z) = VA2 +b%cos(ax +1)). This is a very
important result, enough that some of these quantities are given names. v A2 + B2 is
called the amplitude and ¢ or v are called phase shifts.
Using Problem 19 graph y = sinz + v/3 cos .
Give all solutions to sinz + v/3 cosz = v/3. Hint: Use Problem 20.
If ABC is a triangle where the capitol letters denote vertices of the triangle and the
angle at the vertex. Let a be the length of the side opposite A and b is the length
of the side opposite B and c is the length of the side opposite the vertex, C. The
law of sines says sin (A) /a = sin (B) /b = sin (C) /c. Prove the law of sines from the

definition of the trigonometric functions.

In the picture, a = 5,b =3, and 0 = %TF. Find c.

2

= 7 and ¢ = 3. Find a.

In the picture, 0 = iﬂ', @
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3.8 Some Basic Area Formulas

3.8.1 Areas Of Triangles And Parallelograms

This section is a review of how to find areas of some simple figures. The discussion will be
somewhat informal since it is assumed the reader has seen this sort of thing already. First
of all, consider a right triangle as indicated in the following picture.

The area of this triangle shown above must equal ab/2 because it is half of a rectangle
having sides a and b. Now consider a general triangle in which a line perpendicular to the
line from A to C has been drawn through B.

B

C

The area of this triangle would be the sum of the two right triangles formed. Thus this
area would be % (ﬁ) (EJrCiD) = % (ﬁ) b. In words, the area of the triangle equals
one half the base times the height. This also holds if the height and base are chosen with
respect to any other side of the triangle.

A parallelogram is a four sided figure which is formed when two identical triangles are
joined along a corresponding side with the corresponding angles not adjacent. For example,
see the picture in which the two triangles are ABC and CDA.

D

B

Note the height of triangle ABC taken with respect to side AB is the same as the height of
the parallelogram taken with respect to this same side. Therefore, the area of this parallelo-
gram equals twice the area of one of these triangles which equals 2AB (height of parallelogram) % =
AB (height of parallelogram) . Similarly the area equals height times base where the base
is any side of the parallelogram and the height is taken with respect to that side, as just
described in the case where AB is the side.
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3.8.2 The Area Of A Circular Sector

Consider an arc, A, of a circle of radius r which subtends an angle, #. The circular sector
determined by A is obtained by joining the ends of the arc, A, to the center of the circle.
The sector, S () denotes the points which lie between the arc, A and the two lines just
mentioned. The angle between the two lines is called the central angle of the sector. The
problem is to define the area of this shape. First a fundamental inequality must be obtained.

Lemma 3.8.1 Let 1 > ¢ > 0 be given. Then whenever the positive number, «, is small
enough,

«
1< — <l+4e (3.17)
sin o
and
«
14¢e> >1—-c¢ (3.18)
tan

Proof: This follows from Corollary 3.5.4 on Page 59. In this corollary, I (A) = « and so
1—cosa+sina > « > sina.
Therefore, dividing by sin «,

1—
i ! (3.19)

sin « sin o

Now using the properties of the trig functions,

1 —cosa 1 — cos?

sin @ sin a (1 + cos )

sin® « sin «v

sin a (1 + cos a) " 1+cosa’

From the definition of the sin and cos, whenever « is small enough,
sin «

1+ cosa

and so (3.19) implies that for such «, (3.17) holds. To obtain (3.18), let a be small enough
that (3.17) holds and multiply by cos «. Then for such a,

cosa < <(1+4e¢)cosa

tan «
Taking « smaller if necessary and noting that for all a small enough, cos « is very close to
1, yields (3.18). This proves the lemma.
This lemma is very important in another context.

Theorem 3.8.2 Let S (0) denote the sector of a circle of radius r having central angle, 0.
Then the area of S (0) equals é&.

Proof: Let the angle which A subtends be denoted by 6 and divide this sector into n
equal sectors each of which has a central angle equal to 8/n. The following is a picture of
one of these.
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S(8/n)

In the picture, there is a circular sector, S (6/n) and inside this circular sector is a
triangle while outside the circular sector is another triangle. Thus any reasonable definition
of area would require

2
%sin (8/n) < area of S(6/n) <

[\v)

" tan 0/n).

2

It follows the area of the whole sector having central angle § must satisfy the following
inequality.

’I’L’I“2

2
TSiH (0/n) < area of S(0) < %tan(@/n).

Therefore, for all n, the area of S (0) is trapped between the two numbers,

r29sin(0/n) ﬁ tan(@/n)'

27 (0/n) > 2 (0/n)

Now let € > 0 be given, a small positive number less than 1, and let n be large enough that

sin (6/n) < 1

1>
- (@/n) T 1+¢
and
1 <tan(9/n)< 1 '
1+4e = (H/n) ~1-—c¢
Therefore,

2 2
Ta( ! >§AreaofS(9) g( ! >T0.
2 1+e 1—¢) 2

Since € is an arbitrary small positive number, it follows the area of the sector equals %20 as
claimed. (Why?)

3.9 Exercises

1. Give another argument which verifies the Pythagorean theorem by supplying the de-
tails for the following argument3. Take the given right triangle and situate copies of
it as shown below. The big four sided figure which results is a rectangle because all
the angles are equal. Now from the picture, the area of the big square equals ¢2, the
area of each triangle equals ab/2, since it is half of a rectangle of area ab, and the area

3This argument is old and was known to the Indian mathematician Bhaskar who lived 1114-1185 A.D.
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of the inside square equals (b — a)2 . Here a,b, and c are the lengths of the respective
sides. Therefore,

[\v]

A =4(ab/2) + (b—a)’
= 2ab + b* + a® — 2ab
= a® 4 b

2. Another very simple and convincing proof of the Pythagorean theorem? is based on
writing the area of the following trapezoid two ways. Sum the areas of three triangles
in the following picture or write the area of the trapezoid as (a + b) a+1 (a +b) (b — a)
which is the sum of a triangle and a rectangle as shown. Do it both ways and see the
pythagorean theorem appear.

3. A right circular cone has radius r and height h. This is like an ice cream cone. Find
the area of the side of this cone in terms of h and r. Hint: Think of painting the side
of the cone and while the paint is still wet, rolling it on the floor yielding a circular
sector.

4This argument involving the area of a trapezoid is due to James Garfield who was one of the presidents
of the United States.
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4. An equilateral triangle is one in which all sides are of equal length. Find the area of
an equilateral triangle whose sides have length .

5. Draw two parallel lines one having length a and the other having length b suppose also
these lines are at a distance of h from each other. Now join the ends of these lines to
obtain a four sided figure. What is the area of this four sided figure?

3.10 Parabolas, Ellipses, and Hyperbolas
3.10.1 The Parabola

A parabola is a collection of points, P in the plane such that the distance from P to a fixed
line is the same as the distance from P to a given point, Py. From this definition, one can
obtain an equation which will describe a parabola. Suppose then that the line is y = ¢ and
the point is (a,b) where b # ¢ as shown in the picture.

y==c

Py = (a,b)

The distance from the point, P = (z,y) to the line is |¢ — y|. Therefore, the description
of the parabola requires that

Vi —ar + - =le—ul.
Squaring both sides,

22 — 2xa + a® + y? — 2yb+ b = 2 — 2cy + ¢

and so
(x—a)*+b>— 2 =(2b—20)y. (3.20)
The simplest case is when a = 0 and b = —c. Then in this case, it reduces to
z? = dey.

Now consider an arbitrary equation of the form, y = dz? + ex + f where d # 0. By this is
meant the set of points (z,y) such that the equation holds. Such a set of points always is a
parabola. To see this, complete the square on the right as follows:

Yy = d$2+em+f
= d<x2+2$+£>
e 62 €2d
= d 2 - 19 P
(w +d$+4d2) Ad2
2 2
—e e d
= d(x—(m)> T 4dz
Therefore, letting a = 57,
1 2 e
“y=(x-a) -

d 4d?
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Now you can show that there exists numbers, b and ¢ such that

2

1
—@ :b2—02, g:2b—2c (321)

Then the above equation reduces to (3.20).

The line, y = ¢ is called the directrix and the point, Py in the above is called the focus.
Exactly similar results occur if the directrix is of the form x = ¢ and by similar arguments
to those above, the set of points in the plane satisfying ay? + by + ¢ = z is also a parabola.

3.10.2 The Ellipse

With an ellipse, there are two points, P; and P, which are fixed and the ellipse consists of
the set of points, P such that d(P, P1) + d (P, P») = ¢, where c is a fixed positive number.
These two points are called the foci of the ellipse. Each is called a focus point by itself.
Now one can obtain an equation which will describe an ellipse much as was done with the
parabola. Let the two given points be (a,b) and (a,b+ h) . Let a generic point on the ellipse
be (x,y). Then according to the description of an ellipse and the distance formula,

VE—aP + -2+ (z—a +(y—b-h’=c. (3.22)

Subtracting \/(x —a)® + (y — b)” from both sides,

V- +@-b-nP=c—/w—a?+ -0 >0

Now squaring both sides yields

(v—a) +(y—b—h? = —2/(@—a)+y-b’e
+(z—a)’+ (y—0b)>.
Therefore,
(=07 —2hy—b)+h2 = E—2/(@—a)+(y—b’e
+(y—b)?
and so
“oh(y—b)+ k2 = — 2/ (x—a)’ + (y— b)c

Therefore,

—2h(y—b)+h2—62:—2\/(x—a)2+(y—b)2c

Now square both sides again to obtain
(h2 = ¢®)® — ah (y — b) (2 — ) + 4h2 (y — b) = 4c? ((:z: —a)’+(y— b)2> .

Simplifying this yields
(=1 (=0 +h(y—b) (¥ =) +F(x-a)’ =

which simplifies further to

h? c? 1+ h?
-0 —nt-0+ o+ (555 ) o
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which is equivalent to
w-b-%)", (@-o’
(5) (H2/25)
Thus, redefining the constants, an ellipse has the form

w-p’ | @)

=1.

C_ 1. (3.23)

Note that if a = b = r, this reduces to the equation for a circle of radius r centered at the
point (a, 8) . This last expression is the generic equation for an ellipse. Here is the graph of
a typical ellipse.

B+b y

B—b

In this ellipse, b < a. If b > a, the ellipse would be long in the y direction rather
than the x direction. (Why?) Suppose (21,y1) and (x2,y2) are two points on the above
ellipse in which b > a, then |1 — 22| < 2a because from the above equation, it follows that
|z; — a| <a for i = 1,2 implying that

|1 — x| <|z1 — |+ |a—x2| <a+a=2a

and similarly, |y; — ya| < 2b. Therefore,

[(z1,91) — (2, y2)| < V4a? + 402 <2v/a? +b% < 2b

Thus the greatest distance between two points on the ellipse equals 2b and occurs when the
two points are (o, b+ ) and («, 8 — b). This greatest distance between any two points is
called the diameter and this shows the diameter of an ellipse is twice the larger of the two
numbers appearing in the denominators on the left in (3.23).

3.10.3 The Hyperbola

With a hyperbola, there are two points, P; and P> which are fixed and the hyperbola consists
of the set of points, P such that d (P, P;) —d (P, P») = ¢, where ¢ is a fixed positive number.
These two points are called the foci of the hyperbola. Each is called a focus point by itself.
Now one can obtain an equation which will describe a hyperbola. Let the two given points
be (a,b) and (a,b+ h). Let a generic point on the hyperbola be (z,y). Then according to
the description of a hyperbola and the distance formula,

Va-a?+ -0 —Je-a +y-b-n’=c

You can now show that the equation of a hyperbola is of the form

(@—af (-p>°_

- = 1 (3.24)
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" w-p)" (z-a)
y—> T -«
o =1 (3.25)

If you like, you can simply take these last two equations as the definition of a hyperbola.

3.11 Exercises
1. Consider y = 222 + 3z + 7. Find the focus and the directrix of this parabola.
2. Find the numbers, b, ¢ which make (3.21) hold.
3. Derive a similar formula to (3.20) in the case that the directrix is of the form z = ¢.

4. Sketch a graph of the ellipse whose equation is % + % =1.

5. Sketch a graph of the ellipse whose equation is @ + % =1.

2

6. Sketch a graph of the hyperbola, ‘%2 -5 =1

2

7. Sketch a graph of the hyperbola, yff -5 =1

8. What is the diameter of the ellipse, @ + % =1.

9. Verify that either (3.24) or (3.25) holds for a hyperbola.
10. Show that the set of points which satisfies either (3.24) or (3.25) is unbounded. (If

n is any positive number there exist points (x,y) satisfying the equations given such
that [(z,y)] > n.)



The Complex Numbers

This chapter gives a brief treatment of the complex numbers. This will not be needed in
Calculus but you will need it when you take differential equations and various other subjects
so it is a good idea to consider the subject. These things used to be taught in precalculus
classes and people were expected to know them before taking calculus. However, if you are
in a hurry to get to calculus, you can skip this short chapter.

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a,b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ¢b. For
example, in the following picture, I have graphed the point 3 + 2i. You see it corresponds
to the point in the plane whose coordinates are (3,2).

3424

Multiplication and addition are defined in the most obvious way subject to the convention
that 42 = —1. Thus,
(a+1ib) + (c+id) = (a+c)+i(b+d)

and
(a+ib) (c+id) = ac+ iad+ ibc+ i%bd
(ac —bd) + i (be + ad) .
Every non zero complex number, a+ib, with a®+b% # 0, has a unique multiplicative inverse.

1 a—1b a . b

atib aZ+b2  aZ4b2 _Za2+b2'

You should prove the following theorem.

Theorem 4.0.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms listed on Page 15.

The field of complex numbers is denoted as C. An important construction regarding
complex numbers is the complex conjugate denoted by a horizontal line above the number.
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It is defined as follows.
a-+1b=a—1b.

What it does is reflect a given complex number across the x axis. Algebraically, the following
formula is easy to obtain.
(a+ib) (a+ib) = a® + b°.
Definition 4.0.2 Define the absolute value of a complex number as follows.
la +ib| = Va? + b2.
Thus, denoting by z the complexr number, z = a + b,
|2 = (22)'/*.

With this definition, it is important to note the following. Be sure to verify this. It is
not too hard but you need to do it.

Remark 4.0.3 : Let z = a+ib and w = c+id. Then |z —w| = \/(a —¢)* + (b—d)*. Thus
the distance between the point in the plane determined by the ordered pair, (a,b) and the
ordered pair (c,d) equals |z — w| where z and w are as just described.

For example, consider the distance between (2,5) and (1,8) . From the distance formula
this distance equals \/(2 —1)® 4+ (5 — 8)* = V/10. On the other hand, letting z = 2+ i5 and
w=14+148, z—w=1—i3and so (z —w) (z —w) = (1 —i3) (1 +¢3) = 10 s0 |z — w| = V10,
the same thing obtained with the distance formula.

Complex numbers, are often written in the so called polar form which is described next.
Suppose = + iy is a complex number. Then

x+iy—\/x2+y2<

x . Y
+1 .
/IQ + y2 /IQ + y2>
Now note that
2 2
x n Yy _
/ZEQ + y2 /I’Q + y2

and so

x Y
Vat +y? ety

is a point on the unit circle. Therefore, there exists a unique angle, € [0,27) such that

cosf = sinf =

€z Y
Va? +y? Va? +
The polar form of the complex number is then
r (cosf + isin )

where 6 is this angle just described and r = /22 + y2.
A fundamental identity is the formula of De Moivre which follows.

Theorem 4.0.4 Let r > 0 be given. Then if n is a positive integer,

[r (cost +isint)]" =r" (cosnt + isinnt).



()

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

n+1l _

[r (cost + isint)] [r (cost +isint)]" [r(cost + isint)]

which by induction equals
= "1 (cosnt + isinnt) (cost + isint)
= "1 ((cosnt cost — sinntsint) + i (sin nt cost + cosntsint))
=" (cos(n+ 1)t +isin(n+1)t)

by the formulas for the cosine and sine of the sum of two angles.

Corollary 4.0.5 Let z be a non zero complex number. Then there are always exactly k k"
roots of z in C.

Proof: Let z = x + iy and let z = |z| (cost + isint) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r(cosa +isina),
is a k' root of z if and only if
¥ (cos ka + isinka) = |z| (cost 4 isint).

This requires % = |z| and so r = \z|1/k and also both cos (ka) = cost and sin (ka) = sint.
This can only happen if

ka=t+2nr
for [ an integer. Thus
t+ 2l

and so the k'™ roots of z are of the form

2 2
\z|1/k (cos (t+k lﬂ) + isin (t+k lﬂ)) ,leZ.

Since the cosine and sine are periodic of period 2w, there are exactly k distinct numbers
which result from this formula.

Example 4.0.6 Find the three cube roots of 1.

First note that ¢« = 1 (Cos (g) + isin (%)) . Using the formula in the proof of the above
corollary, the cube roots of i are

X (COS <(7r/2)3+ 217r) i ((w/g); m) )

where [ = 0, 1, 2. Therefore, the roots are

T T 5 .. (D
cos <6) + 2s1n (E) , COS (67r> + 2s1n (67r> R
0S § + i sin §
cos 277 ) 27r .

Thus the cube roots of i are @ +1 (%) , _T\/g +1 (%) , and —i.
The ability to find k** roots can also be used to factor some polynomials.

and
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Example 4.0.7 Factor the polynomial z3 — 27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3,3 (_71 + z?) ,and 3 (_71 — z?) Therefore, 23 + 27 =

e () (i 8)

Note also (m—3(’71+273>) (x—?)(%l—z?)) =22+ 32+ 9 and so
2® =27 = (z - 3) (2® + 32 +9)

where the quadratic polynomial, x? 4+ 3z 4+ 9 cannot be factored without using complex
numbers.

4.1 Exercises
1. Let z =5+19. Find 271,
2. Let z =2+ 7 and let w = 3 —48. Find zw, z + w, 2%, and w/z.
3. Give the complete solution to z* + 16 = 0.

4. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16.

5. If z is a complex number, show there exists w a complex number with |w| = 1 and
wz = |z|.

6. De Moivre’s theorem says [r (cost +isint)]" = r™ (cosnt + isinnt) for n a positive
integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x 4+ y) and sin (x 4 y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (52). Hint: Use Problem 18 on Page 32 and if you like, you might use
Pascal’s triangle to construct the binomial coefficients.

8. If z and w are two complex numbers and the polar form of z involves the angle 6 while
the polar form of w involves the angle ¢, show that in the polar form for zw the angle
involved is 6 4+ ¢. Also, show that in the polar form of a complex number, z, r = |z|.

9. Factor 2% + 8 as a product of linear factors.

10. Write z® + 27 in the form (z + 3) (x2 +ax + b) where 22 + az + b cannot be factored
any more using only real numbers.

11. Completely factor z* + 16 as a product of linear factors.

12. Factor z* 4 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.
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If z, w are complex numbers prove Zw = Zw and then show by induction that zy -~ z,,, =
Z1 -+ Zm. Also verify that >,z = >_/" Zr. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the

sum of the conjugates.

Suppose p (z) = apa™ + ap_12" 1 + - -+ a1z + ag where all the ay are real numbers.
Suppose also that p(z) = 0 for some z € C. Show it follows that p (Z) = 0 also.

I claim that 1 = —1. Here is why.

“l1=i*=V-1V/-1=4/(-1)’=Vi=1

This is clearly a remarkable result but is there something wrong with it? If so, what
is wrong?

De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents,
not just integers.

1 =109 = (cos 27 + isin2ﬁ)1/4 = cos (7/2) +isin (7/2) = i.

Therefore, squaring both sides it follows 1 = —1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?
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Functions

5.1 General Considerations

The concept of a function is that of something which gives a unique output for a given input.

