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CHAPTER 1

Finite Groups

0 Motivation - Check Digit Codes

Nowadays products in shops all carry bar codes and are identified by them. More-
over, at the cash desk the bar code is scanned or typed in and that way you get
charged the price. Sometimes the bar codes are not recognised correctly or the
wrong number has been typed in. However, the error is recognised by the machine
and the bar code is not accepted.

A) HAVE YOU EVER WONDERED HOW IT COMES, THAT YOU ARE ALWAYS
CHARGED THE RIGHT PRICE?

Well, the machine looks the bar code up in some data base, and if the incorrect bar
code was contained in that data base as well, then the machine could not possibly
detect any error. So, when assigning bar codes, you have to make sure that no bar
codes which - in a certain sense - are too similar are in the data base.

Is this difficult? Well, to decide on that question we should know, what bar codes
in principle look like!

Bar codes are also called EAN-13 codes, where EAN is short for European Article
Number, and they consist of a thirteen digit number. The first 2 to 3 digits stand
for the organisation which assigned the numbers to the producer, some of the next
digits identify this producer and so on. So, the digits are not really arbitrary digits.
In particular, for a fixed producer a large part of the bar code will always be the
same. I. e. the numbers will have to be similar!

How can we get along with that problem?

Idea: Store some redundant information which is not needed to identify the article,
but only to detect possible errors.

In the case of the EAN-13 only 12 digits characterise the article. Digit no. 13 is a
so called check digit.

B) HOW IS THE CHECK DIGIT RELATED TO THE (REAL) ARTICLE NUMBER?

Basic Idea: It should be possible to calculate the check digit from the remaining
digits in an easy way, but such that (common) errors are possibly detected.

First Idea: Repeat the whole number! This is a bit too much redundancy and
increases the risk of falsely scanned numbers.

Second Idea: Take the cross sum of the digits of the real product number as check
“digit”.
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E. g. if the product number is 013412547180, then the check digit would be
0+14+34+4+1+24+54+44+7+1+8+0=236.

This will usually be several digits long, and is still too much redundancy.

Third Idea: Let’s just take the last digit of the cross sum!
E. g. in the above example the check digit would then be 6.
This can be formulated in a more mathematical way by saying that

we take the remainder of the cross sum by division with remainder modulo 10.

And that’s where groups come into play as a nice way to formulate the procedure. We
may identify the digits 0, ..., 2 with the elements of the additive group (7Z/10Z, +),
just via the map

0,...,9—Z/10Z:a—a=a+10Z ={a+ 10z |z € Z},

i. e. identifying the digit with the residue class represented by the number. Viewing
the digits in the article number as elements of 7Z/10Z that way, the check digit
becomes just the sum of the “digits”.
E.gO0+T1+3+4+1+2+54+4+7+1+8+0=36=6.

C) DOES THIS ALLOW TO DETECT ERRORS? OTHERWISE IT IS OF NO USE.
Certainly we will not be able to detect all errors, thus we have to distinguish certain
types of errors! Some statistics tell us that the following two types are the most

common ones.

Type I: “Single Digit Errors” — i. e. just one digit is wrong. These are roughly
80% of the occuring errors.
Type II: “Neighbour Transpositions” — i. e. two neighbouring digits have been
interchanged. These are about 10% of the errors.
It is fairly obvious that the cross-sum-mod-10-approach cannot detect errors of Type
I1, since the addition in Z /107 is commutative. However, does it detect errors of
Type I?
Suppose the correct number was aja;--- a3 and instead of some a; we read a{ €
{0,...,9} with a; # ai. Then

12
— (Zm?{) Yo (Zm?{) e SR
j=1

i#4,13 j#i,13
since a; — a{ is number between —9 and ¢ which is non-zero and thus 10 does not
divide a; — a{. That means “Single Digit Errors” are detected.
D) Back 1o EAN-13.

The encoding of EAN-13 is, however, slightly different. The check digitin aja;--- a3
satisfies

o
-~
+
_|_
T
e
w

az=(-1)-a+(3)-a+(1)-a+(3)-a

or equivalently
T+3-aG+at...+asz=0.
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We call these equations check digit equations.
Does this still detect errors of Type 17
Let’s go back to Equation (1) for this. The question finally comes down to checking

whether a; # a/ implies that a; — a/ and 3 - (a; — a/) are not equal to 0, which is
the case since a; — a; is not divisible by 10 and thus also three times this number is
not. Thus we are lucky.

How about errors of Type II?

If a; and ai1 have been interchanged, then this comes down to the question whether

-t a=3-a+ o
= 2'(ai*ai+l):6
= 5|ai—ai+1.

Thus even errors of Type II will quite frequently be detected, but not all of them.
We achieved this by multiplying the digits in the cross sum by certain weights w; —
here w; = 1 and w; = 3.

E) WHICH WEIGHTS W; WOULD HAVE BEEN SUITABLE IN THE CHECK DIGIT
EQUATION IN ORDER NOT TO LOOSE THE PROPERTY THAT ERRORS OF TYPE
I ARE DETECTED?

The important point was that
G£a = w-TGFw-al,
i. e. that the map
W, : Z/10Z — Z/10Z :a — w; - a

is injective, and hence bijective since Z/10Z is a finite set. In other words, Hy, is a
permutation of the set Z/107Z.
This leads to the following generalisation and definition.

0.1 Definition
Let (G,-) be a group, go € G a fixed element, and let 7my,...,7, € Sym(G) be

permutations.

a. We call

C=Cglm,..., T, g0) = {(91,...,9n) € G™ | 1 (g1) - Tn(gn) = 9o}
a check digit code (CDC) of length n on the alphabet G.

b. We say that C detects errors of Type I if and only if (g7,...,g.)" € C and
g{ € G with g/ # g; implies that (g1,...,9i-1, 9!, Git1,-.-,9n)" & C.
c. We say that C detects errors of Type II if and only if (g7,...,gn)" € C with
gi # gi1 implies that (g1,...,0i 1, 9i41, 91, gir2, - -+, gn)" & C.
0.2 Example (EAN-13)
Let (G,:) = (Z/10Z,+), go =0, n =13, m; = w; if i is odd and m; = p3 if 1 is even.

This then describes the EAN-13 code C = Cz/10z(11, U3, - . ., 11, 0).
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Actually, C = ker(¢), where ¢ : (Z/10Z)"® — Z/107Z is the group homomorphism
defined by multiplication with the matrix (T, 3,1,... ,T).

Having introduced check digit codes over arbitrary groups it would be nice to know
something about their error detecting properties.

0.3 Proposition (Error Detecting Properties)
Let C = Cg(my,..., T, go) be a CDC over the alphabet (G, ).

a. C detects errors of Type L.

b. If n > 3, then C detects errors of Type II if and only if V1 =1,...,n —
1,Vg,he Gs. t. g#h:

g (miom ') (h) #h- (M om ') (g).

Proof: a. Let(gy,...,gn)" € C, g € Gsuch that g{ # gi, and suppose (g1,...,9,...
1 1 1

C. Then

!

(1) Ta(gn) = go =mi(g1) -~ i (g]) - - T (gn).-
By the cancellation law we thus deduce that
mi(gi) = Tti(gi,)-
But then also gi = g/, since m; is injective. This, however, is a contradiction
to our assumption.

b. Let’s first assume that the condition of the proposition is satisfied and let’s
show that then C detects errors of Type II. For this let (g7,...,gn)" € C be
given with g; # giy1 and set g = mi(g;) and h = 7y(gi1). Since 7 is injective
we have g # h. Thus by the condition of the proposition we also have

(i) - i1 (gir1) = g (Mg o ) (W) #h- (i o7 ') () = mi(gia) - g ().
Multiplying both sides with the same element of G the inequality is preserved
and we get

mi(g1) - il gi) - i (i) -+ Talgn) # lg1) -+ 7l Gier) - g (Gi) - Talgn).

This means that C detects errors of Type II.

Let’s now suppose that C detects errors of Type II and then prove the above
condition. For this let g,h € G with g # h, and set g; = m; '(g) and gi41 =
7. ' (h). Since 7 is bijective gi # gi+1. Choose now g; € G, j # 1,1+ 1 such

1

that (g1,...,gn)" € C (here we need n > 3). Thus by assumption

(91»---»91+1»gi>---»gn)t € C.
But then

mi(g1) -+ Tnlgn) = go # m(g1) -+ - i(Gin1) - Tis1(gi) - - T lgn).
Using the cancellation law we derive
g (i om ) (h) = 7i(gi) - i1 (Gis1) # TlGis1) - T (g0) = h- (T o ') ().
This finishes the proof.

,gn)t €
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Note: If (G,-) is abelian and inv : G — G : g — g~ denotes the inversion map,
then the condition in Proposition 0.3 comes down to

g- (invo7'q+] onf])(g) #h- (invo7'q+] onf])(h). (2)

Since inv o7t 4 oTt;] € Sym(G) is a permutation of G, it seems that maps of the form
g — gmt(g) for some permutation 7T € Sym(G) are connected to the error detecting
properties of codes.

0.4 Definition
Let (G, ) be a group and 7w € Sym(G). We call 7t a complete mapping if and only
if the map

m:G—>G:g—g-m(g)
is again a permutation of G.
So far we know how to check whether a given CDC detects errors of Typer II or not,
but we have no means to find such a code — or possibly to decide that their is non.

0.5 Corollary
Let (G, -) be a finite abelian group, n > 3. Then there is a CDC of length n which
detects errors of Type II if and only if G admits a complete mapping.

Proof: Let’s first suppose that G admits a complete mapping w € Sym(G). Set
go =¢eg and iy = (invom) fori=1,...,n.

Claim: C = Cg(m,..., Ty, go) detects errors of Type II.

For this we only have to check that Equation (2) is satisfied. Let g,h € G such that
g # h. Then

g- (invomy o ')(g) =g (invo(invor)™' ) (g) = g - nt(g) = *(g)
#m*(h) =h-n(h) = h- (invo(invorr)"™ ¥) (h) = h- (invom o ') (h).
Thus Equation (2) is fulfilled.
Let’s now suppose that there is a CDC Cg(my, ..., T, go) which detects errors of
Type II. We define 7t = invom, o ;' € Sym(G) and we claim that this is then a
complete mapping. In order to check this we let g, h € G such that g # h. Thus by
Equation (2) we have
7 (g) =g-7m(g) =g- (invomom; ') (g) # h- (invomom ') (h) = h-mt(h) = 7* (h).
Hence 7t* is injective and thus bijective, since G is finite. But then 7t is a complete
mapping. ]
0.6 Remark
a. If |G| =2-m with m odd, then there exists no complete mapping on G.!
In particular, there is no CDC on Z/10Z which detects all errors of Type II.
b. If |G| is odd, then the identity mapping idg is a complete mapping.

!The proof is elementary, but lengthy. We refer the reader to H. Siemon, Anwendungen der
elementaren Gruppentheorie in der Zahlentheorie, 1981.
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Proof: Let |G| = 2m + 1, then by the Theorem of Lagrange we have eg =
gl6l = g2m+

idi : g — g -idg(g) = g¢? is surjective. But since G is finite, it is then

. Multiplying by g we get (gmH)2 = ¢, and thus the mapping

bijective. m

c. Problem: There is no CDC on (Z/10Z,+) which detects errors of Type II!
How can we deal with that?

Solution 1: Use an odd number of digits, i. e. calculate over Z/mZ with an
odd m.

E. g. the ISBN code works over (Z/11Z,+), where the element 10 = 10 +
117 is denoted by X and is only used as check digit. The ISBN code is a
Czmz(m, ..., mo,0) code, where 7; : Z/11Z — Z/11Z : @ — i-a. We leave
it as an exercise to check that the code actually detects errors of Type II. You

only have to check that Equation (2) is satisfied.

Solution 2: Use a non-abelian group with ten elements! There the non-
existence of a complete mapping is not related to the error detecting property.

0.7 Example (German Currency)

The check digits of the serial numbers of the German currency where actually en-
coded by a CIDm(Tc], ce oy T, idp, 4, (1 )) code.

Consider the dihedral group

Do =((12345),(15)(24)) < %5 =Sym ({1,...,5}).

In the exercises you show that, setting 0 = (1234 5) and T = (1 5)(2 4), we may
describe Dy as the set

Do = {o®=(1),0',...,0" 100 =1,100",...,T0 0"}.

And since To o0 =o' o1 # oo, the group is indeed not abelian.

Verhoeff showed that the permutation 7t: D9 — Djo of Dy defined by
X Hoo‘ o 0?2 ‘ o’ ‘0‘4"[00'0"(00"TOO'Z‘TOOS‘TOO'A'
7t(x) H o' ‘TOGO‘TOO'Z‘TOO" O'Z‘TOO"%‘ o> ‘ o ‘Toa“‘ o?
satisfies that g,h € Do with g # h implies g o t(h) # h o 7t(g). Hence, setting
m = 7 € Sym(Dyp), the code C]Dm(m, ., T00, (1)) detects errors of Type II by

1 ‘ 1

Proposition 0.3.

Of course for the serial numbers on the German currency they did not use such fancy
symbols like 0. They used the usual 10 digits and in addition 10 letters. However,
they were identified with the elements in Dy, in the following way

o®lo'| 2| |0 |To0d® | Too' |Tod? | Too® | To O
ol 1121|314 5 6 7 8 9
A|D|G|K]|L N S u Y Z.

Thus, if you wanted to check whether a serial number on a German bank note was
valid, you replaced the digits and letters by the appropriate elements of Do and
looked whether this element belonged to Cp,, (7T1, . e oy 0o, idp, o, (1 )).
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0.8 Exercise
Check if AA618630572 is a valid serial number for a German bank note.

Question: Could we have used some other group with 10 elements as alphabet?

Answer: No! Not really. The group only matters up to isomorphism, and we will
show at the end of the part on finite groups that up to isomorphism there are only
two groups with 10 elements — (Z/10Z,+) and (IDjo, o).

1 Basics

Let’s recall some of the basic definitions and results from first year courses.

A) GrouPs

1.1 Definition

A group is a tuple (G, ) consisting of a non-empty set G and a binary operation
-:GxG—=G:(gyh)—g-h

such that the following axioms are fulfilled:

(i) g-(h-k)=(g-h)-k forall g,h ke G, (Associativity)
(ii) JeeG:VgeG :e-g=g, (Existence of a Neutral)
(ii) Yge GdheG:h-g=e. (Existence of an Inverse)

If moreover

(iv) g-h=h-g forallg,heG

is satisfied, then we call (G, -) abelian.

If |G| < oo, we call the group finite and |G| = o(G) = #G is called its order.
Notation: Instead of g-h we will usually just write gh. If a group is abelian, then
we will usually denote the operation by “+” instead of “.”.

If no ambiguity concerning the group operation can arise, we will just write G instead
of (G, ) in order denote a group.

1.2 Proposition
Let (G,-) be a group.
a. The neutral element eg is uniquely determined and satisfies g - eg = g for all
g € G as well. Instead of eg we also write 1g.

b. For any element g € G the inverse element is uniquely determined and 1is

1 1

denoted by g~ ' orinvg(g). It satisfies g-g ' = eg as well.

c. Cancellation Rule: If g,h,k € G with gh = gk or with hg = kg, then h = k.

d. Forg,h€ G we have (g-h) '=h'1.g" and (971)7] =g.

e. If we set ¢° = eg and, recursively, g*' = g- g* and g7t = (gi)fl fori>0,
then the exponential laws are fulfilled, i. e. for g € G and i,j € Z we have

gt- gi _ gi+i and (gi)j _ gi~j.
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Proof:

a./b

C.

. Let’s prove Parts a. and b. together in several steps, where eg denotes a fixed
(left-)neutral in G for which every element has a (left-)inverse as indicated by

the group axioms.

Step 1: If h- g =-¢eg for g,h € G, then also g- h =eg.

Since G is a group, there is some k € G such that k- h = eg. Hence
g-h=eg-(g-h)=(k-h)-(g-h)=k-(h-g)-h=k-eg-h=k-h=ceg.

Step 2: We also have g-eg = g for all g € G.

Let g € G and let h € G such that h- g = eg. Then, using Step 1,

g-eg=9-(h-g)=(g-h)-g=ec-g=g.

Step 3: Let e’ € G such that for all g € G we have, e’ - g = g, then e’ = eg.

Using Step 2, we have e’ =eg-e' =e'-eg =eg.

Step 4: Let k,h € G such that k- g =eg =h- g, then k =h.

By Step 1 we know that g - h = eg, thus we get with the aid of Step 2

k=k-eg=k:-(g-h)=(k-g)-h=eg-h=h.

Let g,h,k € G such that h- g =k-g. Then

h=h-eg=h-(g-g')=(h-g)-g'=(k-g)-g' =k (g-g')=k-eg=k

The other way round works analogously.

Let g,h € G. In order to see that (g-h)' =h~'.g"!, it suffices to show that
the right hand side has the property of the inverse element of g - h. Knowing
that that one is uniquely determined we are then done.

(h'g)-(g-h)=h"- (g7 g)-h=h"eg-h=h" h=ec

Thus h™'- g~ is the unique inverse of g-h,i.e. h™' - g7 = (g-h)~".
Analogously, for g € G we have by Part b.

g-g '=eq,

and hence g satisfies the property of the inverse element of g~'. Hence by
unicity we get (g*])f1 =g.

e. Note that the definition implies right away

*=(g") " VgeGVkez

Let’s now prove the first exponential law, and for this let i,j € Z.

1st Case: Let g € G be arbitrary, i > 0. We do the proof by induction on 1.
i=0:Then g'- g =¢°-¢ =eg-¢' =g =g'".

i— 14 1: By definition and induction hypothesis:

i+1

9" -d=(g-9")-d=9-(¢5-d)=9g-¢g"" =g

i1+
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2nd Case: Let g € G arbitrary, i < 0. Apply Case 1 to the element g, then
by definition we get (since —i > 0!)