Definition 5.1.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. The symbol, D (f) = D is called the domain of f. The set R, also written
R(f), is called the range of f. The set of all elements of R which are of the form f (x) for
some x € D is often denoted by f (D). When R = f (D), the function, f, is said to be onto.
It is common notation to write f : D (f) — R to denote the situation just described in this
definition where f is a function defined on D having values in R.

Example 5.1.2 Consider the list of numbers, {1,2,3,4,5,6,7} = D. Define a function
which assigns an element of D to R={2,3,4,5,6,7,8} by f (z) =x + 1 for each x € D.

In this example there was a clearly defined procedure which determined the function.
However, sometimes there is no discernible procedure which yields a particular function.

Example 5.1.3 Consider the ordered pairs, (1,2),(2,-2),(8,3),(7,6) and let
D={1,2,871},

the set of first entries in the given set of ordered pairs, R = {2,-2,3,6}, the set of second
entries, and let f (1) =2,f(2) =—-2,f(8) =3, and f(7) =6.

Sometimes functions are not given in terms of a formula. For example, consider the
following function defined on the positive real numbers having the following definition.

Example 5.1.4 For x € R define

Loifa= = in lowest terms for m,n € Z

ro={;

0 if x is not rational (5-1)

This is a very interesting function called the Dirichlet function. Note that it is not
defined in a simple way from a formula.

Example 5.1.5 Let D consist of the set of people who have lived on the earth except for
Adam and for d € D, let f (d) = the biological father of d. Then f is a function.
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Example 5.1.6 Consider a weight which is suspended at one end of a spring which is
attached at the other end to the ceiling. Suppose the weight has extended the spring so that
the force exerted by the spring exactly balances the force resulting from the weight on the
spring. Measure the displacement of the mass, , from this point with the positive direction
being up, and define a function as follows: x (t) will equal the displacement of the spring at
time t given knowledge of the velocity of the weight and the displacement of the weight at
some particular time.

Example 5.1.7 Certain chemicals decay with time. Suppose Ag is the amount of chemical
at some given time. Then you could let A (t) denote the amount of the chemical at time t.

These last two examples show how physical problems can result in functions. Examples
5.1.6 and 5.1.7 are considered later in the book and techniques for finding = (¢) and A ()
from the given conditions are presented.

In this chapter the functions are defined on some subset of R having values in R. Later
this will be generalized. When D (f) is not specified, it is understood to consist of every
number for which f makes sense. The following definition gives several ways to make new
functions from old ones.

Definition 5.1.8 Let f,g be functions with values in R. Let a,b be elements of R. Then
af + bg is the name of a function whose domain is D (f) N D (g) which is defined as

(af +bg) (x) = af (x) + bg (z).
The function, fg is the name of a function which is defined on D (f) N D (g) given by
(fg) (@) = f(z)g(x).

Similarly for k an integer, f* is the name of a function defined as

The function, f/g is the name of a function whose domain is

D(f)n{z e D(g):g(x)# 0}

defined as
(f/9) (x) = f(x) /g ().
Iff :D(f)—> X and g: D(g) — Y, then go f is the name of a function whose domain is

{reD(f): f(x)eDI(g)}

which is defined as
gof(x)=g(f(z)).

This is called the composition of the two functions.

You should note that f(z) is not a function. It is the value of the function at the
point, 2. The name of the function is f. Nevertheless, people often write f () to denote a
function and it doesn’t cause too many problems in beginning courses. When this is done,
the variable,  should be considered as a generic variable free to be anything in D (f). I
will use this slightly sloppy abuse of notation whenever convenient. Thus, 22 + 4 may mean
the function, f, given by f (v) = 22 + 4.
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Example 5.1.9 Let f(t) =t and g(t) =1+t. Then fg:R — R is given by
fog@t)=t(1+1t)=t+t%.

Example 5.1.10 Let f(t) =2t+1 and g(t) = 1+ t. Then

gof(t)=1+@2t+1)=2t+2

fort > —=1. If t < —1 the inside of the square root sign is negative so makes no sense.
Therefore, go f : {t e R:¢t> -1} — R.

Note that in this last example, it was necessary to fuss about the domain of go f because
g is only defined for certain values of ¢.

The concept of a one to one function is very important. This is discussed in the following
definition.

Definition 5.1.11 For any function, f : D(f) C X — Y, define the following set known
as the inverse image of y.

') ={zeD(f): f(z)=y}.

There may be many elements in this set, but when there is always only one element in this
set for all y € f(D(f)), the function f is one to one sometimes written, 1 — 1. Thus f
is one to one, 1 — 1, if whenever f(x) = f(x1), then x = x1. If [ is one to one, the
inverse function, f=1 is defined on f (D (f)) and f~!(y) = x where f (x) = y. Thus from

the definition, f~1 (f (x)) =z for all x € D (f) and f (ffl (y)) =y forally € f(D(f)).
Defining id by id (2) = 2 this says fo f~! =id and f~'o f =id.

Polynomials and rational functions are particularly easy functions to understand.
Definition 5.1.12 A function f is a polynomial if
f () =apnz" + 12" Y+ +arz + ao

where the a; are real numbers and n is a nonnegative integer. In this case the degree of the
polynomial, f (x) is n. Thus the degree of a polynomial is the largest exponent appearing on
the variable.

f is a rational function if

where h and g are polynomials.
For example, f (z) = 3x® + 922 + Tz + 5 is a polynomial of degree 5 and

325+ 922 + Tz +5
44+ 3x+z+1

is a rational function.
Note that in the case of a rational function, the domain of the function might not be all
of R. For example, if
2
¢+ 8
T =3
the domain of f would be all real numbers not equal to —1.
Closely related to the definition of a function is the concept of the graph of a function.
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Definition 5.1.13 Given two sets, X and Y, the Cartesian product of the two sets, written
as X XY, is assumed to be a set described as follows.

XxY=A{(z,y):zeX andyeY}.
R? denotes the Cartesian product of R with R.

The notion of Cartesian product is just an abstraction of the concept of identifying a
point in the plane with an ordered pair of numbers.

Definition 5.1.14 Let f : D (f) — R(f) be a function. The graph of f consists of the set,

{(z,9):y = f(z) forze D(f)}.

Note that knowledge of the graph of a function is equivalent to knowledge of the function.
To find f (x), simply observe the ordered pair which has « as its first element and the value
of y equals f (x). The graph of f can be represented by drawing a picture as mentioned
earlier in the section on Cartesian coordinates beginning on Page 49. For example, consider
the picture of a part of the graph of the function f (z) = 2x — 1.

T t t !
-2 -1 / 1 2

Definition 5.1.15 A function whose domain is defined as a set of the form {k,k+ 1,k +2,-- -}
for k an integer is known as a sequence. Thus you can consider f (k), f(k+ 1), f(k+2),
etc. Usually the domain of the sequence is either N, the natural numbers consisting of
{1,2,3,- - -} or the nonnegative integers, {0,1,2,3,---}. Also, it is traditional to write f1, fa,
ete. instead of f (1), f(2), f (3) etc. when referring to sequences. In the above context, fy is
called the first term, fr41 the second and so forth. It is also common to write the sequence,
not as f but as {fi};=, or just {f;} for short.

Example 5.1.16 Let {a},—, be defined by a, = k* + 1.
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This gives a sequence. In fact, az = a (7) = 72 + 1 = 50 just from using the formula for
the k' term of the sequence.

It is nice when sequences come to us in this way from a formula for the k** term.
However, this is often not the case. Sometimes sequences are defined recursively. This
happens, when the first several terms of the sequence are given and then a rule is specified
which determines a,,+1 from knowledge of a,- - -, a,. This rule which specifies a, 1 from
knowledge of aj, for kK < n is known as a recurrence relation.

Example 5.1.17 Let a3 = 1 and as = 1. Assuming a1, - -, apy1 are known, Gnio =
Ap + Apt1-

Thus the first several terms of this sequence, listed in order, are 1, 1, 2, 3, 5, 8, - -.
This particular sequence is called the Fibonacci sequence and is important in the study of
reproducing rabbits.

Definition 5.1.18 Let {a,} be a sequence and let ny < na < ng, -+ be any strictly increasing
list of integers such that ny is at least as large as the first index used to define the sequence
{an}. Then if by = an,, {br} is called a subsequence of {a,} .

For example, suppose a, = (n2 + 1) . Thus a; = 2, az = 10, etc. If
np=1,ny,=3,n3=>5,---,np =2k —1,

then letting by = ay, , it follows

bk:<(2k—1)2+1) = 4K% — 4k + 2.

5.2 Exercises

1. Let g(t) =2 —t and let f(t) = 1. Find g o f. Include the domain of g o f.

2. Give the domains of the following functions.

(a) £(z) = £
(b) f(2) = V2T =1
(c) f(z)=Vd—a?
(d) f(:E) = 39;3:15
() f(x) =/ 55

3. Let f: R — R be defined by f(t) =t + 1. Is f one to one? Can you find a formula
for f=1?

4. Suppose a; = 1,as = 3, and ag = —1. Suppose also that for n > 4 it is known that
Up = Qp_1+20p_2+ 3a,_3. Find a7. Are you able to guess a formula for the k" term
of this sequence?

5. Let f:{teR:t# —1} — R be defined by f (¢) = . Find f~! if possible.

t

t+1

6. A function, f : R — R is a strictly increasing function if whenever x < y, it follows that
f(z) < f(y).If fis a strictly increasing function, does f~! always exist? Explain
your answer.
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Let f (t) be defined by

[ 241ift <1
f(t)_{ tift>1

Find f~! if possible.

Suppose f: D (f) — R(f) is one to one, R(f) € D(g), and g : D(g) — R(g) is one
to one. Does it follow that g o f is one to one?

If f:R— R and g: R — R are two one to one functions, which of the following are

necessarily one to one on their domains? Explain why or why not by giving a proof
or an example.

Draw the graph of the function f (z) = 2 + 1.

Draw the graph of the function f (z) = 2% + 22 + 2.

_T
14+x°

Draw the graph of the function f (z) =
Suppose a,, = % and let ny = 2%. Find by, where by, = a,, .

If X, are sets and for some j, X; = ), the empty set. Verify carefully that [, X; = 0.
Suppose f(z) + f (1) = 7z and f is a function defined on R\ {0}, the nonzero real
numbers. Find all values of © where f (x) = 1 if there are any. Does there exist any

such function?

Does there exist a function f, satisfying f (z) — f (%) = 3z which has both x and %
in the domain of f?

In the situation of the Fibonacci sequence show that the formula for the n” term can
be found and is given by

5

_\/5<1+\/5>n \/5<1—x/5>n

In="5 2 2

Hint: You might be able to do this by induction but a better way would be to look
for a solution to the recurrence relation, a,42 = ay, + any1 of the form r™. You will
be able to show that there are two values of r which work, one of which is r = 1+T‘/5
Next you can observe that if v and r3 both satisfy the recurrence relation then so
does cry + dry for any choice of constants ¢, d. Then you try to pick ¢ and d such that

the conditions, a; = 1 and as = 1 both hold.
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5.3 Continuous Functions

The concept of function is far too general to be useful by itself. There are various ways
to restrict the concept in order to study something interesting and the types of restrictions
considered depend very much on what you find interesting. In Calculus, the most funda-
mental restriction made is to assume the functions are continuous. Continuous functions
are those in which a sufficiently small change in z results in a small change in f (x). They
rule out things which could never happen physically. For example, it is not possible for a
car to jump from one point to another instantly. Making this restriction precise turns out
to be surprisingly difficult although many of the most important theorems about continuous
functions seem intuitively clear.

Before giving the careful mathematical definitions, here are examples of graphs of func-
tions which are not continuous at the point zg.

You see, there is a hole in the picture of the graph of this function and instead of
filling in the hole with the appropriate value, f (x) is too large. This is called a removable
discontinuity because the problem can be fixed by redefining the function at the point zg.
Here is another example.

You see from this picture that there is no way to get rid of the jump in the graph of
this function by simply redefining the value of the function at xy. That is why it is called
a nonremovable discontinuity or jump discontinuity. Now that pictures have been given of
what it is desired to eliminate, it is time to give the precise definition.



88 FUNCTIONS

The definition which follows, due to Cauchy! and Weierstrass® is the precise way to
exclude the sort of behavior described above and all statements about continuous functions
must ultimately rest on this definition from now on.

Definition 5.3.1 A function f : D(f) C R — R is continuous at = € D (f) if for each

e > 0 there exists 0 > 0 such that whenever y € D (f) and

ly — x| <6

it follows that

[f(x) = f ()] <e.

A function, f is continuous if it is continuous at every point of D (f).

In sloppy English this definition says roughly the following: A function, f is continuous
at « when it is possible to make f (y) as close as desired to f (x) provided y is taken close
enough to z. In fact this statement in words is pretty much the way Cauchy described it.
The completely rigorous definition above is due to Weierstrass. This definition does indeed
rule out the sorts of graphs drawn above. Consider the second nonremovable discontinuity.

1 Augustin Louis Cauchy 1789-1857 was the son of a lawyer who was married to an aristocrat. He was born
in France just after the fall of the Bastille and his family fled the reign of terror and hid in the countryside
till it was over. Cauchy was educated at first by his father who taught him Greek and Latin. Eventually
Cauchy learned many languages. He was also a good Catholic.

After the reign of terror, the family returned to Paris and Cauchy studied at the university to be an engi-
neer but became a mathematician although he made fundamental contributions to physics and engineering.
Cauchy was one of the most prolific mathematicians who ever lived. He wrote several hundred papers which
fill 24 volumes. He also did research on many topics in mechanics and physics including elasticity, optics
and astronomy. More than anyone else, Cauchy invented the subject of complex analysis. He is also credited
with giving the first rigorous definition of continuity.

He married in 1818 and lived for 12 years with his wife and two daughters in Paris till the revolution of
1830. Cauchy refused to take the oath of allegience to the new ruler and ended up leaving his family and
going into exile for 8 years.

Notwithstanding his great achievments he was not known as a popular teacher.

2Wilhelm Theodor Weierstrass 1815-1897 brought calculus to essentially the state it is in now. When
he was a secondary school teacher, he wrote a paper which was so profound that he was granted a doctor’s
degree. He made fundamental contributions to partial differential equations, complex analysis, calculus
of variations, and many other topics. He also discovered some pathological examples such as space filling
curves. Cauchy gave the definition in words and Weierstrass, somewhat later produced the totally rigorous
€ § definition presented here. The need for rigor in the subject of calculus was only realized over a long
period of time.



5.3. CONTINUOUS FUNCTIONS 89

The removable discontinuity case is similar.

24+€ |

To+ 6

For the € shown you can see from the picture that no matter how small you take 4,
there will be points, x, between z¢ — 0 and xy where f (z) < 2 + ¢. In particular, for these
values of z, | f (x) — f (x0)| > €. Therefore, the definition of continuity given above excludes
the situation in which there is a jump in the function. Similar reasoning shows it excludes
the removable discontinuity case as well. There are many ways a function can fail to be
continuous and it is impossible to list them all by drawing pictures. This is why it is so
important to use the definition. The other thing to notice is that the concept of continuity
as described in the definition is a point property. That is to say it is a property which a
function may or may not have at a single point. Here is an example.

Example 5.3.2 Let
x if x is rational
f (@) = { /

0 if x is irrational

This function is continuous at x = 0 and nowhere else.

To verify the assertion about the above function, first show it is not continuous at x if
x # 0. Take such an z and let ¢ = |x| /2. Now let § > 0 be completely arbitrary. In the
interval, (x — d,z + J) there are rational numbers, y; such that |y1| > |z| and irrational
numbers, yo. Thus |f (y1) — f (y2)| = |y1| > |z|. If f were continuous at x, there would exist
d > 0 such that for every point, y € (x — 6,2 4+ 0), |f (y) — f ()| < . But then, letting y;
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and yo be as just described,

lz| < |y1| = [f (y1) — f (y2)]
<|[f ) = f@)+1f (@) = f(y2)| <2 = [zf,

which is a contradiction. Since a contradiction is obtained by assuming that f is continuous
at x, it must be concluded that f is not continuous there. To see f is continuous at 0, let
e > 0 be given and let § = ¢. Then if |y — 0| < 6 = ¢, Then

|f (y) — f(0)| =0 if y is irrational

|f (y) — f(0)] = |y| < e if y is rational.
either way, whenever |y — 0| < 4§, it follows |f (y) — f (0)] < € and so f is continuous at
x = 0. How did I know to let § = £? That is a very good question. The choice of ¢ for a

particular € is usually arrived at by using intuition, the actual ¢ § argument reduces to a
verification that the intuition was correct. Here is another example.

Example 5.3.3 Show the function, f (x) = —bx + 10 is continuous at x = —3.

To do this, note first that f(—3) = 25 and it is desired to verify the conditions for
continuity. Consider the following.
|=5z + 10 — (25)] =5 |z — (=3)].

This allows one to find a suitable 6. If & > 0 is given, let 0 < § < te. Thenif 0 < |z — (—3)
0, it follows from this inequality that

A

1
|5z + 10— (25)] =5z — (=3)| < 555 =e.

Sometimes the determination of § in the verification of continuity can be a little more
involved. Here is another example.

Example 5.3.4 Show the function, f(z) = 2z + 12 is continuous at x = 5.

First note f (5) = v/22. Now consider:

2z 412 — 22
V2zr + 124 22

_ 2 o= 5| < V32 |z — 5|
Ve v NG A T

whenever |z — 5| < 1 because for such z,v/2z + 12 > 0. Now let € > 0 be given. Choose ¢
such that 0 < § < min (1, @) . Then if |z — 5| < 4, all the inequalities above hold and

m—my:]

2 ev22
R Sl
V22 2

Exercise 5.3.5 Show f () = —3x2 + 7 is continuous at x = 7.

2
‘\/2x+1 —\/22‘ < 5 le -l <
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First observe f (7) = —140. Now

|-32% +7— (—140)| = 3|z + 7||z — 7| < 3 (|z| + 7) |z — 7).

If |z — 7| < 1, it follows from the version of the triangle inequality which states ||s| — |¢]|| <
|s — t] that |z| < 1+ 7. Therefore, if |z — 7| < 1, it follows that

| =327 + 7 — (—140)| < 3((1+T7) +7) |z — 7|
=31+27)|jx—7=84]|z—17|.

Now let € > 0 be given. Choose ¢ such that 0 < § < min (1, &) . Then for [z — 7| < 4, it
follows

g
|82 4+7 — (—140)| < 84fa 7| <84 () ==

These € § proofs will not be emphasized any more than necessary. However, you should
try a few of them because until you master this concept, you will not really understand
calculus as it has been understood for approximately 150 years. The best you can do
without this definition is to gain an understanding of the subject as it was understood by
people in the 1700’s, before the need for rigor was realized. Don’t be discouraged by these
historical observations. If you are able to master calculus as understood by Lagrange or
Laplace?, you will have learned some very profound ideas even if they did originate in the
eighteenth century.

5.4 Sufficient Conditions For Continuity

The next theorem is a fundamental result which will allow us to worry less about the € ¢§
definition of continuity.

Theorem 5.4.1 The following assertions are valid for f, g functions and a,b numbers.

1. The function, af +bg is continuous at x when f, g are continuous at x € D (f)ND (g)
and a,b € R.

2. If f and g are each real valued functions continuous at x, then fg is continuous at x.
If, in addition to this, g (x) # 0, then f/g is continuous at x.