09’ =(g") (g =(g") T =0".

Let’s now turn to the second exponential law, and let again 1,j € Z, g € G.
1st Case: j > 0. We do the proof by induction on j.
j=0:Then (¢") = (g)° = e = ¢° = g".
j +—3j + 1 : By definition, induction hypothesis and the first exponential law we
get:

(6" = (")  (¢") = g' g"7 = g7 = g"(*").

2nd Case: j < 0. By the first exponential law we have g7 - gt = g+t

0
= g =
eg, and thus (gi)fl =g ' By Case 1 and definition we get (since —j > 0!):

(0 =((6)7) "= (o) = =g

O

Notation: If the group is abelian and the group operation is denoted by +, then we

denote the neutral element rather by Og and the inverse of g € G by —g. Moreover,

instead of g we then write i g.

1.3 Example a. (Z,+) is an abelian group with neutral element 0.

b.

Let (R,+,-) be a ring (e. g. the integers) and n > 1 an integer. Mat(n x n, R),
the set of all n x n-matrices with entries in R forms a group with respect to
matrix addition as binary operation. The neutral element is the zero matrix,
and the inverse of (ay) is just (—ay).

Let (K,+,-) be any field (e. g. the real numbers) and let n > 1 be an integer.
GL,(K) = {(ay) € Mat(n x n,K) | (ay;) is invertible}, the set of all invertible
n X n-matrices with entries in the field K, forms a group with respect to matrix
multiplication as binary operation. The neutral element is the identity matrix

and the inverse of an element is just its inverse matrix.

Let M be any set. Sym(M) = {@ : M — M | @ is bijective}, the set of all
permutations of M, is a group with respect to the composition of maps. The
neutral element is the identity map idyg, and the inverse of an element @ is its

inverse mapping.

1.4 Example (The Symmetric Group 5,)

When studying finite groups one group attracts a particular interest as an infinite

source for interesting examples — this is the symmetric group of n letters

$, = Sym ({1,...,n)).

An element 7T € $,, can be represented in the form

1 2 3 - 0mn
(1) =w(2) =w(3) --- 7w(n)
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or, if {1,...,n}={ay,...,an} by

ai a; as - an
( @) nla) mlas) - w(an) ) |
The elements of &, are called permutations, and there is a particular type of per-
mutations called cycles —a permutation of the form

arp az -+ Qg1 Gk Qg1 -0 Gn
a az -+ Ok 41 G410 On
is called a k-cycle and we write instead just (a; az --- ax). Very simple cycles are

2-cycles (a b), and they are called transpositions.

Note: The representation of a k-cycle is not unique —

(araz -+ o) =(axaz -~ axag) =....
And the neutral element, i. e. the identity map on {1,...,n}, is represented by any
1-cycle, i. e. (1) = (2) =... = (n). We usually denote it by (1).

Facts: a. Cycle-Decomposition: Every permutation 7 € 5, has a unique repre-
sentation as a product of disjoint cycles (unique up to ordering).
1234567

E.g.m=
3215674

) € Sy, then m = (1 3)(2)(4 56 7) =
(13)(4567).

b. Every permutation 7t € 5, can be written as a product of transpositions, and
the parity of the number of necessary transpositions is uniquely determined.
If the parity is even, then we say 7 has sign sgn(m) = 1 and we call the

permutation even, otherwise sgn(m) = —1 and 7t is said to be odd.

1 2 4
E. g. for the above permutation we have m = 3 567 _
3215674

(13)(47)(46)(45)=(13)(47)(46)(45)(23)(23) — the parity is even.

B) SUBGROUPS

1.5 Definition and Proposition
Let (G, ) be a group.
a. A non-empty subset ) £ U C G is called a subgroup of G if and only if (one of
the) following equivalent conditions is fulfilled:
(i) U is itself a group with respect to the restriction of the binary operation
- to U x U.

(ii) For all u,v € U we have u-ve Uand u' € U.

(iii) For all u,v € U we have u-v' € U.

If |U| < 0o, then these are also equivalent to:

(iv) For all u,v € U we have u-v € U.

We denote this by (U,-) < (G, ) or simply by U < G.
Note, if U < G, then eg = ey € U!

b. If U,V C G are two subsets, then we define U-V ={u-v|juelU,veV}
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c. If M C G is any subset, then we call

M= ) u

MCU<G

the subgroup generated by M, and this is by Proposition 1.7 indeed a group.

Proof: We have to prove the equivalences in the definition of a subgroup. For
this we denote throughout the proof for g € G by invg(g) the inverse of g in
G and for uw € U by invy(u) the inverse of w € U. We will show, that indeed
invy(u) = invg(u) for all uw € U!

(i) = (ii): Let’s first show that, if (U,-) is itself a group, then ey = eg and
invy(u) =invg(u) for all u € U. For this note that

ec = invg(eu) - eu =invg(eu) - (eu - eu) = (invg(eu) - eu) - eu = eg - eu = ey,

and thus invy(u) - uw = ey = eg = invg(u) - u, which then by the cancellation law
implies invy (1) = invg(u).

Thus for any u € U we have invg(u) = invy(u) € U as desired, and for u,v € U it
follows u-v € U, since by assumption the restriction of “” to U x U takes values
in U.

(ii) = (i): By assumption u-v € U for all u,v € U, and hence

cUxU—=U

is actually a binary operation taking values in U. It, therefore, suffices to check
that the group axioms are fulfilled. Associativity comes for free, since it is already
satisfied for elements from the larger set G. Moreover, if we could show that eg € U
and for any uw € U also invg(u) € U, then we are done, since these elements
satisfy the properties of the neutral respectively the corresponding inverse element.
However, for w € U we have invg(u) € U by assumption, and since U # 0, we
may choose some v € U, so that again invg(v) € U and thus by the closedness

assumption
eg =V -invg (\)) e u.

(ii) = (iii): Let u,v € U, then by assumption invg(v) € U and thus also u -
invg(v) € U.

(iii) = (ii): Let again u,v € U. By assumption eg = w-invg(u) € U, and thus
invg(u) =eg-invg(u) € Uand u-v=1u-invg (inVG(v)) e W

(ii) = (iv): This is obvious no matter whether U is finite or not.

(iv) = (ii): It remains to show that for every element u € U also invg(u) € U. We
claim, that invg(u) = u* for some k > 0, which then by the closedness assumption
implies that it belongs to U.

Since |U| < oo, also the set {uk k> O} is finite. This implies that there are natural
numbers i > j > 0, such that u* = w. But then by the exponential laws we have
uiT=utlandi—j—1>0. O

1.6 Example a. 1 ={eg}and G are the trivial subgroups of G.
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b.

d.
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Claim: (U,+) < (Z,+) if and only if there is an integer n > 0 such that
U=n-Z={n-z|zecZ}

Proof: Let U=mn-Z for some n > 0, then 0 € U and thus U is non-empty.
Letu=nz,v=nz' € U, thenu+v=n-(z+z')e Uand —u=n-(—z) € U.
Thus U < Z.

Let now U < Z be an arbitrary subgroup of Z and suppose U # {0}. We have
to find n > 0, such that U =n-Z. Let’s set

n =min{u € U |u> 0}.

For this note that U contains some non-zero element 1 and hence its inverse
—u, and one of these will thus be strictly greater than zero.

We claim that U = n - Z. Note first of all that with n € U and U being a
subgroup, we have

n-z=nt+ztimesinn.(—z)=(n)+ztmes (-n)n-0=0e U

for all z > 0. Hence, n-7Z C U.
On the other hand, if we choose an arbitrary 0 # w € U, then division with
remainder modulo n gives uniquely determined integers z,r € Z such that

u=—m-z+r and 0<r<n.

Rearranging the equation and using the fact the U is a subgroup containing
n -7 we find
r=u—m-zel.

But then the minimality assumption on n implies that r = 0 and hence u =

n-zen-27Z. O
An={meB,|sgn(m) =1} < 3,.
E.g.A3—{( ), (123),(1 32} { ,(12),(13),(23),(123),(1 32)}.

({1, —1},-) < (R\{0}, -

1.7 Proposition
Let (G,-) be a group, U, V,U; < G,iel, M CG.

a.

b.

e

d.

mieluiSG'
UuV<Gifandonlyif UCV orVC U.

={g7" g In>0,9g1,...,gn € M, 01,..., 0, € Z}.
U-V<Gifand only if U-V=V-UWif and only if U-V = (LU V).

Proof: a. This is Exercise 2 on the Assignment Set 3.

b.

If U C VorV C U, then the union is obviously a subgroup. Let’s therefore
suppose that U € V and V € U. Then there are elements uw € U\ V and
v € V\ U. It suffices to show that w-v ¢ UU V. Suppose the contrary. If

1

u-ve U, thenv=u"-(u-v) € Uas well in contradiction to the choice of v.

And ifu-v €V, then u= (u-v)-v' € V, which gives again a contradiction.
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c. Weset N={g{"---g%[n>0,0g1,...,9n € M, x1,..., 00 € Z}.

Let’s first show that N C (M). If U < G such that M C U, then g7 --- g5~ €
U for all g; € M and «y,...,ax, € Z. Thus N C U, and thus N C (M).

It remains to show (M) C N. For this it suffices to show that N < G with
M C N. Since the empty product by convention is eg, N is non-empty.
Ifh =gy g% h =g g% € N are two arbitrary elements, then
h-h' =g g% € Nand h'! = g ;*---g;* € N. Thus N < G, and
M C N is fulfilled anyway.

d. Let’s first show that U-V < G ifand only if U-V =V - U.

IfU-V<Gandue Uandv eV are given, then vou= (u'-v') ' eU-V.
Hence V- U C U -V, and by symmetry V- U =U"-V.
Suppose now V-U = U-V. Since eg € U, V, we have eg = eg-eg € U-V,
and the latter is non-empty. Let u,u’ € U and v,v' € V be given. Then by
assumption v-u' € V-U = U-V, and thus there are elements w € U and v € V
such that v-u’ =1 -v. Hence,

(w-v)-(u-v)=u-uw-v-v' eu-v,

and (u-v) '=v'l.uleV.-U=U V. But thus U-V < G.

Let’s now show that U-V < G ifand only if U-V = (U U V).

If U-V = (UUYV), then in particular U -V < G.

It remains to show that U -V < G implies U -V = (LU V). For this note that
U -V contains U U V, since both U and V contain eg. But being a subgroup
of G, then

(Uuv)= (] H < u-wv
UUVCH<G
On the other hand

U-VC{gy g2 In>0,01,...,gn €EUUV,x1,... 000 € Z} = (LU V).
]

1.8 Example a. Let n,m > 0, then due to the unique factorisation of natural
numbers we have n-ZNm-7Z = lem(n, m) - Z.
b. Let n,m > 0, then due to the so called Bézout identity we have n-Z+m.7Z =
hef(n, m) - Z.
c. ((12),(123))=%3,since (123)=(12)o(123)0(12),(13)=(123)0(12)
and (23)=(12)o(123).

1.9 Definition and Proposition
Let (G, -) be a group, U < G.

a. For g,h € G we define
g~uth & g¢g'-hel

This defines an equivalence relation on G, and the equivalence class of g is just
g-U={g-u|ue U} We call the equivalence classes (left) cosets.
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Note: For g,h € G we have either gU = hU or gU N hU = (. Moreover,
since any element of G belongs to some coset, G can be written as the disjoint
union G = [ [;.; gi - U of certain cosets and we call {g; | i € I} the a system of

representatives.
b. Similarly, for g,h € G we define
g~urh & g-h'el
This defines again an equivalence relation on G, and the equivalence class of g

isjust U-g={u-g|ue U} We call the equivalence classes right cosets.

Note: For g, h € G we have either Ug = Uh or UgNUh = (). Moreover, since
any element of G belongs to some coset, G can be written as the disjoint union
of certain right cosets.

Note: U =-eg-U = U-eg itself is always a left and right coset! Moreover, g-U = U
if and only if g € U if and only if U - g = U.

Proof: By symmetry it suffices to prove Part a.

Show: ~y is an equivalence relation.

Let g € G, then g7'- g =eg € U, and thus g ~us g, i. e. the relation is reflexive.
If g,h € G such that g ~y1 h, then g7'-h € U. Thus h™'-g = (g*] -h)fl e u,
which means h ~;; g and gives the symmetry of the relation.
If g,h,k € G such that g ~y; h and h ~; k, then g7 - h,h~" . k € U. But then
also

(" h)-(h'-k)=¢g ' kel,
that is, the relation is transitive. So, finally, ~;1 is an equivalence relation.

Show: The equivalence class of g € G with respect to ~; is just g- U.

By definition, the equivalence class of g € G is just
(heGlg~uuhl={heG|g'-heU}={heGlheg-U=g-L

Taking general properties of equivalence relations into account we know that two
equivalence classes, which are not disjoint, coincide, and we know that the disjoint
union of the different equivalence classes is the whole set G. O

1.10 Example a. Consider the group (7, +) and the subgroup nZ < Z forn > 0
fixed. The cosets are then all of the form

x+nZ with x¢€Z.

Since Z is abelian, left and right cosets coincide! A possible system of repre-
sentatives is {0, 1,...,n — 1}. Note also that e. g. 4 +11Z =15+ 117Z.

b. G=%; U=((12)) and 7= (123), then
molU=1{(123),(13)}#£{(123),(23)} =Uom

Thus in general the left and right coset corresponding to an element will not

coincide!
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1.11 Theorem (of Lagrange)
Let (G, ) be a finite group, V < U < G.

a.

C.

d.

#gU | g € G} = #Ug | € G}, i. e. the number of different left cosets
coincides with the number of different right cosets. This number is called the

index of U in G and is denoted by |G : U|.

Gl =[Ul-|G: U]

In particular, the order of a subgroup always divides the order of the group!
IG:V|=|G:U|-U:V|.

_ [uivi
u-Vi= g

Proof: We note that for g € G fixed the map x: U — g-U:u+ g-uis bijective

with inverse f:g-U—>U:ve— g~

V. v. In particular we have for any g € G

Uf =g - Ul

a./b. Since G is finite, ~; | and ~y; ; lead to finite systems of representatives {g1, ..., gn}

and {hy, ..., h,.} for left respectively right cosets of U in G. In particular, n is
the number of different left cosets and m the number of different right cosets.
It follows

[Joo-u=c=]Ju-n,,
i=1 j=1

and hence

m

neul=>Y lgi-U=I6=) [U-hl=m-[Ul

i=1 =1

This, however, impliesn =m = |G : U| and |G| = U] - |G : U|.

. The proof is Exercise 1 on the Assignment Set 3.

d. By part b. it suffices to show |U] = [V|-|U : UN V|. In order to see this,

let {uy,...,u,} be a system of representatives of the cosets of UN V in U, in
particular n = [U: U N V]|.

Claim: U-V =]]_,w V.

Let’s show first that the union on the right hand side is disjoint. For that let’s

suppose that we have v,w € V such that ui-v=u;-weu-Vnu;-V with
i#£j. Then uj’] ‘wy=w-v'eunyV, thus

w=1w-(w-v') ey (UNV).

This, however, is a contradiction to the fact that the cosets u; - (U N V) and
;- (UN V) have no intersection.

We now show that indeed U -V = [JI;u; - V. Since u; € U, we have of
course U?:] u -V CU-V. Let now u € U be arbitrary. Then there is some
i e {1,...,n} such that u € u;- (UN V). Hence there is some v € UNYV
such that w = w;-v, and thus u-V =u;-v-V = u; - V. But this implies
u-vayt,w-V.
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Having proved the claim, we deduce at once

uf - V]|
unv|

\u\:Z|u,i-V|:n-|V|:|U:UﬂV|-\V\:

i=1

1.12 Remark a. If U < G, then |U| ‘ |G|!

b. However, if d ‘ |G|, then there is not necessarily a subgroup of G of order d.
E.g.d=6and G = A,.

C) NORMAL SUBGROUPS

1.13 Definition and Proposition
Let (G, ) be a group. A subgroup N < G is called a normal subgroup of G if and
only if one of the following equivalent properties is fulfilled:

a. n:=g-n-g'eNforallneN,gecaG.

b. g-N-g'=Nforall geaG.

c. g-N=N-.gforall geG.

d. (g-N)-(h-N)=(g-h)-Nforall g,heG@G.
We denote this by (N,-) < (G, -) or simply by N < G.

Proof: a. = b.: By the assumption we have g- N -g~' C N for any g € G. Let’s
now fix an arbitrary g € G and apply this inclusion to g~'. We then get

_ _1\—1
g '-N-(g") CN,
and thus
N=ec-N-eg=g-g'N-(g7") " -g'Cg-N-g'CN.

This, however, implies g - N-g~' = N.
b. = c.: Multiplying the equation g - N -g~' = N by g on the desired equality.
c. = d.: Note that N- N ={n; -n, | n;,n, € N} = N, since eg € N! We thus get
forg,he G
(gN) - (hN) = (Ng) - (hN) =N - (gh) - N = (gh) - N - N = ghN.
d. = a.: Let g € G and n € N be given, then
g.Tl.g*1 :g.n.gfl.eGEgN.gle:g.gfl ‘N =eg-N=N,
O
1.14 Example a. The trivial subgroups 1 and G of a group (G,-) are always

normal subgroups.
b. If (G,-) is abelian, then every subgroup is a normal subgroup.

c. ((12)) is not a normal subgroup of $3 by Example 1.10 b., while ((1 2 3)) 95;
by Part d.
However, (12)o(123)0(12)'=(132)#(123). Thus, gNg~! = N does
not imply gng~' =n for allm € N!
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d. A, <S5, by Proposition 1.15. For this note that for n > 2 we can write
S =A,U(12)oA,, where the first set contains all even permutations and
the second one contains all odd ones.