3. If f is continuous at x, f(x) € D(g) CR, and g is continuous at f (x) ,then go f is
continuous at x.

4. The function f:R — R, given by f (x) = |x| is continuous.

The proof of this theorem is in the last section of this chapter but its conclusions are not
surprising. For example the first claim says that (af + bg) (y) is close to (af + bg) (x) when
vy is close to x provided the same can be said about f and g. For the third claim, continuity
of f indicates that if y is close enough to x then f (x) is close to f (y) and so by continuity
of gat f(z), g(f(y)) is close to g (f (x)). The fourth claim is verified as follows.

2| = |z —y +y| < |z —y|+ |yl

and so
|lz| = [y < [z —yl.

3Lagrange and Laplace were two great physicists of the 1700’s. They made fundamental contributions
to the calculus of variations and to mechanics and astronomy.
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Similarly,
lyl = [z <[z —yl.
Therefore,
| = [yl < |z —yl.
It follows that if £ > 0 is given, one can take § = ¢ and obtain that for |z — y| < § =€,

|z = Jyll <z -yl <d=e

which shows continuity of the function, f (z) = |z|.

5.5 Continuity Of Circular Functions

The functions sin 2 and cos x are often called the circular functions. This is because for each
z € R, (cosz,sinz) is a point on the unit circle.

Theorem 5.5.1 The functions, cos and sin are continuous.

Proof: First it will be shown that cos and sin are continuous at 0. By Corollary 3.5.4
on Page 59 the following inequality is valid for small positive values of 6.

1 —cosf +sinf > 6 > siné.

It follows that for § small and positive, |#] > |sinf| = sinf. If § < 0, then —0 = |0| > 0 and
—6 > sin (—0) . But then this means |sinf| = —sinf = sin (—0) < —0 = |6 in this case also.
Therefore, whenever |6] is small enough,

|6] > |sin ).
Now let € > 0 be given and take 6 = . Then if |0] < 4, it follows
[sind — 0] = [sinf —sin 0| = |sind] < |A] < § =,

showing sin is continuous at 0.
Next, note that for |0] < 7/2, cosf > 0 and so for such 6,

.2 2
. 9 sin” 0 1—cos® 6

6> = =1-—cosf > 0. 5.2
S ~ 14 cosf 1+ cosf osv = (52)

From the first part of this argument for sin, given ¢ > 0 there exists § > 0 such that if
|6] < 4, then |sind| < \/e. It follows from (5.2) that if || < §, then ¢ > 1 — cosf > 0. This
proves these functions are continuous at 0. Now y = (y — z) + « and so

cosy = cos (y — x) cosx — sin (v — y) sinz.

Therefore,
cosy —cosx = cos (y — x) cosx — sin (x — y) sinx — cosx

and so, since [cosz|, |sinz| < 1,
|cosy —cosz| < Jcosz (cos(y —x) — 1)| + |sinz] [sin (y — x)]
< Jeos(y— ) — 1|+ [sin (y — 7).
From the first part of this theorem, if |y — x| is sufficiently small, both of these last two terms

are less than €/2 and this proves cos is continuous at x. The proof that sin is continuous is
left for you to verify.
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5.6 Exercises

1.

10.

11.

Let f(x) = 2x + 7. Show f is continuous at every point x. Hint: You need to let
e > 0 be given. In this case, you should try ¢ < ¢/2. Note that if one § works in the
definition, then so does any smaller §.

Let f (z) = 2% + 1. Show f is continuous at x = 3. Hint:

[f (@) = fB) =]2* +1 - (9+1)|
=|z+3||x — 3.

Thus if | — 3| < 1, it follows from the triangle inequality, || < 1+ 3 = 4 and so
|f (x) = F(3)| < 4lfe—3].

Now try to complete the argument by letting § < min (1,e/4) . The symbol, min means
to take the minimum of the two numbers in the parenthesis.

Let f (z) = 2% + 1. Show f is continuous at z = 4.
Let f (x) = 222 + 1. Show f is continuous at z = 1.

Let f(z) = 2® + 22. Show f is continuous at z = 2. Then show it is continuous at
every point.

Let f(x) = |2z + 3]. Show f is continuous at every point. Hint: Review the two
versions of the triangle inequality for absolute values.

Let f(x) = I%H Show f is continuous at every value of x.

Show sin is continuous.

Let f (z) = /z show f is continuous at every value of z in its domain. Hint: You
might want to make use of the identity,

_ Ty
VRIS e

at some point in your argument.

Using Theorem 5.4.1, show all polynomials are continuous and that a rational function
is continuous at every point of its domain. Hint: First show the function given as
f (x) = x is continuous and then use the theorem.

Let f(z) = { égi ;8 and consider g (z) = f(x)sinz. Determine where g is

continuous and explain your answer.

5.7 Properties Of Continuous Functions

Continuous functions have many important properties which are consequences of the com-
pleteness axiom. Proofs of these theorems are in the last section at the end of this chapter.
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The next theorem is called the intermediate value theorem and the following picture illus-
trates its conclusion. It gives the existence of a certain point.

You see in the picture there is a horizontal line, y = ¢ and a continuous function which
starts off less than c¢ at the point a and ends up greater than ¢ at point b. The intermediate
value theorem says there is some point between a and b such that the value of the function
at this point equals c. You see this taking place in the above picture where the line and
the graph of the function cross. The z value at this point is the one whose existence is
guaranteed by the theorem. It may seem this is obvious but without completeness the
conclusion of the theorem cannot be drawn. Nevertheless, the above picture makes this
theorem very easy to believe.

Theorem 5.7.1 Suppose f : [a,b] — R is continuous and suppose f (a) < ¢ < f (b). Then
there exists x € (a,b) such that f (z) = c.

Example 5.7.2 Does there exist a solution to the equation Vx* +7 — z3sinz = 0?

By Theorem 5.4.1 and Problem 9 on Page 93 it follows easily that the function, f, given
by f(x) = Va* 4+ 7 — 23 sinz is continuous. Also, f (0) = /7 > 0 while

4 3
o o o . (5T
1(5) () = (5) = (3)
which is approximately equal to —422.7313318316316 < 0. Therefore, by the intermediate
value theorem there must exist z € (0, 2) such that f (z) = 0.

This example illustrates the use of this major theorem very well. It says something exists
but it does not tell how to find it.

Definition 5.7.3 A function, f, defined on some interval is strictly increasing if whenever
x <y, it follows f(x) < f(y). The function is strictly decreasing if whenever x < y, it

follows f(x) > f(y).

You should draw a picture of the graph of a strictly increasing or decreasing function
from the definition.

Lemma 5.7.4 Let ¢ : [a,b] — R be a one to one continuous function. Then ¢ is either
strictly increasing or strictly decreasing.

This lemma is not real easy to prove but it is one of those things which seems obvious.
To say a function is one to one is to say that every horizontal line intersects the graph of the
function in no more than one point. (This is called the horizontal line test.) Now if your
function is continuous (having no jumps) and is one to one, try to imagine how this could
happen without it being either strictly increasing or decreasing and you will soon see this
is highly believable and in fact, for it to fail would be incredible. The proof of this lemma
is in the last section of this chapter in case you are interested.
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Corollary 5.7.5 Let ¢ : (a,b) — R be a one to one continuous function. Then ¢ is either
strictly increasing or strictly decreasing.

The proof of this corollary is the same as the proof of the lemma. The next corollary
follows from the above.

Corollary 5.7.6 Let f : (a,b) — R be one to one and continuous. Then f(a,b) is an
open interval, (c,d) and f=' : (¢,d) — (a,b) is continuous. Also, if f : [a,b] — R is one
to one and continuous, then f ([a,b]) is a closed interval, [c,d] and f=! : [c,d] — |a,b] is
continuous.

This corollary is not too surprising either. To view the graph of the inverse function,
simply turn things on the side and switch z and y. If the original graph has no jumps in
it, neither will the new graph. Of course, the concept of continuity is tied to a rigorous
definition, not to the drawing of pictures. This is why there is a proof in the last section of
this chapter.

In Russia there is a kind of doll called a matrushka doll. You pick it up and notice it
comes apart in the center. Separating the two halves you find an identical doll inside. Then
you notice this inside doll also comes apart in the center. Separating the two halves, you
find yet another identical doll inside. This goes on quite a while until the final doll is in one
piece. The nested interval lemma is like a matrushka doll except the process never stops. It
involves a sequence of intervals, the first containing the second, the second containing the
third, the third containing the fourth and so on. The fundamental question is whether there
exists a point in all the intervals.

Lemma 5.7.7 Let I}, = [ak, bk] and suppose that for allk =1,2,-- -,
Iy 2 Iy
Then there exists a point, ¢ € R which is an element of every Iy,.
Proof: Since Iy O Iy, this implies
ab < Pl R > R (5.3)

Consequently, if & <1,
at <ad <v <V (5.4)
Now define
czsup{al:lzl,Q,---}

By the first inequality in (5.3), and (5.4)
af <c=sup{d:l=kk+1,- -} <bF (5.5)

for each k = 1,2---. Thus ¢ € I} for every k and this proves the lemma. If this went too
fast, the reason for the last inequality in (5.5) is that from (5.4), b* is an upper bound to
{al =k k+1,-- } . Therefore, it is at least as large as the least upper bound.

This is really quite a remarkable result and may not seem so obvious. Consider the
intervals I, = (0,1/k). Then there is no point which lies in all these intervals because no
negative number can be in all the intervals and 1/k is smaller than a given positive number
whenever k is large enough. Thus the only candidate for being in all the intervals is 0 and
0 has been left out of them all. The problem here is that the endpoints of the intervals
were not included contrary to the hypotheses of the above lemma in which all the intervals
included the endpoints.

With the nested interval lemma, it becomes possible to prove the following lemma which
shows a function continuous on a closed interval in R is bounded.
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Lemma 5.7.8 Let I = [a,b] and let f : I — R be continuous. Then f is bounded. That is
there exist numbers, m and M such that for all x € [a,b],

m < f(z) < M.

Proof: Let I = I and suppose f is not bounded on Iy. Consider the two sets, [a, “T'H’]
and [2£2,b] . Since f is not bounded on Iy, it follows that f must fail to be bounded on at
least one of these sets. Let I; be one of these on which f is not bounded. Now do to I3
what was done to Iy to obtain Iy C Iy and for any two points, x,y € I

|x—y|§2_1b_Ta§2_2(b—a).

Continue in this way obtaining sets, I such that I O Ir4; and for any two points in

I, z,y, |v —y| <27%(b— a). By the nested interval lemma,there exists a point, ¢ which is
contained in each Ij. Also, by continuity, there exists a 6 > 0 such that if |c — y| < J, then

|f(e) = Fl <1 (5.6)

Let k be so large that 27% (b — a) < §. Then for every y € I, |c — y| < § and so (5.6) holds
for all such y. But this implies that for all y € I,

If W)l <1f ()] +1

which shows that f is bounded on Ij, contrary to the way I was chosen. This contradiction
proves the lemma.

Example 5.7.9 Let f (z) =1/z for z € (0,1).

Clearly, f is not bounded. Does this violate the conclusion of the nested interval lemma?
It does not because the end points of the interval involved are not in the interval. The
same function defined on [.000001,1) would have been bounded although in this case the
boundedness of the function would not follow from the above lemma because it fails to
include the right endpoint.

The next theorem is known as the max min theorem or extreme value theorem.

Theorem 5.7.10 Let I = [a,b] and let f : I — R be continuous. Then f achieves its
maximum and its minimum on I. This means there exist, x1,xo € I such that for all x € I,

fle) < f(z) < f(22).

Proof: By completeness of R and Lemma 5.7.8 f (I) has a least upper bound, M. If for
all z € I, f (z) # M, then by Theorem 5.4.1, the function, g (z) = (M — f (z))”" = M%f(w)
is continuous on I. Since M is the least upper bound of f (I) there exist points, x € I such
that (M — f (x)) is as small as desired. Consequently, ¢ is not bounded above, contrary to
Lemma 5.7.8. Therefore, there must exist some = € I such that f(x) = M. This proves
f achieves its maximum. The argument for the minimum is similar. Alternatively, you
could consider the function h (z) = M — f (x). Then use what was just proved to conclude
h achieves its maximum at some point, z1. Thus h(z1) > h(z) for all z € I and so
M — f(z1) > M — f () for all z € I which implies f (z1) < f (z) for all x € I. This proves
the theorem.
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5.8

1.

5.9

Exercises

Give an example of a continuous function defined on (0, 1) which does not achieve its
maximum on (0,1).

. Give an example of a continuous function defined on (0, 1) which is bounded but which

does not achieve either its maximum or its minimum.

Give an example of a discontinuous function defined on [0, 1] which is bounded but
does not achieve either its maximum or its minimum.

Give an example of a continuous function defined on [0, 1) U (1, 2] which is positive at
2, negative at 0 but is not equal to zero for any value of x.

Give an example of a function which is one to one but neither strictly increasing nor
strictly decreasing. Hint: Look for discontinuous functions satisfying the horizontal
line test.

Do you believe in v/8? That is, does there exist a number which multiplied by itself
seven times yields 87 Before you jump to any conclusions, the number you get on your
calculator is wrong. In fact, your calculator does not even know about v/8. All it can
do is try to approximate it and what it gives you is this approximation. Why does it
exist? Hint: Use the intermediate value theorem on the function, f (z) = 27 — 8.

Let f (z) = x — /2 for x € Q, the rational numbers. Show that even though f (0) <0
and f(2) > 0, there is no point in Q where f(x) = 0. Does this contradict the
intermediate value theorem? Explain.

It has been known since the time of Pythagoras that v/2 is irrational. If you throw out
all the irrational numbers, show that the conclusion of the intermediate value theorem
could no longer be obtained. That is, show there exists a function which starts off less
than zero and ends up larger than zero and yet there is no number where the function
equals zero. Hint: Try f (z) = 22 — 2. You supply the details.

Limits Of A Function

A concept closely related to continuity is that of the limit of a function.

Definition 5.9.1 Let f: D (f) CR — R be a function where D (f) 2 (x —r,z)U(x,x + 1)
for some r > 0. Note that f is not necessarily defined at x. Then

lim / (y) = L

y—

if and only if the following condition holds. For all € > 0 there exists § > 0 such that if

then,

0<|y—z| <9,

IL—-fWl<e.

If everything is the same as the above, except y is required to be larger than x and f is
only required to be defined on (x,x + r), then the notation is

lim f(y)=L.

y—x+
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If f is only required to be defined on (x —r,x) and y is required to be less than x,with the
same conditions above, we write

lim f(y)=L.

y—x—
Limits are also taken as a variable “approaches” infinity. Of course nothing is “close” to
infinity and so this requires a slightly different definition.

lim f(z)=1L

T— 00

if for every e > 0 there exists | such that whenever x > I,

lf(z)—L|<e (5.7)
and
Jim  f(z) =L

if for every e > 0 there exists | such that whenever x <1, (5.7) holds.

The following pictures illustrate some of these definitions.

CArrrrrree ° [ sERREEREERRRRS °
b e’\ b
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i i
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In the left picture is shown the graph of a function. Note the value of the function
at = equals ¢ while lim,_,+ f(y) = b and lim,_,_ f(y) = a. In the second picture,
lim,_., f (y) = b. Note that the value of the function at the point = has nothing to do with
the limit of the function in any of these cases. The value of a function at z is irrelevant
to the value of the limit at ! This must always be kept in mind. You do not evaluate
interesting limits by computing f (z)! In the above picture, f (z) is always wrong! It may
be the case that f (z) is right but this is merely a happy coincidence when it occurs and as
explained below in Theorem 5.9.6, this is equivalent to f being continuous at x.

Theorem 5.9.2 Iflim,_., f (y) = L and limy_,, f (y) = L1, then L = L.

Proof: Let ¢ > 0 be given. There exists 6 > 0 such that if 0 < |y — z| < d, then

\f(y) =Ll <e, [f(y) = Li] <e.

Therefore, for such y,
IL—Li| <[L—f)l+1f(y) — L1 <et+e=2e

Since € > 0 was arbitrary, this shows L = L;.
The above theorem holds for any of the kinds of limits presented in the above definition.
Another concept is that of a function having either oo or —oo as a limit. In this case,
the values of the function do not ever get close to their target because nothing can be close
to +oo. Roughly speaking, the limit of the function equals oo if the values of the function
are ultimately larger than any given number. More precisely:
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Definition 5.9.3 If f (z) € R, then lim,_., f () = oo if for every number I, there exists
d > 0 such that whenever |y — x| < 6, then f(x) > 1. lim,_ f () = oo if for all k, there
exists | such that f(x) > k whenever x > [. One sided limits and limits as the variable
approaches —oo, are defined similarly.

It may seem there is a lot to memorize here. In fact, this is not so because all the
definitions are intuitive when you understand them.

Theorem 5.9.4 In this theorem, the symbol, lim,_., denotes any of the limits described
above. Suppose limy_,, f (y) = L and lim,_,; g (y) = K where K and L are real numbers in
R. Then ifa, b € R,

Tim (af (y) +bg (y)) = aL + bK, (5.8)
lim fg(y) = LK (5.9)
and if K #0,
. fly L
lim T " & (5.10)

Also, if h is a continuous function defined near L, then

lim ho f(y) =h(L). (5.11)

Yy—x

Suppose limy_., f (y) = L. If f (y) < a all y of interest, then L < a and if f (y) > a then
L>a.

Proof: The proof of (5.8) is left for you. It is like a corresponding theorem for continuous
functions. Next consider (5.9). Let £ > 0 be given. Then by the triangle inequality,

|fg(y) — LK| <|fg(y) — f(y) K| +|f (y) K — LK]|
<[fWllg(y) — K|+ [K||f (y) — L|. (5.12)

There exists d; such that if 0 < |y — z| < §1, then

If(y) - LI <1,

and so for such y, and the triangle inequality, |f (v)| < 14 |L|. Therefore, for 0 < |y — z| <
617
|fg(y) — LK| < (1 + K| +|L[) [lg (y) — K[ +|f (y) — L] (5.13)

Now let 0 < 2 be such that for 0 < |z — y| < 02,

€ 3
@) =L < srqmrmy @ K < spaEr

Then letting 0 < § < min (41, d2), it follows from (5.13) that
[f9(y) — LK| <e

and this proves (5.9). Limits as © — £o0o and one sided limits are handled similarly.

The proof of (5.10) is left to you. It is just like the theorem about the quotient of
continuous functions being continuous provided the function in the denominator is non zero
at the point of interest.
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Consider (5.11). Since h is continuous near L, it follows that for € > 0 given, there exists
n > 0 such that if [y—L| <, then

Ih(y) —h(L)| <e
Now since lim,_,,, f (y) = L, there exists 6 > 0 such that if 0 < |[y—z| < §, then

|f (y) = L[ <.
Therefore, if 0 < |y—z| < 4,
[h(f () = h(L)] <e.

The same theorem holds for one sided limits and limits as the variable moves toward
+00. The proofs are left to you. They are minor modifications of the above.

It only remains to verify the last assertion. Assume f (y) < a. It is required to show that
L < a. If this is not true, then L > a. Letting € be small enough that a < L — ¢, it follows
that ultimately, for y close enough to z, f(y) € (L —e, L +¢) which requires f(y) > a
contrary to assumption.

A very useful theorem for finding limits is called the squeezing theorem.

Theorem 5.9.5 Suppose lim,_,, f () = L =lim,_, g (z) and for all  near a,

fla)<h(z) <g(x).
Then
lim h(z) = L.

r—a

Proof: If L > h(x), then
h(z) = Ll < |f (x) — LI

If L < h(x), then
|h(z) — LI < |g(z) — L|.

Therefore,
|h(z) = L] < |f (x) = L| + |g () — L].

Now let € > 0 be given. There exists §; such that if 0 < |z — a| < 01,
(@) - Ll <ef2

and there exists d2 such that if 0 < |x — a| < 02, then
9(2)— L] < /2.

Letting 0 < 6 < min (d1,d2), if 0 < |z — a| < d, then

h(x) = LI < [f (x) = L] + |9 (z) - L|
<eg/2+¢€/2=c¢.

This proves the theorem.

Theorem 5.9.6 For f : I — R, and I is an interval of the form (a,b),[a,b),(a,b], or
la,b], then f is continuous at x € I if and only if limy_., f (y) = f (z).

Proof: You fill in the details. Compare the definition of continuous and the definition
of the limit just given.
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z2-9

Example 5.9.7 Find lim, 3 Z—.

Note that :’;2:39 = 2 4 3 whenever x # 3. Therefore, if 0 < |z — 3| < ¢,

2 -9
xr—3

—6‘:|x+3—6|:|x—3|<5.

It follows from the definition that this limit equals 6.

You should be careful to note that in the definition of limit, the variable never equals
the thing it is getting close to. In this example, x is never equal to 3. This is very
significant because, in interesting limits, the function whose limit is being taken will usually
not be defined at the point of interest.

Example 5.9.8 Let

f(z) = 3;2__; if x # 3.

How should f be defined at x = 3 so that the resulting function will be continuous there?

In the previous example, the limit of this function equals 6. Therefore, by Theorem 5.9.6
it is necessary to define f (3) = 6.

Example 5.9.9 Find lim, . 14—%

: T 1
Write T4z — m
Theorem 5.9.4 implies

Now it seems clear that limy ,o0 1 + (1/2) = 1 # 0. Therefore,

1
lim =lm ——=-=1.

Example 5.9.10 Show lim,_., \/x = \/a whenever a > 0. In the case that a = 0, take the
limit from the right.

There are two cases. First consider the case when a > 0. Let € > 0 be given. Multiply
and divide by /= 4+ v/a. This yields

[Vz —a|

_‘ r—a
CVr+Va
Now let 0 < 61 < a/2. Then if |z — a|] < 61,2 > a/2 and so

r—a

2 —a
Vet val = (Va/va) + va
23

— |z —al.

Ja

;g) . Then for 0 < |z — a| < 4,

V- va =

IA

Now let 0 < § < min (61,
2v/2 ev/a .
Vva 22

Next consider the case where a = 0. In this case, let ¢ > 0 and let 6 = £2. Then if
0<x—0<d=c¢? it follows that 0 < /7 < (62)1/2 =,

VE-val < 22 ja -l <



102

FUNCTIONS

5.10 Exercises

1.

10.

11.

12.

13.

14.

15.

16.

17.

. Find lim,_, o

Find the following limits if possible

(a
(b

li Izl
img o4 5
3 x
llmx*)0+ m

Lzl
x

(¢) limg_o—
2
z°—16
(d z+4
z2—9

x+3

11mm~>4

(e llml_,g,
(f

(g
(h

z2—4
r—2

hmxﬁ -2

: xT
limg o0 72

)
)
)
)
)
)
)
)

3 T
hmx_,oc —21_,’_7

1 1
o (et
Find limy,_,qo &2 =2

Find lim, 4 L242.
V3et+ Yzt
V3xz+1 :

. . (z—3)2°(22+1)3°
Find lim,_, TerEn®
z%—4

Flnd llmajﬂ2 m

Find lim,_, o (\/lf7x+z2—\/l+7x+x2).

Prove Theorem 5.9.2 for right, left and limits as y — oo.

Prove from the definition that lim,_., /z = /a for all a € R. Hint: You might want

to use the formula for the difference of two cubes,

a® = b’ =(a—0b) (a® +ab+b*).

Find limy, o & ="

Prove Theorem 5.9.6 from the definitions of limit and continuity.

Find lim), o @&+

1 __ 1
x+h x

Find limh_,() T —

. . 3197
Find lim,_, _3 %

. . 3+h)2-3 ... .
Find limj,_.q % if it exists.

Find the values of x for which limj,_.q 7&:’)2_1 exists and find the limit.

\3/ — 3z
Find limj,_.¢ M if it exists. Here x #£ 0.
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18. Suppose limy_,,y f(y) = L1 # Ly = lim,_,,_ f(y). Show lim, ., f (z) does not
exist. Hint: Roughly, the argument goes as follows: For |y; — x| small and y; > «z,
|f (y1) — L1| is small. Also, for |y; — x| small and y2 < z, |f (y2) — L] is small.
However, if a limit existed, then f (y2) and f (y1) would both need to be close to some
number and so both L; and Lo would need to be close to some number. However, this
is impossible because they are different.

sin x

19. Show lim,_.o #2£ = 1. Hint: You might consider Theorem 5.5.1 on Page 92 to write
the inequality |sinz|+1—cosx > |x| > |sinz| whenever |z| is small. Then divide both
sides by |sinz| and use some trig. identities to write % +1> |S!i|:c| > 1
and then use squeezing theorem.

5.11 The Limit Of A Sequence

A closely related concept is the limit of a sequence. This was defined precisely a little before
the definition of the limit by Bolzano*. The following is the precise definition of what is
meant by the limit of a sequence.

Definition 5.11.1 A sequence {a,} -, converges to a,

lim a, =a ora, — a
n—oo

if and only if for every € > 0 there exists ne such that whenever n > ng ,
lan, —a| < e.

In words the definition says that given any measure of closeness, €, the terms of the
sequence are eventually all this close to a. Note the similarity with the concept of limit.
Here, the word “eventually” refers to n being sufficiently large. Earlier, it referred to y
being sufficiently close to « on one side or another or else x being sufficiently large in either
the positive or negative directions.

Theorem 5.11.2 Iflim, . a, = a and lim,, . a, = a1 then a; = a.

Proof: Suppose a; # a. Then let 0 < € < |a; — a| /2 in the definition of the limit. It
follows there exists n. such that if n > n., then |a, —a| < € and |a,, — a1| < &. Therefore,
for such n,

s —al < a1 —anl +lan—al
< e4e<|a—al/24 a1 —al/2=|a1 —a,
a contradiction.

_ 1
Example 5.11.3 Let a,, = e

Then it seems clear that

. 1
lim —— =
n— oo ’n2 + 1

4Bernhard Bolzano lived from 1781 to 1848. He was a Catholic priest and held a position in philosophy
at the University of Prague. He had strong views about the absurdity of war, educational reform, and the
need for individual concience. His convictions got him in trouble with Emporer Franz I of Austria and
when he refused to recant, was forced out of the university. He understood the need for absolute rigor in
mathematics. He also did work on physics.
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In fact, this is true from the definition. Let € > 0 be given. Let n. > ve~1. Then if
n>mne > Vel

it follows that n? +1 > ¢! and so

0< =a, <E€.

nZ+1

Thus |a, — 0| < € whenever n is this large.

Note the definition was of no use in finding a candidate for the limit. This had to be
produced based on other considerations. The definition is for verifying beyond any doubt
that something is the limit. It is also what must be referred to in establishing theorems
which are good for finding limits.

Example 5.11.4 Let a,, = n?

Then in this case lim,, . a, does not exist. Sometimes this situation is also referred to
by saying lim,, .~ a, = .

Example 5.11.5 Let a, = (—1)".

In this case, lim, o, (—1)" does not exist. This follows from the definition. Let ¢ = 1/2.
If there exists a limit, I, then eventually, for all n large enough, |a, —I| < 1/2. However,
|an, — ant1] =2 and so,

2=\an — ant1] <lan =l + [l —any1| <1/24+1/2=1
which cannot hold. Therefore, there can be no limit for this sequence.
Theorem 5.11.6 Suppose {a,} and {b,} are sequences and that

lim a, =a and lim b, =b.
n—oo n—oo

Also suppose x and y are real numbers. Then

lim za, + yb, = xa + yb (5.14)
lim a,b, = ab (5.15)

If b #£ 0,
(5.16)

Proof: The first of these claims is left for you to do. To do the second, let € > 0 be
given and choose n; such that if n > ny then

la, —al < 1.
Then for such n, the triangle inequality implies

|anby — abl |anby, — anb| + |anb — ab]

|an] [bn = 0] +[b] |an —a
(lal + 1) by — b] + [b] |an — al -

IA A IA
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Now let ny be large enough that for n > no,

|b, — 0] < 5

= and | | < =
———— and |a, —a
(la] +1)° ! 2

(ol +1)°
Such a number exists because of the definition of limit. Therefore, let
ne > max (ny, ng) .
For n > n.,

|anbn —abl < (Ja| +1) [bn = b + [b] |an — al

< (la|+1) °

b <e.
S =°

€
2(lal +1)

This proves (5.15). Next consider (5.16).
Let € > 0 be given and let n; be so large that whenever n > n;,

|b]
b, —b| < —.
bn — bl <
Thus for such n,
an, a a,b— ab,, 2
— — | =|———| < — [lapnb — ab b — ab,
by b B, | = P Tt leb bl
2 2|al
< 2 la, —a + 29 b, — ).
|b] 1]
Now choose ns so large that if n > ny, then
e [b] e [bf*
— — d b, — b < ———.
lan, —a| < L A b, |<4(|a|+1)
Letting n. > max (n1,ns), it follows that for n > n.,
an a 2 2 |al
— == < —l|ap—a|l+—5|bp—0

2], 2lal el
o] 4 b]* 4 (la] +1)

Another very useful theorem for finding limits is the squeezing theorem.

Theorem 5.11.7 Suppose lim,, .o ay, = a = lim,, o b, and a, < ¢, < b, for all n large
enough. Then lim, ., ¢, = a.

Proof: Let € > 0 be given and let n; be large enough that if n > nq,
lan, —al < e/2 and |b, —b| < e/2.

Then for such n,
len —al < lan, —al + |by, —a] <e.

This proves the theorem.
As an example, consider the following.
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Example 5.11.8 Let

1
Cp = (-1)” ;
and let b, = %, and a, = f%. Then you may easily show that

lim a, = lim b, =0.

n—oo n—oo
Since an < ¢ < by, it follows lim,, .o, ¢, = 0 also.
Theorem 5.11.9 lim,,_,o r" = 0. Whenever |r| < 1.

Proof:If 0 < r < 1 if follows r~! > 1. Why? Letting a = % — 1, it follows

Therefore, by the binomial theorem,

1 1

0<r" = < :
" 1+a)" ~ 14+an

Therefore, lim,, o ™ = 0 if 0 < r < 1. Now in general, if |r| < 1, |r"| = |r|" — 0 by the
first part. This proves the theorem.

An important theorem is the one which states that if a sequence converges, so does every
subsequence. You should review Definition 5.1.18 on Page 85 at this point.

Theorem 5.11.10 Let {x,} be a sequence with lim,_,oc x, = = and let {x,, } be a subse-
quence. Then limy_o Tpn, = .

Proof: Let € > 0 be given. Then there exists n. such that if n > n., then |z, — x| < .
Suppose k > n.. Then ni > k > n. and so

|Zn, — x| <e

showing limy_,o Zp, = z as claimed.

5.11.1 Sequences And Completeness

You recall the definition of completeness which stated that every nonempty set of real
numbers which is bounded above has a least upper bound and that every nonempty set of
real numbers which is bounded below has a greatest lower bound and this is a property of
the real line known as the completeness axiom. Geometrically, this involved filling in the
holes. There is another way of describing completeness in terms of sequences which I believe
is more useful than the least upper bound and greatest lower bound property.

Definition 5.11.11 {a,} is a Cauchy sequence if for all € > 0, there exists ne such that
whenever n,m > n.,
lan — am] < e.

A sequence is Cauchy means the terms are “bunching up to each other” as m,n get
large.

Theorem 5.11.12 The set of terms in a Cauchy sequence in R is bounded above and below.
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Proof: Let € =1 in the definition of a Cauchy sequence and let n > n;. Then from the
definition,
lan — an, | < 1.

It follows that for all n > nq,
‘an‘ < 1 + |an1| .

Therefore, for all n,
ni

] < 1+ lan, |+ lax] -
k=1

This proves the theorem.

Theorem 5.11.13 If a sequence {a,} in R converges, then the sequence is a Cauchy se-
quence.

Proof: Let ¢ > 0 be given and suppose a,, — a. Then from the definition of convergence,
there exists n. such that if n > n., it follows that

3

la, —al < 5

Therefore, if m,n > n. + 1, it follows that

e €
|an—am|§|an—a|+|a—am|<§+§:6

showing that, since € > 0 is arbitrary, {a,} is a Cauchy sequence.

Definition 5.11.14 The sequence, {a,}, is monotone increasing if for all n, a, < apt1.
The sequence is monotone decreasing if for all n, an > api1.

If someone says a sequence is monotone, it usually means monotone increasing. There
exists different descriptions of the completeness axiom. If you like you can simply add the
three new criteria in the following theorem to the list of things which you mean when you
say R is complete and skip the proof. All versions of completeness involve the notion of
filling in holes and they are really just different ways of expressing this idea.

In practice, it is often more convenient to use the first of the three equivalent versions of
completeness in the following theorem which states that every Cauchy sequence converges.
In fact, this version of completeness, although it is equivalent to the completeness axiom for
the real line, also makes sense in many situations where Definition 2.14.1 on Page 42 does
not make sense. For example, the concept of completeness is often needed in settings where
there is no order. This happens as soon as one does multivariable calculus. From now on
completeness will mean any of the three conditions in the following theorem.

It is the concept of completeness and the notion of limits which sets analysis apart from
algebra. You will find that every existence theorem, a theorem which asserts the existence
of something, in analysis depends on the assumption that some space is complete.

Theorem 5.11.15 The following conditions are equivalent to completeness.

1. Fvery Cauchy sequence converges
2. Every monotone increasing sequence which is bounded above converges.

3. Every monotone decreasing sequence which is bounded below converges.
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Proof: Suppose every Cauchy sequence converges and let S be a non empty set which
is bounded above. In what follows, s,, € S and b, will be an upper bound of S. If, in the
process about to be described, s,, = by, this will have shown the existence of a least upper
bound to S. Therefore, assume s,, < b, for all n. Let b; be an upper bound of S and let s1
be an element of S. Suppose s1, - -+, s, and by, - - -, b, have been chosen such that s, < sp41
and by > biy1. Consider %, the point on R which is mid way between s,, and b,,. If this
point is an upper bound, let
Sn + by

2

and s,4+1 = sy. If the point is not an upper bound, let

S c Mb
n+1 2 yUn

and let b,y1 = b,. It follows this specifies an increasing sequence {s,} and a decreasing
sequence {b, } such that

bn+1 =

0<b, —s, <277 (bl _51)-

Now if n > m,
Oﬁbm*bn:|bm*bn|

n—1 n—1 n—1
= Zbk_bk+1 < Zbk_sk < ZQ_k(bl_Sl)
k=m k=m k=m

2—m 2" m
:T(b1—51)§2 +1(b1—31)
and lim,, o, 27™ = 0 by Theorem 5.11.9. Therefore, {b,} is a Cauchy sequence. Similarly,
{sn} is a Cauchy sequence. Let [ = lim,, o S, and let I3 = lim,_,o by,. If n is large enough,

[l —snl <e/3,]lh —bn| <e/3, and |b, — sp| < &/3.
Then

L=Ul < [l=sn|l+[sn—bnl+ [bn — L
< €/3+¢/34+¢/3=¢.

Since € > 0 is arbitrary, [ = l;. Why? Then [ must be the least upper bound of S. It is an
upper bound because if there were s > [ where s € S, then by the definition of limit, b, < s
for some n, violating the assumption that each b, is an upper bound for S. On the other
hand, if [y < I, then for all n large enough, s,, > Iy, which implies [y is not an upper bound.
This shows 1 implies completeness.

First note that 2 and 3 are equivalent. Why? Suppose 2 and consequently 3. Then
the same construction yields the two monotone sequences, one increasing and the other
decreasing. The sequence {b,} is bounded below by s,, for all m and the sequence {s,} is
bounded above by b, for all m. Why? Therefore, the two sequences converge. The rest of
the argument is the same as the above. Thus 2 and 3 imply completeness.

Now suppose completeness and let {a,} be an increasing sequence which is bounded
above. Let a be the least upper bound of the set of points in the sequence. If € > 0 is given,
there exists n. such that a — e < a,_. Since {a,} is a monotone sequence, it follows that
whenever n > n., a—e < a,, < a. This proves lim,, ., a, = a and proves convergence. Since
3 is equivalent to 2, this is also established. If follows 3 and 2 are equivalent to completeness.
It remains to show that completeness implies every Cauchy sequence converges.
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Suppose completeness and let {a,} be a Cauchy sequence. Let
inf{ap: k>n} =A,, sup{ax : k>n} =B,

Then A, is an increasing sequence while B,, is a decreasing sequence and B,, > A,,. Fur-
thermore,

lim B, — A, =0.

n—oo
The details of these assertions are easy and are left to the reader. Also, {A4,} is bounded
below by any lower bound for the original Cauchy sequence while {B,} is bounded above
by any upper bound for the original Cauchy sequence. By the equivalence of completeness
with 3 and 2, it follows there exists a such that ¢ = lim,, .o, A,, = lim,,_.~ By,. Since B, >
an > A,, the squeezing theorem implies lim,, .., a,, = a and this proves the equivalence of
these characterizations of completeness.

Theorem 5.11.16 Let {a,} be a monotone increasing sequence which is bounded above.
Then lim,_, o a, = sup {a, : n > 1}

Proof: Let a = sup{a, :n > 1} and let € > 0 be given. Then from Proposition 2.14.3
on Page 42 there exists m such that a — ¢ < a,, < a. Since the sequence is increasing, it
follows that for all n > m, a — e < ap, < a. Thus a = lim,_, o ay.

5.11.2 Decimals

You are all familiar with decimals. In the United States these are written in the form
.a1a2a3--- where the a; are integers between 0 and 9.°> Thus .23417432 is a number written as
a decimal. You also recall the meaning of such notation in the case of a terminating decimal.
For example, .234 is defined as 1% + % + 1%. Now what is meant by a nonterminating
decimal?

Definition 5.11.17 Let .ajas - -+ be a decimal. Define

li Qf

.ajag - = lim E .

n—oo 10%
k

Proposition 5.11.18 The above definition makes sense.

oo

Proof: Note the sequence {ZZ=1 %}nzl is an increasing sequence. Therefore, if there
exists an upper bound, it follows from Theorem 5.11.16 that this sequence converges and so

the definition is well defined.

Now

5In France and Russia they use a comma instead of a period. This looks very strange but that is just
the way they do it.
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"1 10 /1 1 10 /1 1

R (E S S S U 4

P 10% 9 (10 10”“) 9 (10) 9
Therefore, since this holds for all n, it follows the above sequence is bounded above. It
follows the limit exists.

and so

5.11.3 Continuity And The Limit Of A Sequence

There is a very useful way of thinking of continuity in terms of limits of sequences found
in the following theorem. In words, it says a function is continuous if it takes convergent
sequences to convergent sequences whenever possible.

Theorem 5.11.19 A function f : D (f)— R is continuous at © € D (f) if and only if,
whenever x,, — x with x, € D (f), it follows f (x,) — f(x).

Proof: Suppose first that f is continuous at = and let x,, — z. Let € > 0 be given. By
continuity, there exists § > 0 such that if |y — x| < 4§, then |f (z) — f (y)| < €. However,
there exists ng such that if n > ngs, then |z, — 2| < d and so for all n this large,

|f (2) = [ (an)| <e

which shows f (z,) — f ().

Now suppose the condition about taking convergent sequences to convergent sequences
holds at z. Suppose f fails to be continuous at z. Then there exists ¢ > 0 and z,, € D (f)
such that |z — x,| < L | yet
But this is clearly a contradiction because, although x,, — x, f (z,) fails to converge to
f (z). It follows f must be continuous after all. This proves the theorem.