1.15 Proposition
Let (G,-) be a group, N < G with |G : N| =2, then N < G.
Proof: Let g € G.
1st Case: gN = N. Then g =g-e € N, and hence Ng =N = gN.
2nd Case: gN # N. Then g € N, and hence Ng # N. However, since the index
is two, the complement G \ N of N in G must be a right and left coset. Hence
gN =G\ N = Ng.
U

1.16 Proposition
Let (G,-) be a group, N, N1, N, <G, U< G.

a. N-U<G.
b. N;-N; <G.
c. NNnu<u.

d. NiNN;dG.
e. IfN]ﬂNzZIL, then ;- My =Ny - Ny fO’f‘ all n; € Nj.
Proof: a. Since N <G, we have N-u=wu-N for all u € U, and hence

N-U=|JN-u=[Ju-N=U-N.
uel uel
Thus N - U < G by Proposition 1.7.

b. By Part a. N; - N, < G, it thus remains to check one of the conditions for
normality. Let g € G. Taking into account, that N; and N, are normal, we
get

g-Ny-N2=Nj-g-N2=N;-Nz-g.

c. This is Exercise 3 on Assignment Set 3.
d. This is Exercise 3 on Assignment Set 3.

e. Let ny € Ny for i =1,2 be given. Since N7y and N, are normal subgroups, we
have n; - n, 'Tl?l € N, and n, - T'LT] 'TIZ] € N;. But then

n -nz-n]’1 -ng’ € Ny Ny ={eg).

1 1

Hence, ny -n,-n; -n," = eg, which implies ny - n; =n, - ny.

O

1.17 Definition and Proposition
Let (G,-) be a group, N < G. We denote by G/N = {gN | g € G} the set of (left)
cosets of N in G. We then define

.:G/N x G/N = G/N: (gN,hN) = (gN) - (hN) = ghN,
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where the last equality is due to Proposition 1.13.

Then (G/N,-) is a group, the so called quotient group of G by N.

The neutral element egy is just the coset N = egN, and the inverse of gN is g~'N.
If (G, -) is abelian, then (G/N,-) is abelian as well.

Proof: Note that the multiplication is well-defined by Part d. in Definition 1.13.
Moreover, since N = egN € G/N is always a coset, G/N is a non-empty set. It
thus remains to verify the three group axioms.

Let gN,hN, kN € G/N be given. Then the associativity follows from the associa-
tivity of the multiplication in G:

(gN-hN)-kN = ghN-kN = ((gh)-k)-N = (g-(hk))-N = gN-hkN = gN-(hN-kN).
The coset N = egN acts as neutral element:
egN-gN =(eg-g)-N =gN.

And for gN € G/N the inverse element is just g~ 'N:

g 'N-gN= (g g) N=egN.
If G was abelian, then for gN,hN € G/N we have

gN - hN = ghN = hgN = hN - gN.

O

1.18 Example a. Z/NZ ={0+nZ,1+nZ,...,(n— 1)+ nZ}, and we usually
write a instead of a + nZ if no ambiguity can occur.
E.g. (3+5Z)+ (4+457Z)=7+57Z =2+5Z,since 7=2+5-1= 2(mod 5).

b. Sg/Ag = {Ag, (] 2) OAg}.

1.19 Remark
Let (G,-) be a group, N < G. Then there is one-to-one correspondence between the
subgroups G/N and the subgroups of G containing N given by

U<GINCU} — {U<G/N}:Um U/N,

Under this correspondence the normal subgroups of G/N correspond precisely to
the normal subgroups of G containing N.

Proof: Proving this remark comes basically down to showing that, given U < G/N,
the set {u €eG ‘ uN € H} is a subgroup of G, containing N, and that it is normal,
when U is normal. This establishes the inverse of the above map. We leave the
details to the reader. O

D) HOMOMORPHISMS

1.20 Definition

Let (G, ) and (H, o) be groups. A map ¢ : G — His called a (group-)homomorphism
if and only if for all g, g’ € G we have ¢(g-g') = ¢(g) o 9(g’).

If, moreover, @ is injective / surjective / bijective, then we call @ a monomorphism

/ epimorphism | isomorphism.
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If (H,o) = (G, -), then the homomorphisms are also called endomorphisms and the
isomorphisms are also called automorphisms.
We denote by Hom (G, H) the set of all homomorphisms from G to H, and by Aut(G)
the set of all automorphisms of G.
We say that (G,-) and (H, o) are isomorphic if there is an isomorphism from G to
H, and we denote this by (G,-) = (H, o) or just G = H.
1.21 Example a. Themap ¢ : Z/27 — {1,—1} with ¢ (0+2Z) = 1 and @ (1+27Z)
is an isomorphism from (Z/27,+) to ({1 ,—11 )
b. sgn: (%,,0) — ({1 ,—1} ) : 70— sgn(7) is an epimorphism if n > 2.
Note: sgn(ay ... ax) = (1),
c. det : (Glu(K),0) — (K\{0},-) : A — det(A) is an epimorphism by the
determinant product rule.
d. exp: (R, +) — (]R \ {0}, ) : X — e* is a monomorphism by the exponential

laws.

e. Let (G,-) be a group, and let g € G be some fixed element. We define a map
%:G—G:h—h’=g-h-g .

This map is an automorphism with inverse o,-1, since o (hh’ ) = ghh'g ! =

ghgg 'g'g™" = ag(h) - ag (R).
Automorphisms of this type are called inner automorphisms. We denote by
Inn(G) the set of all inner automorphisms of G.

f. Let (G,-) be a group, N < G. The map v:G — G/N : g +— gN is called the
quotient map onto G/N and is an epimorphism.

1.22 Proposition
Let « € Hom(G,H) and € Hom(H, K), where (G, -), (H, *) and (K, <) are groups.
a. aleg) =ey and x(g") = (oc(g))f]
b. Im(a):= «(G) < G and is called the image of «.
c. Ker(a):=a""(ey) = {g €Glalg) = eH} < G and is called the kernel of .
d. o is a monomorphism if and only if Ker(a) = {eg}.
e. Ker(v:G— G/N)=N for NdG.
f. B oaé€e Hom(G,K).
g. If o is bijective, then o« ' € Hom(H, G).
In particular, (Aut(G), o) is a subgroup of (Sym(G), o).
Proof: a. Note
en * aleg) = a(eg) = aleg - eg) = «leg) * x(eg),
and by the cancellation law we have ey = x(eg). Moreover, for g € G we then
get

—1 1

(g ) xalg) =a(g ' g) = aleg) = en = «(g) " * a(g)
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and applying the cancellation law once more we end up with oc(g*‘) =a(g)".
This is Exercise 1 on Assignment Set 4.

We note first that by «(eg) = ey we get eg € Ker(«), so that the kernel is non-

empty. Moreover, for g, g’ € Ker(a) we have that oc(g . g’) = «(g) * oc(g') =

en * ey = ey, so that g- g’ € Ker(a). And a(g™') = a(g)™" = ¢! = en,

which implies that g~' € Ker(«). Hence Ker(a) is a subgroup of G. It remains
to show that it satisfies the normality condition. Let n € Ker(«) and g € G.
Then

a(g-n-g7") =alg) xan)xx(g') = alg) * en * x(g) ' = en,
and therefore, g-n - g~ ' € Ker(«).
Let’s first suppose that « is injective. This implies that the kernel of «, which

is the preimage of ey, contains at most one element. However, by Part a.
eg € Ker(a), hence Ker(a) = {eg].
Suppose now, that Ker(a) = {eg}, and let g, g’ € G such that «x(g) = oc(g’).
We have to show that g = g’. By assumption we have

en =a(g) ' xx(g) =x(g7") xx(g') =x(g7" - g'),
which implies that g7 - g’ € Ker(x) = {eg). Hence g - g’ = eg, and thus
g=g9"
g € Ker(v) if and only if gN = N if and only if g € N.
Let g,g’ € G be given.

(Boa)(g-g")=p(xlg-g")) =B(x (g)* x(g"))
=B (al(g)) o Blee(g") = (Box)(g)o(Box)(g').

This is Exercise 1 on Assignment Set 4.

1.23 Theorem (Homomorphismtheorem)
Let « € Hom(G, H), then the map

G/Ker(a) — Im(x) : gKer(x) — «(g)

s welldefined and an isomorphism.
In particular, G/ Ker(a) = Im ().

Proof: Let’s do the proof in several steps.
Step 1: « is well-defined.

Let g Ker(a) = g'Ker(x). We have to show that a(g) = «(g’), that is, « does
not depend on the particular representative of the coset. By assumption we have

gf]

- g’ € Ker(a). Hence

en=0a(g '-g') =alg) ' +afg’),

and thus «(g) = «(g’).
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Step 2: « is a homomorphism.

Let g Ker(«), g’ Ker(a) € G/ Ker(a). Then

a(gKer(x) - g’ Ker(a)) = x(gg’ Ker(a)) = a(gg’)

Hence & is a homomorphism.

Step 3: « is surjective.