5.12 Exercises
1. Find lim,,_, 3%_%.

3n*+7n+1000

2. Find lim,,_, AT

. . 2" +7(5™)
3. Find hmn*)oo an)
4. Find lim,, .o, ntan 711 Hint: See Problem 19 on Page 103.

5. Find lim,, o nsin 2. Hint: See Problem 19 on Page 103.

6. Find lim, o /(nsin 2). Hint: See Problem 19 on Page 103.

7. Find lim,, o v/(n? + 6n) — n. Hint: Multiply and divide by /(n? + 6n) + n.
8. Find limp—oc Y p_; 705 -

n+1 1

9. For |r| < 1, find lim,—.cc >__o7¥. Hint: First show Y}, r* = Z— — L Then
recall Theorem 5.11.9.
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Suppose © = .3434343434 where the bar over the last 34 signifies that this repeats
forever. In elementary school you were probably given the following procedure for
finding the number z as a quotient of integers. First multiply by 100 to get 100x =
34.34343434 and then subtract to get 99z = 34. From this you conclude that x =

34/99. Fully justify this procedure. Hint: .34343434 = lim,, .o 34 _, (ﬁ)k now
use Problem 9.

Suppose D (f) =[0,1]U{9} and f (z) = 2 on [0, 1] while f (9) = 5. Is f continuous at
the point, 97 Use whichever definition of continuity you like.

Suppose z,, — = and x,, < ¢. Show that x < ¢. Also show that if x,, — x and x,, > ¢,
then x > ¢. Hint: If this is not true, argue that for all n large enough z,, > c.

Let a € [0,1]. Show a = .ajasas - -- for a unique choice of integers, ay,as, - - - if it is
possible to do this. Otherwise, give an example.

Show every rational number between 0 and 1 has a decimal expansion which either
repeats or terminates.

Consider the number whose decimal expansion is .010010001000010000010000001- - -.
Show this is an irrational number. Now using this, show that between any two integers
there exists an irrational number. Next show that between any two numbers there
exists an irrational number.

n n+1
Using the binomial theorem prove that for all n € N, (1 + %) < (1 + i) .

n+1
Hint: Show first that (Z) = W By the binomial theorem,
k factors
1+l n_n n lk_nn~(n—1)~~(n7k+l)
n) = \k) \n N P klnk '

n-(n—1)--(n—k+1)
klnk

Now consider the term and note that a similar term occurs in the

n+1
binomial expansion for (1 + ﬁ) except you replace n with n + 1 whereever this
occurs. Argue the term got bigger and then note that in the binomial expansion for
n+1
(1 + ﬁ) , there are more terms.
Prove by induction that for all k > 4, 2k < k!

Use the Problems 21 and 16 to verify for all n € N, (1+ )" < 3.

Prove lim,,_, (1 + %)n exists and equals a number less than 3.

Using Problem 18, prove n™*1 > (n + 1)" for all integers, n > 3.

Find lim,,_.., nsinn if it exists. If it does not exist, explain why it does not.

Recall the axiom of completeness states that a set which is bounded above has a least
upper bound and a set which is bounded below has a greatest lower bound. Show that
a monotone decreasing sequence which is bounded below converges to its greatest
lower bound. Hint: Let a denote the greatest lower bound and recall that because of
this, it follows that for all € > 0 there exist points of {a,,} in [a,a + £].
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Let A, =Y 1, ﬁ for n > 2. Show lim,,_,o A, exists. Hint: Show there exists
an upper bound to the A,, as follows.

Y - 2()

k=2

Let H,, = ZZ=1 1%2 for n > 2. Show lim,,_,~, H,, exists. Hint: Use the above problem
to obtain the existence of an upper bound.

Let a be a positive number and let z; = b > 0 where b?> > a. Explain why there exists
such a number, b. Now having defined z,,, define z,41 = % (xn + xi) . Verify that

{x,} is a decreasing sequence and that it satisfies 2 > a for all n and is therefore,
bounded below. Explain why lim,,_,., &, exists. If = is this limit, show that 2% = a.
Explain how this shows that every positive real number has a square root. This is an
example of a recursively defined sequence. Note this does not give a formula for z,,,
just a rule which tells us how to define x,,; if x,, is known.

Let a3 = 0 and suppose that a,+1 = %. Write as, as, as. Now prove that for all

n, it follows that a, < % + %\/5 (By Problem 6 on Page 97 there is no problem with
the existence of various roots of positive numbers.) and so the sequence is bounded
above. Next show that the sequence is increasing and so it converges. Find the limit
of the sequence. Hint: You should prove these things by induction. Finally, to find

the limit, let n — oo in both sides and argue that the limit, a, must satisfy a = %.

If z € R, show there exists a sequence of rational numbers, {z,,} such that z,, — = and
a sequence of irrational numbers, {2/} such that =/, — 2. Now consider the following
function.
1 if x is rational
ro={

0 if z is irrational

Show using the sequential version of continuity in Theorem 5.11.19 that f is discon-
tinuous at every point.

If z € R, show there exists a sequence of rational numbers, {z,,} such that z,, — = and
a sequence of irrational numbers, {2/} such that =/, — x. Now consider the following
function.
x if x is rational
f(z)=

0 if z is irrational

Show using the sequential version of continuity in Theorem 5.11.19 that f is continuous
at 0 and nowhere else.

The nested interval lemma and Theorem 5.11.19 can be used to give an easy proof of
the intermediate value theorem. Suppose f (a) > 0 and f (b) < 0 for f a continuous
function defined on [a,b]. The intermediate value theorem states that under these
conditions, there exists x € (a,b) such that f (z) = 0. Prove this theorem as follows:
Let ¢ = “t* and consider the intervals [a,c] and [c,b]. Show that on one of these
intervals, f is nonnegative at one end and nonpositive at the other. Now consider that
interval, divide it in half as was done for the original interval and argue that on one of
these smaller intervals, the function has different signs at the two endpoints. Continue

in this way. Next apply the nested interval lemma to get = in all these intervals and
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argue there exist sequences, x,, — = and y, — x such that f (x,) <0 and f (y,) > 0.
By continuity, you can assume f (z,) — f (z) and f (y,) — f(x). Show this requires

that f (x) =0.
30. If limy, .o an, = a, does it follow that lim,, . |a,| = |a|? Prove or else give a counter
example.

31. Show the following converge to O.

(a) o
(b) 0"

n!

32. Prove lim,, ., {/n = 1. Hint: Let e,, = {/n — 1 so that (1 +e,)" = n. Now observe

that e,, > 0 and use the binomial theorem to conclude 1+ ne,, + @e% < n. This

nice approach to establishing this limit using only elementary algebra is in Rudin [14].

5.13 Uniform Continuity

There is a theorem about the integral of a continuous function which requires the notion of
uniform continuity. This is discussed in this section. Consider the function f(z) = 1 for
2 € (0,1). This is a continuous function because, by Theorem 5.4.1, it is continuous at every
point of (0,1). However, for a given € > 0, the § needed in the £, definition of continuity
becomes very small as x gets close to 0. The notion of uniform continuity involves being
able to choose a single § which works on the whole domain of f. Here is the definition.

Definition 5.13.1 Let f : D C R — R be a function. Then f is uniformly continuous
if for every € > 0, there exists a 6 depending only on € such that if |x —y| < § then

If (@)= f ()l <e

It is an amazing fact that under certain conditions continuity implies uniform continuity.

Definition 5.13.2 A set, K C R is sequentially compact if whenever {a,} C K is a se-
quence, there exists a subsequence, {a,, } such that this subsequence converges to a point of
K.

The following theorem is part of the Heine Borel theorem.
Theorem 5.13.3 Every closed interval, [a,b] is sequentially compact.

Proof: Let {z,} C [a,b] = Iy. Consider the two intervals [a, %2] and [“E2,b] each of
which has length (b — a) /2. At least one of these intervals contains x,, for infinitely many
values of n. Call this interval I;. Now do for I; what was done for Iy. Split it in half and
let I3 be the interval which contains x,, for infinitely many values of n. Continue this way
obtaining a sequence of nested intervals Iy O I; O Iy D I3 - -- where the length of I,, is
(b —a) /2™. Now pick ny such that x,, € I;, ny such that no > n; and x,, € Iy, ng such
that ng > ng and x,, € I3, etc. (This can be done because in each case the intervals

contained z,, for infinitely many values of n.) By the nested interval lemma there exists a
point, ¢ contained in all these intervals. Furthermore,

Ty, —c| < (b—a)27"

and so limy_.o ©n, = ¢ € [a,b]. This proves the theorem.
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Theorem 5.13.4 Let f : K — R be continuous where K is a sequentially compact set in
R. Then f is uniformly continuous on K.

Proof: If this is not true, there exists € > 0 such that for every § > 0 there exists a
pair of points, 25 and ys such that even though |xs — ys| < d, |f (xs) — f (ys)| > €. Taking a
succession of values for § equal to 1,1/2,1/3, - -, and letting the exceptional pair of points
for § = 1/n be denoted by z,, and y,,

o = il < o, 1f (@) = f ()| 2 2,

Now since K is sequentially compact, there exists a subsequence, {z,,} such that x,, —

z € K. Now ng > k and so
1

=
Consequently, y,, — z also. ( @, is like a person walking toward a certain point and
Yn,, 1S like a dog on a leash which is constantly getting shorter. Obviously y,, must also
move toward the point also. You should give a precise proof of what is needed here.) By
continuity of f and Problem 12 on Page 111,

0=17 ()= f ()] = Jim | (en,) = (yy)| 2

|xnk - ynk| <

an obvious contradiction. Therefore, the theorem must be true.
The following corollary follows from this theorem and Theorem 5.13.3.

Corollary 5.13.5 Suppose I is a closed interval, I = [a,b] and f : I — R is continuous.
Then f is uniformly continuous.

5.14 Exercises

1. A function, f: D C R — R is Lipschitz continuous or just Lipschitz for short if there
exists a constant, K such that

|f (@) = f ()l < K|z -y
for all x,y € D. Show every Lipschitz function is uniformly continuous.
2. If |z, — yn| — 0 and x,, — z, show that y,, — 2z also.

3. Consider f : (1,00) — R given by f(z) = L. Show f is uniformly continuous even
though the set on which f is defined is not sequentially compact.

4. If f is uniformly continuous, does it follow that |f| is also uniformly continuous? If
|f| is uniformly continuous does it follow that f is uniformly continuous? Answer
the same questions with “uniformly continuous” replaced with “continuous”. Explain
why.

5.15 Theorems About Continuous Functions

In this section, proofs of some theorems which have not been proved yet are given.

Theorem 5.15.1 The following assertions are valid
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The function, af +bg is continuous at x when f, g are continuous at x € D (f)ND (g)
and a,b € R.

If and f and g are each real valued functions continuous at x, then fg is continuous
at x. If, in addition to this, g (x) # 0, then f/g is continuous at x.

If f is continuous at xz, f (x) € D(g) C R, and g is continuous at f (x) ,then go f is
continuous at x.

The function f: R — R, given by f (x) = |z| is continuous.

Proof: First consider 1.) Let ¢ > 0 be given. By assumption, there exist d; > 0

such that whenever |z —y| < 61, it follows [f (z) — f (y)| < 37
d2 > 0 such that whenever |x — y| < 02, it follows that |g (z) — g (v)] < 5]

) and there exists

e
al+]b]+1
e
PFEESYE Then

let 0 < § < min(d1,0d2). If |x — y| < 0, then everything happens at once. Therefore, using
the triangle inequality

laf (z) +bf (x) — (ag (y) + bg (y))]
<lal|f (z) = f ()| +[b]|g () — g (y)]

<t (ggars )+ (sqareprem) <

Now consider 2.) There exists ; > 0 such that if |y — x| < d1, then |f () — f (v)] < 1.
Therefore, for such y,

If W <1+[f (=)

It follows that for such y,

lfg(x) = fa@)l <|f(@)g(x)—g @) f@Wl+lg@)fy)—f(y) gl

<lg@||f (@)= fWI+I1fWllg(z)—g )l
<A+lg@)+I1f WD Mlg @) —g@l+I[f ()= fWI.

Now let € > 0 be given. There exists d2 such that if |x — y| < d2, then

I
9@ =Wl < s @I F @

and there exists d3 such that if |[z—y| < d3, then

9
2(1+ g (@) +[f ()]

|f (x) = f ()] <

Now let 0 < & < min (d1,02,d3). Then if [x—y| < 4, all the above hold at once and so

|fg(z) — fg(y)| <

A+lg@I+1f WD g @) =g @+ |f (@)= f Wl

£ 3
< +lg@)[+1f @) (2(1+ @I F D 2@+ If(y)|)> o

This proves the first part of 2.) To obtain the second part, let d; be as described above and
let §p > 0 be such that for |[x—y| < do,

lg(z) —g )| <lg(x)]/2
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and so by the triangle inequality,
—lg@)/2< g @)l —lg (@) < g (=) /2

which implies |g (y)| > |g (z)] /2, and |g (y)| < 3|g (x)] /2.
Then if |x—y| < min (89, d1),

’f(x) B f(y)’ _ ‘f(w)g(y)—f(y)g(w)
g(@)  gy) 9(x)g(y)
< @) g(y) = Fy) g (2)|

()

g (@)
< g (i)lg 1f (@) g —fWaw)+faly) —f(y)g@)l
< |g(i)|2 g WIf () = F I+ 1f W) g (y) — g (@)]
S% §|9(93)||f(36)—f(y)l+(1+|f(96)\)|9(y)—g(w)l
lg ()" L2
< |g(jmg(1+2|f(ar)|+2lg(ﬂc)l)[|f(96)—f(y)|+|9(y)—g(JC)H

=M f(x) = fWl+1g(y) —g@)]
where M is defined by

2
g (=)*

(1+2]f (2)[ +2]g (x)])

Now let d5 be such that if [z—y| < §z, then
@)= f ) < M

and let d3 be such that if |[z—y| < d3, then

l9() —g @) < M7

Then if 0 < ¢ < min (do, d1,02,d3), and |z—y| < §, everything holds and

1) S0y o
’g(x) g(y)ISMHf() FWl+19(y) =g (@)l

€ 1 €. 4
<M [QM +oM =
This completes the proof of the second part of 2.)

Note that in these proofs no effort is made to find some sort of “best” §. The problem
is one which has a yes or a no answer. Either is it or it is not continuous.

Now consider 3.). If f is continuous at z, f(z) € D(g) C RP, and ¢ is continuous at
f (z) ;then g o f is continuous at z. Let € > 0 be given. Then there exists 7 > 0 such that if
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ly—f (x)] <nand y € D(g), it follows that |¢g (y) — g (f ())| < &. From continuity of f at
x, there exists § > 0 such that if [x—z| < § and z € D (f), then |f (2) — f ()| <. Then if
|t—z] < dand z € D(go f) C D(f), all the above hold and so

lg(f(2)) —g(f (@) <e.

This proves part 3.)
To verify part 4.), let € > 0 be given and let § = e. Then if |x—y| < §, the triangle
inequality implies

|f (@) = ()l = [l=] = lyl|

<lz—y|<d=e.

This proves part 4.) and completes the proof of the theorem.
Next here is a proof of the intermediate value theorem.

Theorem 5.15.2 Suppose f : [a,b] — R is continuous and suppose f (a) < c < f (b). Then
there exists © € (a,b) such that f (x) = c.

Proof: Let d = %% and consider the intervals [a, d] and [d, ] . If f (d) > ¢, then on [a, d],
the function is < ¢ at one end point and > ¢ at the other. On the other hand, if f (d) < ¢,
then on [d,b] f > 0 at one end point and < 0 at the other. Pick the interval on which f
has values which are at least as large as ¢ and values no larger than c¢. Now consider that
interval, divide it in half as was done for the original interval and argue that on one of these
smaller intervals, the function has values at least as large as ¢ and values no larger than c.
Continue in this way. Next apply the nested interval lemma to get x in all these intervals. In
the n'" interval, let z,,,y, be elements of this interval such that f (z,) <c, f (yn) > c. Now
|z — 2| < (b—a)27™ and |y, — x| < (b—a)27" and so x,, — x and y,, — x. Therefore,

flx) —c= lim (f(zn) —c) <0

while
J(@)—e=lim (f ()~ ) > 0.

n— oo

Consequently f (z) = ¢ and this proves the theorem. (For the last step, see Problem 12 on
Page 111).

Lemma 5.15.3 Let ¢ : [a,b] — R be a continuous function and suppose ¢ is 1—1 on (a,b).
Then ¢ is either strictly increasing or strictly decreasing on [a,b].

Proof: First it is shown that ¢ is either strictly increasing or strictly decreasing on

(a,b).
If ¢ is not strictly decreasing on (a, b), then there exists z1 < y1, x1,y1 € (a,b) such that

(¢ (y1) — @ (z1)) (y1 — x1) > 0.

If for some other pair of points, xo < yo with 2, ys € (a,b), the above inequality does not
hold, then since ¢ is 1 — 1,

(¢ (y2) -9 (x2)) (y2 — (EQ) < 0.
Let oy = taxy + (1 — t) 9 and y; = ty; + (1 — t) y2. Then z; < y; for all ¢ € [0, 1] because

tey <typ and (1 —t)ze < (1 —1)ys
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with strict inequality holding for at least one of these inequalities since not both ¢ and (1 — ¢)
can equal zero. Now define

h(t) = (o (ye) — ¢ (z4)) (ye — 7).

Since h is continuous and h(0) < 0, while A (1) > 0, there exists ¢ € (0,1) such that
h (t) = 0. Therefore, both z; and y; are points of (a,b) and ¢ (y;) — ¢ (x¢) = 0 contradicting
the assumption that ¢ is one to one. It follows ¢ is either strictly increasing or strictly
decreasing on (a,b).

This property of being either strictly increasing or strictly decreasing on (a,b) carries
over to [a,b] by the continuity of ¢. Suppose ¢ is strictly increasing on (a,b), a similar
argument holding for ¢ strictly decreasing on (a,b) . If z > a, then pick y € (a,z) and from
the above, ¢ (y) < ¢ (z) . Now by continuity of ¢ at a,

6(a)= lm 6(2) <6(y) <o (x)
Therefore, ¢ (a) < ¢ () whenever € (a,b) . Similarly ¢ (b) > ¢ (z) for all z € (a,b). This
proves the lemma.

Corollary 5.15.4 Let f : (a,b) — R be one to one and continuous. Then f (a,b) is an
open interval, (c,d) and f=': (c,d) — (a,b) is continuous.

Proof: Since f is either strictly increasing or strictly decreasing, it follows that f (a,b) is
an open interval, (c,d) . Assume f is decreasing. Now let x € (a,b). Why is f~! is continuous
at f (z)? Since f is decreasing, if f () < f(y), theny = f~1 (f(y)) <z = f~1(f (z)) and
so f~1 is also decreasing. Let € > 0 be given. Let ¢ > n > 0 and (z —n,z +n) C (a,b).
Then f (z) € (f (x+n),f(z —n)). Let § = min (f (z) = f (z+n), f(z —n) = f (). Then

if
|f(2) = f(2)] <4,
it follows
= fR)e(@—nz+n) C(r—ezte)
o)

F @) —a[ =T () - (@) <e

This proves the theorem in the case where f is strictly decreasing. The case where f is
increasing is similar.
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6.1 Velocity

Imagine an object which is moving along the real line in the positive direction and that at
time ¢ > 0, the position of the object is r () = —10 + 30t + t? where distance is measured in
kilometers and ¢ in hours. Thus at t = 0, the object is at the point —10 kilometers and when
t = 1, the object is at 21 kilometers. The average velocity during this time is the distance
traveled divided by the elapsed time. Thus the average velocity would be w = 31
kilometers per hour. It came out positive because the object moved in the positive direction
along the real line, from —10 to 21. Suppose it was desired to find something which deserves
to be referred to as the instantaneous velocity when ¢t = 1/2? If the object were a car, it
is reasonable to suppose that the magnitude of the average velocity of the object over a
very small interval of time would be very close to the number that would appear on the
speedometer. For example, if considering the average velocity of the object on the interval
[.5,.5 4+ .0001], this average velocity would be pretty close to the thing which deserves to be
called the instantaneous velocity at ¢ = .5 hours. Thus the velocity at t = .5 would be close
to

(r (.5+.0001) — 7 (.5)) /.0001

- (30 (.5+.01) + (.5 +.0001)% — 30 (.5) — (.5)2) /.0001 = 31.000 1

Of course, you would expect to be even closer using a time interval of length .000001 instead
of just .0001. In general, consider a time interval of length h and then define the instan-
taneous velocity to be the number which all these average velocities get close to as h gets
smaller and smaller. Thus in this case form the average velocity on the interval, [.5,.5 + h]
to get

(30 (5+h)+(5+h)?— (30 (5) + (.5)2)) Jh=30+2(5)+ h.

What number does this average get close to as h gets smaller and smaller? Clearly it
gets close to 31 and for this reason, the velocity at time .5 is defined as 31. It is positive
because the object is moving in the positive direction. If the object were moving in the
negative direction, the number would be negative. The notion just described of finding an
instantaneous velocity has a geometrical application to finding the slope of a line tangent

119
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to a curve.
r(t)
(t() + h,?”(to + h))
|
to + hy to+h
to
: . t
(to + ha,7(to + 1))
(to + h,7(t0))

In the above picture, you see the slope of the line joining the two points (g, (t0)) and
(to + h,r (to + h)) is given by
’I“(to + h) -r (to)
h

which equals the average velocity on the time interval, [to,to + h]. You can also see the

effect of making h closer and closer to zero as illustrated by changing h to the smaller h; in

the picture. The slope of the resulting line segment appears to get closer and closer to what

ought to be considered the slope of the line tangent to the curve at the point (¢o,r (o)) -
It is time to make this heuristic material much more precise.

6.2 The Derivative

The derivative of a function of one variable is a function given by the following definition.

Definition 6.2.1 The derivative of a function, f' (x), is defined as the following limit when-
ever the limit exists. If the limit does not exist, then neither does f'(x).

im LEEN =@ _ oy (6.1)

h—0 h

The function of h on the left is called the difference quotient.

Note that the difference quotient on the left of the equation is a function of A which is
not defined at h = 0. This is why, in the definition of limit, |h| > 0. It is not necessary
to have the function defined at the point in order to consider its limit. The
distinction between the limit of a function and its value is very important and must be kept
in mind. Also it is clear from setting y = x + h that

y—zr Y —x

(6.2)
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Theorem 6.2.2 If f' () exists, then [ is continuous at x.

Proof: Suppose ¢ > 0 is given and choose §; > 0 such that if |h| < 67,

fle+h) - f(x)
h

- f(2)] < 1.
then for such h, the triangle inequality implies

[f (@+h) = f (@) <[kl +|f (@)][]].
Now letting § < min (51, W) it follows if |h| < 4, then

[f (@ +h)—f(a) <e.

Letting y = h + «, this shows that if |y — x| < 4,

1f(y) = f(2)] <e

which proves f is continuous at x.
It is very important to remember that just because f is continuous, does not mean f
has a derivative. The following picture describes the situation.

fis continuous at x

1! (z)exists

fz) = ||

As indicated in the above picture the function f (z) = |z| does not have a derivative at
z = 0. To see this,

f(h)—f(0) h
hll%hr h T oo+ b 1
while F ()~ 1 0) h
hlirg— h - hli%l— T =1

Thus the two limits, one from the right and one from the left do not agree as they would have
to do if the function had a derivative at = 0. See Problem 18 on Page 103. Geometrically,
this lack of differentiability is manifested by there being a pointy place in the graph of
y = |z| at 2 = 0. In short, the pointy places don’t have derivatives.

Example 6.2.3 Let f () = ¢ where ¢ is a constant. Find [’ (x).

Set up the difference quotient,

Therefore,

o L) — 1 @)

= 1' =
h—0 h hlg%)o 0

Example 6.2.4 Let f (x) = cx where ¢ is a constant. Find ' (x).
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Set up the difference quotient,
flx+h)—f(x) cl@x+h)—cx ch

= = — = (C.

h h h

Therefore,

lim flzth)—f(2) =limec=c
h—0 h h—0

Example 6.2.5 Let f () = +\/x for x > 0. Find ' (x).

Set up the difference quotient,

flat+h)—f(x) Veat+h—yz T+h—x

h h ~h(Vrth+ V)
1
T Vithtz

and so
o L) = f (@) 1

1
= lim = .
h—0 h h—0\x+h+x 2%

There are rules of derivatives which make finding the derivative very easy.

Theorem 6.2.6 Leta,b € R and suppose f' (t) and g’ (t) exist. Then the following formulas
are obtained.

(af +bg) (t) = af' (t) + by’ (1). (6.3)
(f9) &)= f" ) g)+ f(t)g (¢). (6.4)
The formula, (6.4) is referred to as the product rule.
Ifg(t) #0,
N o P Hgt)—g @) f (1)
Formula (6.5) is referred to as the quotient rule.
If f is differentiable at ct where ¢ # 0, Then letting g (t) = f (ct),
g' () =cf'(ct). (6.6)
Written with a slight abuse of notation,
(f (ct))" = cf' (ct). (6.7)

If f is differentiable on (a,b) and if g (t) = f (t + ¢), then g is differentiable on (a — ¢, b — ¢)
and

gt)=f(t+o). (6.8)
Written with a slight abuse of notation,
(ft+e) =f(t+e) (6.9)
For p an integer and f ' (t) exists, let g, (t) = f (t)*. Then
(99) (1) =pf O f (1) (6.10)

(In the case where p < 0, assume f(t) #0.)
Written with a slight abuse of notation, an easy to remember version of (6.10) says

(@& =pf O f (1)
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Proof: The first formula is left for you to prove. Consider the second, (6.4).

folt+h) —fg(t) _ ft+R)gt+h)—Fft+hg®t) FE+h)gt)=F(t)g(t)

h b -
— F(t+h) (g(t+h]2—g(t))+(f(t+hf);f(t))g )

Taking the limit as h — 0 and using Theorem 6.2.2 to conclude limy,_,o f (t + h) = f (), it
follows from Theorem 5.9.4 that (6.4) follows. Next consider the quotient rule.
o f f f+h)gt)—g(t+h)f()
(= h)—= =
<g(t+ ) g(t)> hg (t) g (t+h)
_ SN @O —g(t+n))+9@+h) (f(E+H) = f()
hg (t) g (t+ h)
_ _fth) (gt+h—g®)  _glt+th) (fE+H)-F1)
g(t)g(t+h) h gt g(t+n) h
and from Theorem 5.9.4 on Page 99,

I\ g6 —g @) F(@)
(g) ) = '

Now consider Formula (6.6).

(gt+h)—g®)h™t =h7" (f (et +ch) = f(ct))
:cf(ct—i-ch)—f(ct)

ch
_ f et ) = ] (et

hy

where hy = ch. Then h; — 0 if and only if h — 0 and so taking the limit as A — 0 yields
g () =cf'(ct)

as claimed. Formulas (6.7) and (6.8) are left as an exercise.
First consider (6.10) in the case where p equals a nonnegative integer. If p = 0, (6.10)
holds because go (t) = 1 and so by Example 6.2.3,

g (t)=0=0(f()" 1" (1).
Next suppose (6.10) holds for p an integer. Then

(91 () = [ (£) gp (1)

and so by the product rule,

Gpir () = ' (£) gp (1) + f () g, (1)
=P OGO+ (e 0 1 w)
=@+ O f 1)
If the formula holds for some integer, p then it holds for —p. Here is why.

g—p (t) = gp (t)71
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SR SO (gp<t>—ip<t+h>) (g,,(t)gjmh))'

Taking the limit as h — 0 and using the formula for p,

g, () =—pf &P (1) (f (1)
=—p(f) ")

and so

This proves the theorem.

Example 6.2.7 Let p(z) = 3+ 5z + 62% — 723, Find p’ (z).
From the above theorem, and abusing the notation,
p () = (3+ 5z + 622 — 72°)’
=3+ (52) + (63:2)/ + (—7x3)l

=0+5+(6)(2) (@) () + (=7) (3) (+?) ()’
=5+ 12z — 2122,

Note the process is to take the exponent and multiply by the coefficient and then make the
new exponent one less in each term of the polynomial in order to arrive at the answer. This
is the general procedure for differentiating a polynomial as shown in the next example.

Example 6.2.8 Let aj, be a number for k = 0,1, -, n and let p(x) = > p_,arz®. Find
().

Use Theorem 6.2.6
n / n
0= () - S le
k=0 k=0
= Zakk‘xk_l (a:)' = Zakkxk_l
k=0 k=0

Example 6.2.9 Find the derivative of the function f (x) = 241,

3
Use the quotient rule
2z (23) — 322 (22 + 1 1

= 26 T A ($2+3)

Example 6.2.10 Let f (z) = (2 + 1)4 (z%). Find f' ().
Use the product rule and (6.10). Abusing the notation for the sake of convenience,
4 ! 4
(@+1)' @) = (@ +1)") @)+ @) (@ +1)")

—4(2* +1)° 22) (2*) + 3% (> + 1)
=4zt (m2 + 1) + 322 (x + 1)

Example 6.2.11 Let f (z) =23/ (2% + 1)2 . Find f' (x).
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Use the quotient rule to obtain

3z? (22 + 1)2 —2(2?+1) (2z)2®  32® (2? + 1)2 — 4zt (2% 4+ 1)
(22 +1)" - (22 +1)*

f'@) =

Obviously, one could consider taking the derivative of the derivative and then the deriva-
tive of that and so forth. The main thing to consider about this is the notation. The second
derivative is denoted with two primes.

Example 6.2.12 Let f (z) = 2% + 22% + 1. Find f" (x) and " (z).
To find f” (z) take the derivative of the derivative. Thus f/(z) = 322 + 4z and so
f" (x) = 62 + 4. Then " (z) = 6.

When high derivatives are taken, say the 5" derivative, it is customary to write f(®) (t)
putting the number of derivatives in parentheses.

6.3 Exercises With Answers

1. For f(z) = 40242 find f' (x).

Answer:

—zt—12+44z
(x242)?

2. For f(z) = (323 + 6z + 3) (322 + 3z +9) , find [ (z).
Answer:

(922 +6) (322 + 3z +9) + (32% + 62 + 3) (62 + 3)

3. For f () =522+ 1, find f’ (x) from the definition of the derivative.

Answer:
5x

v/ (5z2+41)
4. For f(z) = V622 + 1, find f’ (x) from the definition of the derivative.

Answer:
4x

( ,3/(6w2+1)) :
5. For f(z) = (—=5z+2)°, find f' (z) from the definition of the derivative. Hint: You
might use the formula
pr — g™ = (b _ a) (bn—l + bn—2a ot an—2b+ bn—l)
Answer:
—45 (=5 + 2)°
6. Let f (z) = (z+5)°sin (1/ (z 4+ 5)) +6 (z — 2) (z + 5) for  # —5 and define f (—5) =

0. Find f’(—5) from the definition of the derivative if this is possible. Hint: Note
that |sin (z)| < 1 for any real value of z.

Answer:
—42
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6.4 Exercises

L. For f(z) = —32" 4+ 42® + 223 + 22 — 5z, find O (2).

g
=
~
—
8
|
I
8

3
+
8

ot
+
8
w
I
[\
8
=
=
jol
~
&
—
S—

3% —z—1
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6. For f(z) = V322 +1, find f’(z) from the definition of the derivative. Hint: You
might use

b —a® = (b +ab+a?) (b—a) for b= {/3(z+h)>+1and a = /327 + 1.

7. For f(z) = (=3z+5)", find f’ (2) from the definition of the derivative. Hint: You
might use the formula

pn — g™ = (b _ a) (bn—l + bn—2a Lot an—2b+ bn—l)

8. Let f(z) = (z+2)°sin (1/ (z 4+ 2)) +6 (z — 5) (z + 2) for  # —2 and define f (—2) =
0. Find f’(—2) from the definition of the derivative if this is possible. Hint: Note
that |sin (z)| < 1 for any real value of z.

9. Let f(z) = (x+5)sin(1/(x +5)) for z # —5 and define f(—5) = 0. Show f'(=5)
does not exist. Hint: Verify that limj_gsin (1/h) does not exist and then explain
why this shows f’ (—5) does not exist.

6.5 Local Extrema

When you are on top of a hill, you are at a local maximum although there may be other
hills higher than the one on which you are standing. Similarly, when you are at the bottom
of a valley, you are at a local minimum even though there may be other valleys deeper than
the one you are in. The word, “local” is applied to the situation because if you confine
your attention only to points close to your location, you are indeed at either the top or the
bottom.

Definition 6.5.1 Let f : D (f) — R where here D (f) is only assumed to be some subset of
R. Then x € D (f) is a local minimum (mazimum) if there exists § > 0 such that whenever

y€(x—0,z+9)NDI(f), it follows f (y) > (<) f (z).
Derivatives can be used to locate local maximums and local minimums.

Theorem 6.5.2 Suppose f : (a,b) — R and suppose x € (a,b) is a local mazimum or
minimum. Then f'(x) = 0.

Proof: Suppose z is a local maximum. If A > 0 and is sufficiently small, then f (x 4+ h) <
f (x) and so from Theorem 5.9.4 on Page 99,

fleth) - f(z)

f(z) = lim - < 0.
Similarly,

h—0— h
The case when x is local minimum is similar. This proves the theorem.
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Definition 6.5.3 Points where the derivative of a function equals zero are called critical
points. It is also customary to refer to points where the derivative of a function does not
erist as a critical points.

Example 6.5.4 [t is desired to find two positive numbers whose sum equals 16 and whose
product is to be a large as possible.

The numbers are z and 16 — x and f (z) = = (16 — z) is to be made as large as possible.
The value of z which will do this would be a local maximum so by Theorem 6.5.2 the
procedure is to take the derivative of f and find values of x where it equals zero. Thus
16 — 2z = 0 and the only place this occurs is when x = 8. Therefore, the two numbers are
8 and 8.

Example 6.5.5 A farmer wants to fence a rectangular piece of land next to a straight river.
What are the dimensions of the largest rectangle if there are exactly 600 meters of fencing
available.

The two sides perpendicular to the river have length x and the third side has length
y = (600 — 2z) . Thus the function to be maximized is f (z) = 2z (600 — z) = 1200z — 2z2.
Taking the derivative and setting it equal to zero gives

f(x) =1200— 42 =0
and so z = 300. Therefore, the desired dimensions are 300 x 600.

Example 6.5.6 A rectangular playground is to be enclosed by a fence and divided in 5
pieces by 4 fences parallel to one side of the playground. 1704 feet of fencing is used. Find
dimensions of the playground which will have the largest total area.

Let x denote the length of one of these dividing fences and let y denote the length of the
playground as shown in the following picture.

Y

Thus 6x + 2y = 1704 so y = 1704%6‘"” and the function to maximize is

f(x):x(m";m) = 2 (852 — 31).

Therefore, to locate the value of & which will make f () as large as possible, take f'(x)
and set it equal to zero.
852 —6x =0

and so z = 142 feet and y = W = 426 feet.
Revenue is defined to be the amount of money obtained in some transaction. Profit is
defined as the revenue minus the costs.

Example 6.5.7 Francine, the manager of Francine’s Fancy Shakes finds that at $4, demand
for her milk shakes is 900 per day. For each $.30 increase in price, the demand decreases
by 50. Find the price and the quantity sold which maximizes revenue.



128 DERIVATIVES

Let = be the number of $. 30 increases. Then the total number sold is (900 — 50z) . The
revenue is

R () = (900 — 50z) (4 + . 3z).

Then to maximize it, R’ (x) = 70 — 30z = 0. The solution is z = 2.33 and so the optimum
price is at $4. 70 and the number sold will be 783.

Example 6.5.8 Sam, the owner of Spider Sam’s Tarantulas and Creepy Critters finds he
can sell 6 tarantulas every day at the regular price of $30 each. At his last spider celebration
sale he reduced the price to $24 and was able to sell 12 tarantulas every day. He has to pay
$.05 per day to exhibit a tarantula and his fized costs are $30 per day, mainly to maintain
the thousands of tarantulas he keeps on his tarantula breeding farm. What price should he
charge to maximize his profit.

He assumes the demand for tarantulas is a linear function of price. Thus if y is the
number of tarantulas demanded at price z, it follows y = 36 — x. Therefore, the revenue for
price z equals R (z) = (36 — z) . Now you have to subtract off the costs to get the profit.
Thus

P(x)=(36—x)x — (36 —x) (.05) — 30.

It follows the profit is maximized when P’ (z) = 0 so —2.0z 4 36.05 = 0 which occurs when
z =%$18.025. Thus Sam should charge about $18 per tarantula.

Exercise 6.5.9 Lisa, the owner of Lisa’s gags and gadgets sells 500 whoopee cushions per
year. It costs $.25 per year to store a whoopee cushion. To order whoopee cushions it costs
$8 plus $.90 per cushion. How many times a year and in what lot size should whoopee
cushions be ordered to minimize inventory costs?

Let = be the times per year an order is sent for a lot size of %. If the demand is

constant, it is reasonable to suppose there are about 5%00 whoopee cushions which have to
be stored. Thus the cost to store whoopee cushions is 12%0 =.25 (%) . Each time an order

x

year. Therefore, the total inventory cost is x (8 + @) + % = C'(z). The problem is to

is made for a lot size of 299 it costs 8 + @ =8+4+.9 (5%) and this is done x times a

minimize C (z) = z (8 + 222:0) 4 1250 Taking the derivative yields
1622 — 125
Cl (II;) = T

and so the value of x which will minimize C (z) is g\/g =2.79- - and the lot size is 55?/05 =

1
178..88. Of course you would round these numbers off. Order 179 whoopee cushions 3 times
a year.

6.6 Exercises With Answers

1. Find the x values of the critical points of the function f (z) = 2% — 23.

Answer:
2,0
2. Find the 2 values of the critical points of the function f (z) = v/322 — 6z + 6.
Answer:
1
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3. Find the extreme points of the function, f (z) = 222 — 20z + 55 and tell whether the
extreme point is a maximum or a minimum.

Answer:

The extremum is at z = 5. It is a maximum.

4. Find the extreme points of the function, f (z) = z + 2 and tell whether the extreme
point is a local maximum or a local minimum or neither.

Answer:

The extrema are at x = +3. The one at 3 is a local minimum and the one at —3 is a
local maximum.

5. A rectangular pasture is to be fenced off beside a river with no need of fencing along
the river. If there is900 yards of fencing material, what are the dimensions of the
largest possible pasture that can be enclosed?

Answer:

225 x 45

6. A piece of property is to be fenced on the front and two sides. Fencing for the sides
costs $3.50 per foot and fencing for the front costs $5.60 per foot. What are the
dimensions of the largest such rectangular lot if the available money is $840.07

Answer:

60 x 75.

7. In a particular apartment complex of 120 units, it is found that all units remain oc-
cupied when the rent is $300 per month. For each $30 increase in the rent, one unit
becomes vacant, on the average. Occupied units require $60 per month for mainte-
nance, while vacant units require none. Fixed costs for the buildings are $30000 per
month. What rent should be charged for maximum profit and what is the maximum
profit?