Let h € Im(x) be given. Then there is some g € G such that «(g) = h. But then
(g Ker(a)) = a(g) = h, and thus & is surjective.

Step 4: « is injective.

Let g Ker(a) € Ker (). Then

n=a(gKer(x)) = a(g).

Hence, g € Ker(«), and thus g Ker() = Ker(«) is the neutral element of G/ Ker(«).
This implies Ker (R) consists only of the neutral element, and therefore & must be
injective by the previous proposition. O

1.24 Theorem (Isomorphismtheorems)

Let (G,-) be a group, N,N', M < G such that M C N.
a. (N-N)/N'=N/(NAN).
b. (G/M)/(N/M) = G/N.

Proof: a. This is Exercise 2 on Assignment Set 4.

b. We note that N/M is actually a normal subgroup of G/M, so that the double
quotient group on the left hand side makes sense. And we do the proof in a
similar way, defining a map by

B:G/M— G/N:gM— gN,
showing that this is an epimorphism with kernel N/M and then applying the
Homomorphism Theorem.
Step 0: {3 is well-defined.

Since we define the map  via the choice of a (non-unique) representative
of the coset, we have to show that 3 is well-defined, i. e. that the definition
is independent of the chosen representative. Let therefore gM = g'M, then
g'-g’€ M CN, and thus = gN = g'N, i. e. gN does not depend on the
representative of gM.

Step 1: f is a homomorphism.
Let gM, g’'M € G/M be given. Then

B(gM-g'M) =B(gg'M) = gg'N = gN - g'N = B(gM) - B(g'M).
Step 3: (3 is surjective.
Let gN € G/N be given. Then gN = 3(gM) € Im(f), so that (3 is surjective.
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Step 4: Ker(f) = N/M.
gM € Ker(f) if and only if gN = N if and only if g € N if and only if
gM € N/M.
U
1.25 Example a. Ker(sgn) = A, <3, and ($,./An,0) = (Z/27,+).
b. Sl.(K) := Ker(det) < Gl,(K) and (Gln(K)/Sln(K),o) = (K\{O}, )

c. Consider the group(Z, +) and normal subgroups N = nZ, N’ = n'Z. We then
deduce from the Isomorphism Theorems:

7/ nZ = hef(n,n"YZ/M'Z = (MZ +n'Z)/M'Z

hcf(TTLl,n
=nZ/(MZNN'Z) =nZ/lem(n,n')Z = 7,/ 7
which corresponds to the fact that n-n’ = hcf (n,n’) - lem (n,n’).
1.26 Theorem (of Cayley)
Let (G, -) be a finite group of order n, then G is isomorphic to a subgroup of (S, o).

Proof: We first note that by Exercise 3 on Assignment Set 4 the groups (5, 0) and
(Sym(G), o) are isomorphic, so that it suffices to show that G is actually isomorphic
to a subgroup of the latter one. We define a map

A:G — Sym(G):g— A,
where Ay : G = G : h — g-h. Note that A4 is actually a permutation of G with
inverse Ag-1.
Show: A is a monomorphism.

For g, g’ € G we have
Agg'(h)=(g-9")-h=g- (9" -h) =A(Ag(h)) = (AgoA})(h)
for all h € G, which implies Ag.q = Ay 0 Agr. But then
AMg-g') =Agg =Ag0oAg =A(g) oA(g')

and A is a homomorphism. It remains to show that A is injective, i. e. that the kernel
of A consists only of the neutral element eg.

g € Ker(A) if and only if A; = A(g) =idg. However, the multiplication by g on the
left is the identity if and only if g = eg. Thus Ker(A) = {eg}.

Knowing that A is a monomorphism the Homomorphism Theorem gives

G = G/{eg) = G/Ker(A) =Im(A) < Sym(G).
]

This theorem says basically, that it would be sufficient to study subgroups of the
symmetric groups ($,,0), n € IN, in order to get to know all possible finite groups
up to isomorphism. This sounds in a certain sense very promising. However, the
fact that the symmetric groups contain so much information is reflected by the fact
that they are very complicated as well. The order of $, is n!, so that already 59
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has 3628800 elements. If we wanted to use this approach to study groups of order
10, we would have to cope with a very complicated object, while general methods
of group theory allow us to show that there are, up to isomorphism, only two quite
simple groups of order 10.

2 Cyclic Groups

In this paragraph we would like to obtain a good understanding of the structure of
the simplest type of groups, namely those who can be generated by a single element.

2.1 Definition

A group (G, -) is said to be cyclic if and only if there is a g € G such that G = (g).
We call g a generator of G.

If (G,-) is any group, we then call o(g) := |(g)| = min {n >0 ‘ g" = eG} the order
of g, and o(g) divides every integer n with g™ = eg. (Cf. Exercise 1 on Assignment
Set 2.)

2.2 Theorem (Classification of Cyclic Groups)
Let (G, ) be a cyclic group.

a. If|G| =o0, then (G, ) = (Z,+).
b. If |G| =n < oo, then (G,-) = (Z/NZ,+).

Proof: Let G = (g) = {g* | z € Z}, where the last equality is due to Proposi-
tion 1.7. The map

x:7 —G:z— ¢g”*

is, due to the exponential laws, an epimorphism of groups. By the Homomorphism
Theorem we thus have

7/ Ker(a) = Im(x) = G.

Due to Example 1.6 there is an integer n > 0 such that Ker(a«) = nZ, so that
G = Z/nZ. This implies the above statement, once we note that 0 -7 = {0} and
7./{0} = 7Z in an obvious way. O

2.3 Proposition (Subgroups of Cyclic Groups)
Let (G, ) be a cyclic group with generator g.

a. If|G|=o0, then U< G if and only if An >0 : U:<g“>.
b. If|Gl=n < oo, then U< G if and only if 3m |n : uz<g%>.

In particular, G has for every divisor of |G| precisely one subgroup of this order.

Proof: Part a. is an immediate consequence of Theorem 2.2 and Example 1.6 b.,
where we classified the subgroups of (7, +).

For Par b. we note that according to Remark 1.19 there is a one-to-one correspon-
dence between the subgroups of Z/nZ and the subgroups of Z which contain nZ.
However, U < Z with nZ C U if and only if 3m : U = mZ and nZ C mZ if and
only if 3m : U=mZ and m | n. This proves Part b. O
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2.4 Corollary

FEvery subgroup of a cyclic group is cyclic.

2.5 Proposition

If (G, ) is a group of prime order, then G is cyclic.

Proof: Let eg # g € G. Then 1 # (g) < G. By the Theorem of Lagrange we have
1 < [g)l | IGI.

Since the latter is a prime number, this implies |(g)| = |G| and thus (g) = G. O

2.6 Proposition

Let (G,-) be a group, g € G with o(g) =n and k € Z. Then o(gk) = Ff&n).

Proof: Recall that lem(k,n) = k - mrmg- We thus get by Exercise 1 on the As-
signment Set 2

0(¢g) =min{a>0]|g"*=ec} =min{a>0|n|ka}
n
hef(n, k)°
U

:min{aZO‘n\ka and k\ka}:min{aZO‘ lcm(k,n)\ka}:

2.7 Proposition

Let (G,-) be a group, and let g,h € G such that gh = hg and hcf (o(g),o(h)) =1
Then o(gh) = o(g) - o(h).

In particular, (g, h) = (gh) is a cyclic group of order o(g) - o(h).

Proof: Let m = o(g), n = o(h) and k = o(gh).

Note that (gh)™ = (g™)" - (h")™ = eg, since gh = hg. Hence, k | mn.
Moreover, eg = (gh)* = g*- h* implies that g~ = (hf‘)k. Taking into account that
o(h) = o(h*‘), Proposition 2.6 gives

6 ~o(0 )
= = = h = .
T et (k, m) o(9") =o( (") hef(k, 1)
In particular, a divides m and n, hence a | hef(m,n) =1, and thus a =1, i. e. g~

and (h*])k have order one. Thus g* = eg = h*. This however, implies the order of

g and the order of h divide k, hence their least common multiple divides k, i. e.
mn

mi = hef(m,n)

=lem(m,n) ‘ k.

Thus we must have mn = k.
For the in particular part we note that by Proposition 1.7 and since gh = hg, we
have
(9,) =(g) - (h).
Moreover, by the Product Formula in Theorem 1.11 we get

{g)| - ()]
(g, )| = 77 < mn.
9 =gy ()
On the other hand (gh) < (g, h) is a subgroup of order mn, thus (gh) = (g, h) and

(g, h)| = mn. O
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2.8 Proposition
Let G be a finite subgroup of the multiplicative group (K*,:) of a field K, then G is
cyclic.

In particular, for a prime p the group (Z/pZ \ {0}, ) is cyclic of order p — 1.

Sketch of Proof: Let m = lcm {o(a) ‘ ac G}, then in particular a™ =1 for all
acG.

With the aid of Proposition 2.6 and of Proposition 2.7 we can find an element g € G
such that o(g) = m. Hence m = o(g) < |G|.