Answer:

Need to maximize f (z) = (300 + 30x) (120 — z) — 37200 + 60z for = € [0, 120] where

2 is the number of $30 increases in rent.

$92 880 when the rent is $1980.

8. A picture is 5 feet high and the eye level of an observer is 2 feet below the bottom
edge of the picture. How far from the picture should the observer stand if he wants
to maximize the angle subtended by the picture?

Answer:

Let the angle subtended by the picture be 6 and let o denote the angle between a
horizontal line from the observer’s eye to the wall and the line between the observer’s
eye and the base of the picture. Then letting x denote the distance between the wall

and the observer’s eye, 7 = xtan ( + ) = z (w> =z (%) . The

1—tanftan o lftanG(%
problem is equivalent to maximizing tanf so denote this by z and solve for it. Thus
+2 2 . .
T 1_':(“%) = 7 and so z = 53775 It follows g—; = 5&752)2 and setting this equal

to zero, x = v/ 14.
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9.

10.

11.
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Find the point on the curve, y = /81 — 6x which is closest to (0,0).
Answer:

(5.V33)

A street is 200 feet long and there are two lights located at the ends of the street.
One of the lights is %7 times as bright as the other. Assuming the brightness of light
from one of these street lights is proportional to the brightness of the light and the
reciprocal of the square of the distance from the light, locate the darkest point on the
street.

Answer:

80 feet from one light and 120 feet from the other.

Two cities are located on the same side of a straight river. One city is at a distance
of 3 miles from the river and the other city is at a distance of 8 miles from the river.
The distance between the two points on the river which are closest to the respective
cities is 40 miles. Find the location of a pumping station which is to pump water to
the two cities which will minimize the length of pipe used.

Answer:

% miles from the point on the river closest to the city which is at a distance of 3

miles from the river.

6.7 Exercises

1.

If f/ () = 0, is it necessary that z is either a local minimum or local maximum? Hint:
Consider f (z) = 3.

Two positive numbers add to 32. Find the numbers if their product is to be as large
as possible.

The product of two positive numbers equals 16. Find the numbers if their sum is to
be as small as possible.

The product of two positive numbers equals 16. Find the numbers if twice the first
plus three times the second is to be as small as possible.

Theodore, the owner of Theodore’s tarantulas finds he can sell 6 tarantulas at the
regular price of $20 each. At his last spider celebration day sale he reduced the price
to $14 and was able to sell 14 tarantulas. He has to pay $.05 per day to maintain a
tarantula and his fixed costs are $30 per day. What price should he charge to maximize
his profit.

Lisa, the owner of Lisa’s gags and gadgets sells 500 whoopee cushions per year. It
costs $. 25 per year to store a whoopee cushion. To order whoopee cushions it costs $2
plus $.25 per cushion. How many times a year and in what lot size should whoopee
cushions be ordered to minimize inventory costs?

A continuous function, f defined on [a,b] is to be maximized. It was shown above
in Theorem 6.5.2 that if the maximum value of f occurs at x € (a,b), and if f is
differentiable there, then f’(x) = 0. However, this theorem does not say anything
about the case where the maximum of f occurs at either a or b. Describe how to find
the point of [a,b] where f achieves its maximum. Does f have a maximum? Explain.
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. Find the maximum and minimum values and the values of x where these are achieved

for the function, f (z) =z + V25 — 22

. A piece of wire of length L is to be cut in two pieces. One piece is bent into the shape

of an equilateral triangle and the other piece is bent to form a square. How should
the wire be cut to maximize the sum of the areas of the two shapes? How should the
wire be bent to minimize the sum of the areas of the two shapes? Hint: Be sure to
consider the case where all the wire is devoted to one of the shapes separately. This
is a possible solution even though the derivative is not zero there.

A cylindrical can is to be constructed of material which costs 3 cents per square inch
for the top and bottom and only 2 cents per square inch for the sides. The can needs
to hold 907 cubic inches. Find the dimensions of the cheapest can. Hint: The volume
of a cylinder is 7r2h where r is the radius of the base and h is the height. The area
of the cylinder is 2772 + 27rh.

A rectangular sheet of tin has dimensions 10 cm. by 20 cm. It is desired to make a
topless box by cutting out squares from each corner of the rectangular sheet and then
folding the rectangular tabs which remain. Find the volume of the largest box which
can be made in this way.

Let f (x) = 32 — 22 — 8z on the interval [~1,10] . Find the point of [~1,10] at which
f achieves its minimum.

A rectangular garden 200 square feet in area is to be fenced off against rabbits. Find
the least possible length of fencing if one side of the garden is already protected by a
barn.

A feed lot is to be enclosed by a fence and divided in 5 pieces by 4 fences parallel to
one side. 1272 feet of fencing is used. Find dimensions of the feed lot which will have
the largest total area.

Find the dimensions of the largest rectangle that can be inscribed in a semicircle of
radius r where r = 8.

A smuggler wants to fit a small cylindrical vial inside a hollow rubber ball with a eight
inch diameter. Find the volume of the largest vial that can fit inside the ball. The
volume of a cylinder equals 7r2h where h is the height and r is the radius.

A function, f, is said to be odd if f (—z) = f (x) and a function is said to be even if
f(=z) = f (z). Show that if f’ is even, then f is odd and if f’ is odd, then f is even.
Sketch the graph of a typical odd function and a typical even function.

Recall sin is an odd function and cos is an even function. Determine whether each of
the trig functions is odd, even or neither.

Find the z values of the critical points of the function f (z) = 322 — 5z3.
Find the x values of the critical points of the function f (z) = V322 — 6z + 8.

Find the extreme points of the function, f () =z + 22 and tell whether the extreme
point is a local maximum or a local minimum or neither.

A piece of property is to be fenced on the front and two sides. Fencing for the sides
costs $3.50 per foot and fencing for the front costs $5.60 per foot. What are the
dimensions of the largest such rectangular lot if the available money is $14007?
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24.

25.

26.

27.
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In a particular apartment complex of 200 units, it is found that all units remain oc-
cupied when the rent is $400 per month. For each $40 increase in the rent, one unit
becomes vacant, on the average. Occupied units require $80 per month for mainte-
nance, while vacant units require none. Fixed costs for the buildings are $20000 per
month. What rent should be charged for maximum profit and what is the maximum
profit?

A picture is 9 feet high and the eye level of an observer is 2 feet below the bottom
edge of the picture. How far from the picture should the observer stand if he wants
to maximize the angle subtended by the picture?

Find the point on the curve, y = /25 — 2a which is closest to (0,0).

A street is 200 feet long and there are two lights located at the ends of the street.
One of the lights is % times as bright as the other. Assuming the brightness of light
from one of these street lights is proportional to the brightness of the light and the
reciprocal of the square of the distance from the light, locate the darkest point on the
street.

Two cities are located on the same side of a straight river. One city is at a distance
of 3 miles from the river and the other city is at a distance of 8 miles from the river.
The distance between the two points on the river which are closest to the respective
cities is 40 miles. Find the location of a pumping station which is to pump water to
the two cities which will minimize the length of pipe used.

6.8 Mean Value Theorem

The mean value theorem is one of the most important theorems about the derivative. The
best versions of many other theorems depend on this fundamental result. The mean value
theorem says that under suitable conditions, there exists a point in (a,b), x, such that [’ (z)
equals the slope of the secant line,

J )~ f(a)

b—a

The following picture is descriptive of this situation.

] ]
T 1

a b

This theorem is an existence theorem and like the other existence theorems in analysis,
it depends on the completeness axiom. The following is known as Rolle’s' theorem.

Theorem 6.8.1 Suppose f : [a,b] — R is continuous,

fla)=f(b),

IRolle is remembered for Rolle’s theorem and not for anything else he did. Ironically, he did not like
calculus.
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and
fi(a,b) =R

has a derivative at every point of (a,b). Then there exists x € (a,b) such that f' () = 0.

Proof: Suppose first that f (x) = f (a) for all « € [a,b]. Then any x € (a,b) is a point
such that f/ (z) = 0. If f is not constant, either there exists y € (a, b) such that f (y) > f (a)
or there exists y € (a,b) such that f(y) < f(b). In the first case, the maximum of f is
achieved at some x € (a,b) and in the second case, the minimum of f is achieved at some
x € (a,b). Either way, Theorem 6.5.2 on Page 126 implies f’ (x) = 0. This proves Rolle’s
theorem.

The next theorem is known as the Cauchy mean value theorem.

Theorem 6.8.2 Suppose f,g are continuous on [a,b] and differentiable on (a,b). Then
there exists x € (a,b) such that

Proof: Let
h(z) = f(x)(g(b) —g(a)) —g(x)(f(b) = f(a)).
Then letting = a and then letting = b, a short computation shows h (a) = h (b) . Also,

h is continuous on [a, b] and differentiable on (a,b) . Therefore Rolle’s theorem applies and
there exists « € (a,b) such that

W (z) = f'(z) (g () = g(a)) = g' () (f (b) = f (a)) = 0.

This proves the theorem.
The usual mean value theorem, sometimes called the Lagrange mean value theorem,
illustrated by the above picture is obtained by letting g (x) = .

Corollary 6.8.3 Let f be continuous on [a,b] and differentiable on (a,b). Then there exists
x € (a,b) such that f (b) — f(a) = f' () (b—a).

Corollary 6.8.4 Suppose f'(x) = 0 for all x € (a,b) where a > —oo and b < co. Then
f(x)=f(y) for all z,y € (a,b). Thus f is a constant.

Proof: If this is not true, there exists z1 and xo such that f (z1) # f (z2). Then by the
mean value theorem,
f (@) — f(22)

T — T2

=f'(2)

for some z between x; and x2. This contradicts the hypothesis that f’ (z) = 0 for all z. This
proves the theorem.

0+

Corollary 6.8.5 Suppose [’ (x) > 0 for all x € (a,b) where a > —oo and b < oco. Then f
is strictly increasing on (a,b). That is, if v <y, then f (z) < f(y). If f' (z) >0, then f is
increasing in the sense that whenever x <y it follows that f (x) < f (y).

Proof: Let # < y. Then by the mean value theorem, there exists z € (z,y) such that

Since y > z, it follows f (y) > f (x) as claimed. Replacing < by < in the above equation
and repeating the argument gives the second claim.



134 DERIVATIVES

Corollary 6.8.6 Suppose f'(z) < 0 for all x € (a,b) where a > —o0 and b < co. Then f
is strictly decreasing on (a,b). That is, if v <y, then f(x) > f(y). If f' () <0, then f is
decreasing in the sense that for x <y, it follows that f () > f (y)

Proof: Let # < y. Then by the mean value theorem, there exists z € (z,y) such that

y—x
Since y > x, it follows f (y) < f(x) as claimed. The second claim is similar except instead
of a strict inequality in the above formula, you put > .

6.9 Exercises

1. Sally drives her Saturn over the 110 mile toll road in exactly 1.3 hours. The speed
limit on this toll road is 70 miles per hour and the fine for speeding is 10 dollars per
mile per hour over the speed limit. How much should Sally pay?

2. Two cars are careening down a freeway weaving in and out of traffic. Car A passes car
B and then car B passes car A as the driver makes obscene gestures. This infuriates
the driver of car A who passes car B while firing his handgun at the driver of car B.
Show there are at least two times when both cars have the same speed. Then show
there exists at least one time when they have the same acceleration. The acceleration
is the derivative of the velocity.

3. Show the cubic function, f (z) = 52 + 72 — 18 has only one real zero.

4. Suppose f(z) = 27 + |z| + 2 — 12. How many solutions are there to the equation,

fx)=0?

5. Let f(z) = |z — 7| + (z — 7)* — 2 on the interval [6,8]. Then f (6) =0 = f (8). Does
it follow from Rolle’s theorem that there exists ¢ € (6,8) such that f' (¢) = 0? Explain
YOUr answer.

6. Suppose f and g are differentiable functions defined on R. Suppose also that it is
known that |f’ (x)] > |g¢' ()| for all  and that |f'(¢)] > 0 for all ¢. Show that
whenever x # y, it follows |f () — f (y)| > |g(x) — g (y)|. Hint: Use the Cauchy
mean value theorem, Theorem 6.8.2.

7. Show that, like continuous functions, functions which are derivatives have the interme-
diate value property. This means that if f'(a) < 0 < f’ (b) then there exists z € (a, b)
such that f’ (z) = 0. Hint: Argue the minimum value of f occurs at an interior point
of [a,b].

8. Consider the function
_ lifx>0
f<x):{ ~1lifz <0

Is it possible that this function could be the derivative of some function? Why?
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6.10 Curve Sketching

The theorems and corollaries given above can be used to aid in sketching the graphs of
functions. The second derivative will also help in determining the shape of the function.

Definition 6.10.1 A differentiable function, f, defined on an interval, (a,b), is concave
up if f' is an increasing function. A differentiable function defined on an interval, (a,b), is
concave down if [’ is a decreasing function.

From the geometric description of the derivative as the slope of a tangent line to the
graph of the function, to say derivative is an increasing function means that as you move
from left to right, the slopes of the lines tangent to the graph of f become larger. Thus
the graph of the function is bent up in the shape of a smile. It may also help to think of
it as a cave when you view it from above, hence the term concave up. If the derivative
is decreasing, it follows that as you move from left to right the slopes of the lines tangent
to the graph of f become smaller. Thus the graph of the function is bent down in the
form of a frown. It is concave down because it is like a cave when viewed from beneath.
The following theorem will give a convenient criterion in terms of the second derivative for
finding whether a function is concave up or concave down. The term, concavity, is used
to refer to this property. Thus you determine the concavity of a function when you find
whether it is concave up or concave down.

Theorem 6.10.2 Suppose f" () > 0 for x € (a,b). Then f is concave up on (a,b). Sup-
pose " () <0 on (a,b). Then f is concave down.

Proof: This follows immediately from Corollaries 6.8.6 and 6.8.5 applied to the first
derivative. The following picture may help in remembering this.

In this picture, the plus signs and the smile on the left correspond to the second derivative
being positive. The smile gives the way in which the graph of the function is bent. In the
second face, the minus signs correspond to the second derivative being negative. The frown
gives the way in which the graph of the function is bent.

Example 6.10.3 Sketch the graph of the function, f (x) = (sc2 — 1)2 =at - 222 +1

Take the derivative of this function, f’ (z) = 423 — 42 = 42 (x — 1) (x + 1) which equals
zero at —1,0, and 1. It is positive on (—1,0), and (1,00) and negative on (0,1) and
(=00, —1). Therefore, z = 0 corresponds to a local maximum and z = —1 and z = 1
correspond to local minimums. The second derivative is f” (z) = 1222 — 4 and this equals
zero only at the points —1/4/3 and 1/+/3. The second derivative is positive on the intervals
(1/\/5, oo) and (foo7 71/\/5) so the function, f is smiling on these intervals. The second
derivative is negative on the interval (—1/v/3,1/1/3) and so the original function is frowning
on this interval. This describes in words the qualitative shape of the function. It only re-
mains to draw a picture which incorporates this description. The following is such a sketch.
It is not intended to be an accurate drawing made to scale, only to be a qualitative picture
of what was just determined.
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Sl
Sl

A better graph of this function is the following, done by a computer algebra system.
However the computer worked a lot harder.

-1 0 X 1

In general, if you are interested in getting a nice graph of a function, you should use
a computer algebra system. An effective way to accomplish your graphing is to go to the
help menu and copy and paste an example from this menu changing it as needed. Both
mathematica and Maple have good help menus. Keep in mind there are certain conventions
which must be followed. For example to write x raised to the second power you enter x "2.
In Maple, you also need to place an asterisk between quantities which are multiplied since
otherwise it will not know you are multiplying and won’t work. There are also easy to use
versions of Maple available which involve essentially pointing and clicking. You won’t learn
any calculus from playing with a computer algebra system but you might have a lot of fun.

6.11 Exercises

1. Sketch the graph of the function, f (z) = x*—3x+1 showing the intervals on which the
function is concave up and down and identifying the intervals on which the function
is increasing.

2. Find intervals on which the function, f (z) = v/1 — 2?2 is increasing and intervals on
which it is concave up and concave down. Sketch a graph of the function.

3. Sketch the graphs of y = 2%,y = 22, and y = —z*. What do these graphs tell you
about the case when the second derivative equals zero?

4. Sketch the graph of f(x) =1/ (1 + x2) showing the intervals on which the function
is increasing or decreasing and the intervals on which the graph is concave up and
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concave down.

5. Sketch the graph of f(z) = x/ (1 + 2?) showing the intervals on which the function
is increasing or decreasing and the intervals on which the graph is concave up and
concave down.

6. Inflection points are points where the graph of a function changes from being concave
up to concave down or from being concave down to being concave up. Show that in-
flection points can be identified by looking at those points where the second derivative
equals zero but that not every point where the second derivative equals zero is an

inflection point. Hint: For the last part consider y = 2% and y = z*.

7. Find all inflection points for the function, f (z) = 22/ (1 + 2?) .
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Some Important Special
Functions

7.1 The Circular Functions

The Trigonometric functions are also called the circular functions. Thus this section will be
on the functions, cos, sin, tan, sec, csc, and cot. The first thing to do is to give an important
lemma. There are several approaches to this lemma. To see it done in terms of areas of
a circular sector, see Apostol, [2], or almost any other calculus book. However, the book
by Apostol has no loose ends in the presentation unlike most other books which use this
approach. The proof given here is a modification of that found in Tierney, [17] and Rose,
[13] and is based on arc length.

Lemma 7.1.1 The following limits hold.

sinx

ili% = 1 (7.1)
. 1l—cosz
lim — "~ = (7.2)
x—0 X

Proof: First consider (7.1). In the following picture, it follows from Corollary 3.5.4 on
Page 59 that for small positive z,

sinaz + (1 —cosz) >z > sinz. (7.3)

(cos(z), sin(z))

(1 — cos(z))

Now divide by sinx to get

1—cosx 1—cosx T
I > >1

|sin x| sine T sinz

139
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For small negative values of z, it is also true that

1—cosx T

|sinz| T sinz
(Why?) From the trig. identities, it follows that for all small values of z,

sin® |sin x| x
. =1 >—2>1
|sinz| (1 + cos ) (1+cosz) ~ sinz

and so from the squeezing theorem, Theorem 5.9.5 on Page 100,

lim — =1
z—0 sInx
and consequently, from the limit theorems,
sinx 1
lim = lim ——~ = 1.
e=0 & @=0 (sin:z:)
Finally,
1—cosz 1—cos?x . sinz 1
= =sing— ——.
x x (1 + cosx) x 1l+coszx

Therefore, from Theorem 5.5.1 on Page 92 which says lim,_,¢sin(z) = 0, and the limit
theorems,
1 _ 3
lim ——=% — .
z—0 x
This proves the Lemma.

With this, it is easy to find the derivative of sin. Using Lemma 7.1.1,

sin (z + h) —sinz sin (z) cos (h) + cos (z) sin (k) — sinx

lim = lim

h—0 h h—0 h
o . -1 o
— m (sinz) (cos (h) — 1) + cos g™ (h)
h—0 h h
= cosz.

The derivative of cos can be found the same way. Alternatively,
cos (z) = sin (z + 7/2)
and so
cos' (z) = sin'(z+47/2)

= cos(z+7/2)

= coszcos(m/2) —sinxsin (7/2)

= —sinz.
The following theorem is now obvious and the proofs of the remaining parts are left for you.
Theorem 7.1.2 The derivatives of the trig. functions are as follows.

sin’ () = cosx
= —sinz

= sec? (z)

= secxrtanx

= —cscxrcotx

(2)
(2)
cot’ () = —esc?(z)
(2)
(2)
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Here are some examples of extremum problems which involve the use of the trig. func-
tions.