Since K is a field, the polynomial f = x™ — 1 has at most m zeros in K. But since
a™ =1 for all a € G, the elements of G are zeros of f, and thus |G| < m.

We therefore have |G| =m, and G = (g) is cyclic. O

2.9 Theorem (Automorphisms of Cyclic Groups)
Let (G, ) be a cyclic group of order m with generator g.
Then Aut(G) = {0y | hef(k,n) =1,1 <k <n}, where o : G — G : gt — g*.

Proof: Due to the exponential laws the maps o are actually group homomorphisms
for all k € Z. Moreover, «y is bijective if and only if it is surjective, since G is finite.
This is the case if and only if

n

n =Gl = [Tm(ow)] = [{ox(0))] = 0(0) = frrs

by Proposition 2.6. Thus &y is an automorphism if and only if hef(k,n) = 1.

It remains to show that any automorphism of G is of this form. However, if 3 : G —
G is any homomorphism, then {3 is fixed once we know the image of the generator
g, since any element of G is a power of g. L e. B(g) = g* for some k implies
P = o. U

2.10 Corollary
If |G| = p has prime order, then Aut(G) is cyclic of order p — 1.
In particular, invg € Aut(G) is the only automorphism of order 2.

Proof: By Theorem 2.2 we may assume that (G,-) = (Z/pZ,+). Translating
the result of Theorem 2.9 to the additive group gives Aut(Z/pZ) = {ox | k =
1,...,p— 1} with

o Z/pZ — Z/pZ :a—k-a=k-q.
Thus & is just the multiplication with k, and we have a natural identification
(Aw(Z/pZ),0) = (Z/pZ\ [0}, ).

Hence, we are done by Proposition 2.8. 0
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3 Group Actions

3.1 Definition and Proposition

Let (G, -) be group, let QO be a non-empty set and let &« : G — Sym(Q) be a group

homomorphism.

a. «is called an action of G on Q.

Note that «(g) : Q — Q is a permutation of Q for all g € G, in particular it
is a map which may be evaluated at w € Q.
We usually write g-w instead of &(g)(w) for g € G and w € Q, if no ambiguity
can arise.
Thus the fact that o is a group homomorphism translates to the rule

(g-h)-w=g-(h-w)
for g,h € G and w € Q, and we have
eg:w = w.
b. Defining for w, w’ € Q
w~w & JgeG:g-w=w'

gives an equivalence relation on . The equivalence class of w is denoted by
orbg(w) ={g-w | g € G} and is called the orbit of w under G.

Note, that in particular Q is the disjoint union of the different orbits, i. e. there
exist w; € O, 1 € I, such that

Q= H Ol"bg(wi).

c. Stabg(w)={g€ G|g-w =w} < G is called the stabiliser of w.
d. If Ker(a) = 1, the action is said to be faithful.
e. If QO =orbg(w) for some w € Q, then the action is called transitive.

Proof: For Part b. we have to prove that ~ is an equivalence relation. Since w =
eg - w, we have w ~ w and the relation is reflexive.

Suppose that w ~ w’, then there is a g € G such that g- w = w’. Hence w =
egrw=g'-(g-w)=g"
symmetric.

- w’, and thus w' ~ w. The relation is therefore also

Let w ~ w' and w’ ~ w”. Then there are g,h € G such that g - w = w’ and
h-w' = w”. This implies (gh)-w =¢g-(h-w) =g -w’' = w” and w ~ w". So
finally the relation is transitive, and thus an equivalence relation.

It remains to show in Part c. that the stabiliser of w is a subgroup of G. Since
eg W = w, the neutral element belongs ot Stabg(w) and the latter is a non-empty
set. Let now g, h € Stabg(w), then

(gh)w:g(hw):gw:w and gfl.w:gfl.(g.w):eG.w:w

and hence gh, g~! € Stabg(w) as required. O
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3.2 Example

a.

Consider the additive group of real numbers (R,+), the set C of complex
numbers and the map

a:R— Sym(C):t— (aft):C = C:ecc-e?).

Due to the exponential laws for complex numbers this map is a group homo-

morphism, which means that R acts on C. More concretely, the real number t

acts on C by multiplication with e?*™ which is a rotation by the angle 2t7t.

The kernel of « is the set of numbers t for which «(t) = id¢, that is, for which
the rotation by 2t7t does not do anything. This is, of course, the case if and
only if t is an integer, so that Ker(x) = Z. In particular, « is not faithful.
The orbit of ¢ € C is just

orbg(c) = {c- e |t € R}
the circle of radius |c| with the origin as centre, and the stabiliser of ¢ # 0 is
Stabr(c) ={teR|c- e =c}={teR| e =1} =7,
while for ¢ = 0 we have
Stabg (0) = R.

Let (G,-) be any group, k > 1 and

QO={UucG|u=k}.
We define a homomorphism

A:G— Sym(Q):g—Ag

with Ay : QO — O : U — gU. L e. A(g) = A, is the left-multiplication by g, and
we say for short G acts on Q by left-multiplication.

If k < |G], then the action is faithful. For this just note that for a set U of
order k containing eg but not g we always have U # gU. This means that
Ag # idg and hence the kernel of A contains only the neutral element eg.

If k = |G| > 1, then the action cannot be faithful, since QO contains only one
element, and thus Sym(Q) has order one, while G has an order strictly greater
than one.

Consider the special case of U € Q where U is a subgroup of G. Then

orbg(U) ={gU | g € G} = set of left cosets of U in G.

Moreover,
Stabg(U) ={g€e G| gU=U}=U.
In particular

lorbg(U)| = |G : U] = |G : Stabg(U)|.

We will see in Theorem 3.3 that the last equality does not only hold by chance.
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c. Using the notation of b. let U C G with |U] =k and let H = Stabg(U). Then
the group H acts on the set U by left-multiplication, i. e. the map

w:H — Sym(U) : h — uy,

with up : U — U :u — hu, is a group homomorphism. The important point
for this is that hu € U, since h € Stabg(U).
For u € U we find

orby(u) =H-u.

Since the action of H divides the set U into a disjoint union of orbits, there are
Ui, ..., U, € Usuch that

U=JJH w.
i=
Knowing that [H - w;| = [H| we get
Ul =r-[H]

which in particular means that |[H| divides |U| = k! I. e. the stabiliser of U € Q
in Part b. will be a subgroup of G of an order which divides k.

d. Let (G,-) be a group and A C G be a fixed subset. We then consider the set
Q={A%|geG},
where A9 = gAg~'. The group homomorphism
a:G— Sym(Q):h— oy,

with 0, : Q — Q : A9 — (Ag)h = AN, defines an action of G on Q, which
we call conjugation. Q is called the conjugacy class of A.
The action is transitive, since QO = orbg(A), and we call

Ng(A) :=Stabg(A) ={gc G| A9=A}
the normaliser of A in G.

3.3 Orbit Stabiliser Theorem
Let (G,-) be a group acting on the finite set Q, and let w € Q. Then

lorbg(w)| = |G : Stabg(w)|.
In particular, the order of an orbit always divides of the order of the group.

Proof: Let U = Stabg(w), and M ={gU | g € G} be the set of left-cosets of U in
G. We then have to show that |orbg(w)| = |M], i. e. we have to find a bijection
between the corresponding sets. Define

Y: M — orbg(w):gU— g-w.

Since the definition of -y a priori depends on the chosen representative g of the coset
gU, we first have to show that vy is well-defined, i. e. that it is independent of g.
Suppose that gl = hU, then there is a u € U = Stabg(w) such that g = hu. Thus

gw=(h-u-w=h-(u-w)=h-w.
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Hence, 7y is well-defined, and we may go on showing, that vy is bijective.
Suppose that gU, hU € M such that y(gU) =vy(hU),i. e. g+ w =h-w. Then

—1

w=es-w= (g9 w=g"(grw=g"(h-w=(g" h) w.

Hence, g~' - h € Stabg(w) = U, and thus gU = hU. This proves, 7 is injective.
Obviously, vy is also surjective, since for g - w € orbg(w) arbitrary, we have g - w =

y(gW).
This adds up to the fact

‘orbg(w)| = IM| = |G : Stabg(w)]|.

3.4 Corollary
Let (G,-) be a finite group, and A C G any subset. Then

G:Ng(A)=|{A?| g€ G}

)

where the latter is the order of the conjugacy class of A in G.