Example 7.1.3 Two hallways intersect at a right angle. One is 5 feet wide and the other
is 2 feet wide. What is the length of the longest thin rod which can be carried horizontally
from one hallway to the other?

You must minimize the length of the rod which touches the inside corner of the two halls
and extends to the outside walls. Letting 6 be the angle between this rod and the outside
wall for the hall having width 2, minimize

length of rod

—N—
f(0) =2csch+ 5sech.
Therefore, using the rules of differentiation,

- 2cos® 6 — 5sin b + 5sin 0 cos? 6

110) = (cos? 0) (—1 + cos? §) =0

should be solved to get the angle where this length is as small as possible. Thus
2cos® § — 5sinf 4 5sinf cos? § = 0.

and 2cos® 0 — 5sin® 0 = 0 and so tanf = 1V/2 (\?/5)2 Drawing a triangle, you see that

(33\2. ( 35)\2 (35)2( ¥3)2
at this value of 0, you have secf = M# and cscf = M% Therefore,

the minimum is obtained by substituting these values in to the equation for f () yielding

(/{7 + )

Example 7.1.4 A fence 9 feet high is 2 feet from a building. What is the length of the
shortest ladder which will lean against the top of the fence and touch the building?

Let 0 be the angle of the ladder with the ground. Then the length of this ladder making
this angle with the ground and leaning on the top of the fence while touching the building
is

9 2
sinf  cosf’

f(0) =

3
Then the final answer is ( (3\3/?; + (\3/5)2)) . The details are similar to the problem of
the two hallways.

7.2 Exercises
1. Prove all parts of Theorem 7.1.2.
2. Prove tan’ (z) = 1 + tan? (z).
3. Find and prove a formula for the derivative of sin™ (z) for m an integer.
4. Find the derivative of the function, sin® (5z).

5. Find the derivative of the function, tan” (4z).
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sec®(2z)

Find the derivative of the function, an?(30)

Find all intervals where sin (2z) is concave down.

Find the intervals where cos (3z) is increasing.

© % N o

Two hallways intersect at a right angle. One is 3 feet wide and the other is 4 feet wide.
What is the length of the longest thin rod which can be carried horizontally from one
hallway to the other?

10. A fence 5 feet high is 2 feet from a building. What is the length of the shortest ladder
which will lean against the top of the fence and touch the building?

11. Suppose f (x) = Acoswz + Bsinwx. Show there exists an angle, ¢ such that f (z) =
VA% + B?sin (wx + ¢) . The number, v/ A% 4+ B? gives the “amplitude” and ¢ is called
the “phase shift” while w is called the “frequency”. This is very important because
it allows us to understand what is going on. The amplitude gives the height of the
periodic function, f. Hint: Remember a point on the unit circle determines an angle.
Write f (x) in the form

B A
and note that ( 5 A2+B2)

cos wx +

B .
\/ﬁ S11 wx)

is a point on the unit circle.

A
VB

12. Repeat Problem 11 but this time show f (z) = v A2 + B2 cos (wz + ¢). How could
you find ¢?

7.3 The Exponential And Log Functions
7.3.1 The Rules Of Exponents

As mentioned earlier, b™ means to multiply b by itself m times assuming m is a positive
integer. b¥ = 1 provided b # 0. In the case where b = 0 the symbol is undefined. If m < 0,
b™ is defined as b,%. Then the following algebraic properties are obtained. Be sure you
understand these properties for x and y integers.

b = b7 (ab)” = o b (7.4)

v = (b")Y, bt = (7.5)

| =

These properties are called the rules of exponents.

When z and y are not integers, the meaning of b* is no longer clear. For example,
suppose b = —1 and z = 1/2. What exactly is meant by (—1)"/?? Even in the case where
b > 0 there are difficulties. If x is a rational number, m/n and b > 0 the symbol b™/™
means /b™. That is its definition and it is a useful exercise for you to verify (7.4) and (7.5)
hold with this definition. There are no mathematical questions about the existence of this
number. To see this, consider Problem 6 on Page 97. The problem is not one of theory but
of practicality. Could you use this definition to find 2131567813311 7 Consider what you would
do. First find the number 21234567812345 4114 then - - -? Can you find this number? It is just
too big. However, a calculator can find 2133156712311 . It yields 21334s67s12311 = 2. 000 000 000
001123 as an approximate answer. Clearly something else must be going on. To make
matters even worse, what would you do with 2V2? As mentioned earlier, /2 is irrational
and so cannot be written as the quotient of two integers. These are serious difficulties and

must be dealt with.
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7.3.2 The Exponential Functions, A Wild Assumption

Using your calculator or a computer you can obtain graphs of the functions, y = b* for
various choices of b. The following picture gives a few of these graphs.

4 3:E
8
6
(1/2) o]
2
2 ) 0 1 7
X

These graphs suggest that if b < 1 the function, y = b* is decreasing while if b > 1,
the function is increasing but just how was the calculator or computer able to draw those
graphs? Also, do the laws of exponents continue to hold for all real values of 7 The short
answer is that they do and this is shown later but for now here is a wild assumption which
glosses over these issues.

Wild Assumption 7.3.1 For every b > 0 there exists a unique differentiable function
expy, () = b valid for all real values of x such that (7.4) and (7.5) both hold for all z, y € R,
expy, (m/n) = Y™ whenever m,n are integers, and b® > 0 for all x € R. Furthermore, if
b#1 and h # 0, then exp, (h) = b" # 1.

Instead of writing exp, () I will often write b* and I will also be somewhat sloppy and
regard b* as the name of a function and not just as exp, (z), a given function defined at z.
This is done to conform with usual usage. Also, the last claim in Wild Assumption 7.3.1
follows from the first part of this assumption. See Problem 1. I want it to be completely
clear that the Wild Assumption is just that. No reason for believing in such an assumption
has been given notwithstanding the pretty pictures drawn by the calculator. Later in the
book, the wild assumption will be completely justified. Based on Wild Assumption 7.3.1
one can easily find out all about b”.

Theorem 7.3.2 Let exp, be defined in Wild Assumption 7.8.1 for b > 0. Then there exists
a unique number, denoted by Inb for b > 0 satisfying

expy, (r) = Inbexp, (7). (7.6)

Furthermore,
In(ab) =In(a) +1n(b), In1 =0, (7.7)

and for all y € R,
In(bY) =ylnb. (7.8)
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a
In (5) = In(a) — In (b) (7.9)
The function, x — Inx is differentiable and defined for all x > 0 and
In' (z) = E (7.10)
= .

The function, x — Inz is one to one on (0,00). Also, In maps (0,00) onto (—oo, o).

Proof: First consider (7.6).

i P (z + h) — expy () — lim brth — b
h—0 h h—0 h
(b =1\
= hm ( h > ’
The expression, limj,_.g th_l is assumed to exist thanks to Wild Assumption 7.3.1 and

this is denoted by Inb. This proves (7.6).
To verify (7.7), if b = 1 then b® = 1% for all € R. Now by (7.4) and (7.5),

and so, dividing both sides by 1*, an operation justified by Wild Assumption 7.3.1, 1* =1
for all z € R. Therefore, exp; (x) = 1 for all z and so exp] () = Inlexp, (z) = 0. Thus
In1 =0 as claimed. Next, by the product rule and Wild Assumption 7.3.1,

In(ab) (ab)” = ((ab)")’

= (@) = (@) b+ a” ()
(Ina) a®b® + (Inbd) b*a”

= [Ina+1Inbd](ab)”.

Therefore, In (ab) = Ina + Inb as claimed.
Next consider (7.8). Keeping y fixed, consider the function x — *¥ = (b¥)" . Then,

In (b%) (b)" = ((*)") = ¢' (2)
where g (z) = b®Y. Therefore, using (6.7) on Page 122,
g’ () = yexpy, (zy)

and so
In () (b%)" = yexph (zy) = y (Ind) (5°¥) = y (nb) (B¥)" .

Now dividing both sides by (b¥)" verifies (7.8).
To obtain (7.9) from this, note

In (%) =In(ab™") =In(a)+In(b7") =In(a) —In(b).

It remains to verify (7.10). From (6.2) and the continuity of 2%,

In(2") —In1 n2 In2
W (1) = i ) ZInT A2 2
h—0 2h — 1 h—02h —1 In2
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In2 # 0 because if it were, then (2%)" = (In2)2% = 0 and by Corollary 6.8.4, this would
imply 2% is a constant function which it is not. Now the first part of this lemma implies

Iny —1 1In(%)-Inl
W (2) = limRYTmT_ o 1(5) -l
y—e  Yy— y—rx (4) -1
1 1
= —In'(1)=~-.

It remains to verify In is one to one. Suppose Inz = Iny. Then by the mean value theorem,
there exists ¢ between x and y such that (1/t) (r —y) = Inz — Iny = 0. Therefore, z = y
and this shows In is one to one as claimed.

It only remains to verify that In maps (0, 00) onto (—o0, 00) . By Wild Assumption 7.3.1
and the mean value theorem, Corollary 6.8.3, there exists y € (0, 1) such that

2l -1

0< 1

In (2)2Y

Since 2¢¥ > 0 it follows In(2) > 0 and so x — 27 is strictly increasing. Therefore, by
Corollary 6.8.3

2t —1
. =1n(2)2Y <In(2)2*

and it follows that
< In2. (7.11)

Also, from (7.7)

which shows that

n(2)<-L (a2

It follows from (7.11) and (7.12) that In achieves values which are arbitrarily large and
arbitrarily large in the negative direction. Therefore, by the intermediate value theorem, In
achieves all values.

More precisely, let y € R. Then choose n large enough that § >y and —5 < y. Then

from (7.11) and (7.12)
1 R <y< 2 <2
n{ {3 S5 <y<gz<h .

By the intermediate value theorem, there exists = € ((%)n,Q”) such that Inz = y. This
proves the theorem.

7.3.3 The Special Number, e

Since In is one to one onto R, it follows there exists a unique number, e such that In (e) = 1.
Therefore,

expl (z) = (e%) =1In(e) e® = In (e) exp, (z) = exp, ()
showing that exp, has the remarkable property that it equals its own derivative. This

wonderful number is called Euler’s number and it can be shown to equal approximately 2.
718 3.
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7.3.4 The Function In |z|

The function, In is only defined on positive numbers. However, it is possible to write In |z
whenever x # 0. What is the derivative of this function?

Corollary 7.3.3 Let f () =1In|z| for x # 0. Then

£ () ==

T

Proof: If z > 0 the formula is just (7.10). Suppose then that x < 0. Then In || = In (—z)
so by (6.7) on Page 122,

(nfz)’ = (n(-=)) = (n((~1)2))
_ -l

This proves the corollary.

7.3.5 Logarithm Functions

Next a new function called log, will be defined.

Definition 7.3.4 For allb >0 and b # 1

_Inz

= T . .1
Inb (7.13)

log;, (2)
Notice this definition implies (7.7) - (7.9) all hold with In replaced with log;,.
The fundamental relationship between the exponential function, b* and log, x is in the
following proposition. This proposition shows this new function is log; you may have studied
in high school.

Proposition 7.3.5 Let b > 0 and b # 1. Then for all x > 0,

plogn® = g, (7.14)
and for all y € R,
log, b =y, (7.15)
Also,
11
log;, =——. 1
og) (1) = o (7.16)

Proof: Formula (7.14) follows from (7.8).
In (blogb *) =log,zInb=1Inz
and so, since In is one to one, it follows (7.14) holds.

In(b¥) ylnb
Inb  Inb

and this verifies (7.15). Formula (7.16) is obvious from (7.13).
The functions, log; are only defined on positive numbers. However, it is possible to write
logy |z| whenever x # 0. What is the derivative of these functions?

log, bv¥ =

Y
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Corollary 7.3.6 Let f (z) = logy |x| for x # 0. Then

Proof: If x > 0 the formula is just (7.16). Suppose then that x < 0. Then log, || =
log;, (—x) so by (6.7) on Page 122,

(logy [z])" = (log, (—x))" = (log; ((=1) z))’
1 1
- —mlnb(_l):xlnb'

This proves the corollary.

Example 7.3.7 Using properties of logarithms, simplify the expression, logs (%x) .

1 1
logs (gx) = logs (9> + log; (z)

= logs (3_2) +logz () = —2 + logg (z) .

From (7.7) - (7.9),

Example 7.3.8 Using properties of logarithms, solve 5*~1 = 32*+2,

Take In of both sides. Thus (z — 1)In5 = (2z + 2)In 3. Then solving this for = yields
_ In5421In3
T = In5—2mn3"

Example 7.3.9 Solve logs (z) + 2 = logg (z + 3) .
From the given equation,

310g3(af)+2 — 310g9(x+3) — 9%(10g9(x+3)) _ 910g9 v/ (z+3)

and so 92 = /z + 3. Therefore, ¢z = 1V 1112x81 W = ﬁ + %2\/973. In the use of the

quadratic formula, only one solution was possible. (Why?)
Example 7.3.10 Compare In (x) and log, (z)

Recall that
Inx

1 = —.

og (¢) = 3 —

Since Ine = 1 from the definition of e, it follows log, (z) = Inx. These logarithms are called
natural logarithms.

7.4 Exercises

1. Prove the last part of the Wild Assumption follows from the first part of this assump-
tion. That is, show that if b # 1, then exp, (h) # 1 if h # 0 follows from the first part.
Hint: If b* = 1 for h # 0, show b* =1 for all € R.

2. Simplify

(a) log, (16x).
(b) logs (272%)
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10.
11.

12.

13.

14.

15.

SOME IMPORTANT SPECIAL FUNCTIONS

(c) (logya) (log, b) for a,b positive real numbers not equal to 1.

Explain why the function 6” (1 — In 6) is never larger than 1. Hint: Consider f (x) =
6" (1 — zln6) and find its maximum value.

Solve log, (z) + 3 = log, (3x + 8).

Solve log, (x) + 3 = logy (z + 8) .

Solve the equation 5219 = 7% in terms of logarithms.

Using properties of logarithms, simplify the expression, log, (&x) .
Using properties of logarithms, solve 47~ = 32742,

The Wild Assumption gave the existence of a function, b* satisfying certain properties.
Show there can be no more than one such function. Hint: Recall the rational numbers
were dense in R and so one can obtain a rational number arbitrarily close to a given
real number. Exploit this and the assumed continuity of exp, to obtain uniqueness.

Prove the function, b* is concave up and log, (x) is concave down.

Prove that log; : (0,00) — R is onto. Hint: You know it is differentiable so it is
continuous (Why?). Now show from (7.8) that it assumes values which are large and
negative and values which are large and positive. Then use the intermediate value
theorem to fill in the gaps.

Using properties of logarithms and exponentials, solve 3 + In (—3x) = 4 + In 322,

Let f be a differentiable function and suppose f (a) > 0 and that f' (z) > 0 for x > a.
Show that f (z) > f (a) for all x > a. Hint: Use the mean value theorem.

Let e be defined in Problem ?7? and suppose e < x < y. Find a relationship between x¥

and y*. Hint: Use Problem 13 and at some point consider the function h (z) = 1“7“”

Suppose f is any function defined on the positive real numbers and f’' (z) = g (z)
where g is an odd function. (g(—2) = —g (z).) Show (f (|z])) = g (z).



Properties And Applications Of
Derivatives

8.1 The Chain Rule And Derivatives Of Inverse Func-
tions

8.1.1 The Chain Rule

The chain rule is one of the most important of differentiation rules. Special cases of it are
in Theorem 6.2.6. Now it is time to consider the theorem in full generality.

Theorem 8.1.1 Suppose f : (a,b) — (¢,d) and g : (¢,d) — R. Also suppose that f'(x)
exists and that ¢’ (f (z)) exists. Then (go f)' () exists and
(go ) (x) =g (f (@) [ (x).
Proof: Define

H(h) =

AULEN=aU) it f (0 4 h) — f () £0
g (f (@) if f(z+h)—f(z)=0

Then for h # 0,
g(f(x+h)—g(f(x)) fx+h)—f(x)
h h '

Note that limy_.o H (h) = ¢’ (f (x)) due to Theorems 5.9.6 on Page 100 and 6.2.2 on Page
121. Therefore, taking the limit and using Theorem 5.9.4,

L 9U @+ 0) = g (f (@)

h—0 h

= H (h)

=g (f (@) f (z).
This proves the chain rule.
Example 8.1.2 Let f (z) =In|In (z* 4+ 1)|. Find f'(z).

From the chain rule,

P = (i (o +1)) (i (0 +1))
_ 1 1 N
Szt 1) 2t 1 (+)

- (ln(xi—i— 1)) <x41—|— 1) (47)

149




150 PROPERTIES AND APPLICATIONS OF DERIVATIVES
Example 8.1.3 Let f (z) = (2+ In|z|)®. Find f' (z).
Use the chain rule again. Thus

f(2) =32 +Infz])* (2 +n|z|)

3 2
=—(2+1 .
=2+ 1n fa])

8.1.2 Implicit Differentiation And Derivatives Of Inverse Functions

Sometimes a function is not given explicitly in terms of a formula. For example, you might
have 22 + y? = 4. This relation defines y as a function of x near a given point such as (0,1).
Near this point, y = v/4 — 2. Near the point, (0,—1), you have y = —v/4 — 22, Near the
point, (1,0), you can’t solve for y in terms of = but you can solve for x in terms of y. Thus
near (1,0),x = y/4 — y2. This was a simple example but in general, you can’t use algebra to
solve for one of the variables in terms of the others even if the relation defines that variable
as a function of the others. Here is an example in which, even though it is impossible to
find y (x) you can still find the derivative of y. The procedure by which this is accomplished
is nothing more than the chain rule and other rules of differentiation.

Example 8.1.4 Suppose y is a differentiable function of x and y* + 2yx = 23 + 7+ 1In|y|.
Find ¢/ (x).

This illustrates the technique of implicit differentiation. If you believe y is some differ-
entiable function of x, then you can differentiate both sides with respect to x and write,
using the chain rule and product rule.

/

3%y + 2wy + 2y = 32% + %

2y7312
T3y t2ay 19

Of course there are significant mathematical considerations which are being ignored
when it is assumed y is a differentiable function of z. It turns out that for problems like
this, the equation relating z and y actually does define y as a differentiable function of z
near points where it makes sense to formally solve for ¢’ as just done. The theorems which
give this justification are called the implicit and inverse function theorems. They are some
of the most profound theorems in mathematics and are topics for advanced calculus. The
interested reader should consult the book by Rudin, [14] for this and generalizations of all
the hard theorems given in this book. One case is of special interest in which y = f () and
it is desired to find Z—z or in other words, the derivative of the inverse function.

Now you can solve for ¢’ and obtain ¢y =

It happens that if f is a differentiable one to one function defined on an interval, [a, ],
and f’ (z) exists and is non zero then the inverse function, f~! has a derivative at the point
f(z). Recall that f~! is defined according to the formula

FHf (@) =
Definition 8.1.5 Let f : [a,b] — R be a continuous function. Define

o J@ )
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Recall the notation x — a+ means that only x > a are considered in the definition of
limit. The notation x — b— is defined similarly. Thus, this definition includes the derivative
of f at the endpoints of the interval and to save notation,

) = Jim KO

where it is understood that z is always in [a, b].

Theorem 8.1.6 Let f : [a,b] — R be continuous and one to one. Suppose f' (x1) exists for
some x1 € [a,b] and [’ (x1) # 0. Then (f_l)/ (f (x1)) exists and is given by the formula,
N/
(f 1) (f (z1)) = %
Proof: By Lemma 5.7.4, and Corollary 5.7.6 on Page 95 f is either strictly increasing

or strictly decreasing and f~! is continuou