Proof: By Exercise 3.2 d., the group G acts transitively on the set QO = {Ag ‘ gec
G} via conjugation, and Q = orbg(A). Moreover, by definition the normaliser of
A in G is just Stabg(A) = Ng(A). Hence the statement follows from the Orbit
Stabiliser Theorem 3.3. U

3.5 Corollary
Let (P,-) be a group of order p™ for some prime p, and suppose that P acts on a
finite set Q with hcf (|Q|,p) = 1. Then there is an w € Q such that

orbp(w) = {w},
i. e. w is a fix point of the action.
Proof: By the Orbit Stabiliser Theorem and the Theorem of Lagrange we have
lorbp(w)| = [P : Stabp(w)| | [P|=p"

for all w € Q, and thus there is some integer 0 < m = m(w) < n, depending on
w, such that

|orbp (w)| = p™.
Suppose that m(w) > 0 for all w € Q. We know that there are wy,...,w, such
that .
Q= HOI‘bp(wi).
i=1
By assumption p divides |orbp(w;)| for all i = 1,...,r, thus it divides the sum of

these numbers, i. e.
.

p | D lorbp(wi)| =10

i=1
This, however, is a contradiction to the fact that hef (\Q\,p) =1.
Hence, there is at least one w € Q, such that m(w) = 0, which is the same as
saying the |orbp(w)| =1, or that orbp(w) = {w}. O
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4 The Theorem of Sylow

The Theorem of Lagrange was one of the highlights of this lecture so far, even though
it was not hard to prove. When interested whether a certain subset U of a group G
could be a subgroup, we may check first, if the number of elements in U is a divisor
of G. If [U| does not divide |G|, then it cannot possibly be a subgroup, that’s what
we inherit from the Theorem of Lagrange.

Knowing that the order of a subgroup must divide the order of the group, it is quite
natural to ask, whether for every divisor of |G| there is a subgroup of that order
in G? We know that this is true for cyclic groups and we will show later that it
also holds for abelian groups. However, it does not hold in general, as the following

example shows.

4.1 Example
The group A4 has no subgroup of order 6, even though its order is 12.

We postpone the proof for a moment, so that we can use the result of the next
theorem, which is - so to say - a converse of the Theorem of Lagrange for powers of
primes. We introduce the notation

Ng(k) = [{U <G | U] =k}
to denote the number of subgroups of G of order k, when G is a finite group.
4.2 Theorem
Let (G, -) be a group of order |G| =p®-m with p a prime, a > 0 and m > 0. Then
NG(p‘l) =1 (mod p).
Proof (due to Wieland): Having introduced some notation we will do the proof
in several steps. Define
O={ucaG|u=p}.
Then G acts on Q by left-multiplication, as we have seen in Example 3.2 b., i.e.
A:G—-Sym(Q):g— Ag: Q= 0Q:U— gl)
is a group homomorphism.
Step 1: YU Q3I0<b=>b(U) <a : |Stabg(U)] = p°.
We note that by Example 3.2 c., the group H = Stabg(U) < G acts on the set U by

left-multiplication. Moreover, we have shown there that there is a number r such
that

T Hl = [U] =p*
Hence, |H| = p® for some 0 < b < a, of course depending on U.
Step 2: For all U € Q we have either | orbg(U)| = m or |orbg(U)| = 0 (mod pm).
By the Orbit Stabiliser Theorem and Step 1 be have

a | m
lorbg (U)] = |G : Stabg (U)| = ppb(u) — bWy

So, if b(U) = a, then |orbg(U)| = m, otherwise |orbg(U)| = 0 (mod pm).
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Step 8: |Q|=1-m (mod pm), where 1 = |{ orbg(U) | |orbg(U)[ =m}|.
Since G acts on Q, there are Uy,..., U, € Q such that

Q= L[Ol"bg(ui).
i=1
But then by Step 2

0] =) Jorbg(U;)| = 1- m (mod pm).
i=1

Step 4: 1= Ng(p*).
Weset M ={Uec Q|U<G}and N = {orbg(U.) ‘ lorbg(U)] = m}. Then
1 =|N] and NG(p“) = |[M]|. It thus suffices to find a bijection between M and N .
We define

B:M—=N:U— orbg(U)={g-U]|ge G}
and we claim that (3 is a bijection.
Note first of all, that for U € M we have already shown in Example 3.2 b. that

G a.
orba(W)| = |G U = F =P
U pe

so that B actually takes its values in N!

Let’s now show the injectivity of 3. For this suppose that we have U, U’ € M such
that orbg(U) = B(U) = B(U’) = orbg (Ll’). Then there is a g € G such that
U = gU’. However, since eg € U = gU’, we see that g~! € U’, and hence g € U’
as well. But then U’ = gU’ = U.

It remains to show the surjectivity of B. For this let orbg(U) € N be given.
As we have seen in Example 3.2 c., the group H = Stabg(U) acts on U by left-
multiplication and we have uy,...,ux € U such that

k k
U=]Jorbgu) =] [H- w.
i=1 =1

Note, that due to the Orbit Stabiliser Theorem and the Theorem of Lagrange we

have
Gl /Gl p*m

IG:H| Jorbg(UW)] m

IH| =

This implies
p*=U=k-[Hf =k-p?
which is only possible if k = 1 and U = Hu;. We set now U’ = u]’]Hm which is a
subgroup of G of order p®, hence is an element of M. And that way we get
orbg(U) ={gHu | g € G} = {gu; 'Huy [ g € G}
={gU’ | g€ G} =orbg (U') =p(U') € Im(B).

Hence, 3 is surjective.
Step 5: 1Q] = Ng(p®) - m (mod pm).
Just combine Step 3 and Step 4.
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Step 6: The trick of Shaw!

Note, that the number |Q] does not depend on the group structure of G! It is the
number of subsets with p® elements of a set with p® - m elements. This number is
for any group of order p® - m the same. In particular, we may apply Step 5 to the
given group G as well as to the cyclic group (Z/p“mZ, —}—) and we find

Ng(p®) - m = 10| = Nz/pamz(p®) -m=m (mod pm),

since this cyclic group has precisely one subgroup of order p® by Proposition 2.3.
This implies

pm | (No(p®) —1) - m,
and hence p ‘ Ng (p“) — 1, which is the same as saying

NG(p‘l) =1 (mod p).
U

Proof of Example 4.1: Suppose U < A4 and |U| = 6.

We first note that A4 contains the Kleinian subgroup K4 and, apart from that, the
eight 3-cycles in $,.

Moreover, we note that any subgroup P < U of order 3 must be of the form

P={(1),(abc),(acb)}

for some {a, b, c} C {1, 2, 3,4}, since it is cyclic as a group of prime order.

By Theorem 4.2 Ny (3) = 1 (mod 3), and since U cannot possibly contain 8 different
3-cycles, Ny (3) cannot be 4 or even larger. Hence, Ny (3) = 1 and U has a unique
subgroup P < U of order 3.

In particular, apart from the elements in P the subgroup U can only contain elements
of order 2, since A4 only contains elements of order 1, 2 and 3. Thus we have

U={(1),(12)(34),(13)(24),(14)(23),(abc),(acb)}.

That implies that K4 < U, which is a contradiction to the Theorem of Lagrange,
since 4 | 6. O

An immediate consequence of Theorem 4.2 is the Theorem of Cauchy.

4.3 Corollary (Theorem of Cauchy)
Let (G, -) be a finite group such that p® ‘ |G|, then G has a subgroup of order p®.

In particular, if p ‘ G|, then G contains an element of order p.

4.4 Corollary
Let (G,-) be a finite abelian group and d ‘ |G|, then G has a subgroup of order d.

Proof: We do the proof by induction on d, where the case d = 1 is obviously
satisfied by the trivial subgroup 1.

Let’s therefore assume that d > 1. If d is a power of a prime number, we are done
by the Theorem of Cauchy. Otherwise, there is a prime number p, a > 0 and m > 0
such that d = p®-m, where p / m. Since m < d and p® < d, by induction there
are subgroups N, N, < G such that [N¢y| = m and [N,| = p®.
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However, since G is abelian, Ny and N, are normal subgroups and thus N;-N, < G
is a subgroup of G. We claim that its order is just d. For this note that N;jNN, < Nj,
i =1, 2, and hence its order divides the orders of both, N7 and N, i. e.

IN7 NN | hef (N3], [N2[) = hef (m, p®) =1.

Thus N7 NN, = 1. Applying now the Product Formula 1.11 we may calculate the
order of Ny - N; as
~OINgl - IN2|

N;{ - Ny|= — = —
N7 - Ny N, AN

m-p*=d.

4.5 Definition
Let (G, ) be a group of order p® - m with hef(p, m) = 1. We call the elements of

SyL(G) ={Uu<G|[U=p}

p-Sylow subgroups of G.

4.6 Theorem of Sylow
Let (G,-) be a finite group and let p be a prime.

a. ‘ Sylp(G)‘ =1 (mod p), in particular, G has p-Sylow subgroups.
b. G acts transitively on the set Syl,(G) by conjugation, i. e. if P,Q € Syl ,(G),

then there is some g € G such that Q = P9 = gPg~.
In particular, |Syl,(G)| = |G : Ng(P)| is a divisor of |G|.

Proof: Part a. is just a special case of Theorem 4.2. It thus only remains to prove
Part b. Let P, Q € Syl,(G) be given, and consider the set

Q={P%| geG}.
Step 1: hcf (IQI,p) =1.

By Corollary 3.4 and Theorem 1.11 we have

s _ 6Pl 0m

In particular, |Q] is a divisor of m, and thus the prime p does not divide |Q|.
Step 2: 4ge€ G : Q=P
The p-group Q acts on Q by conjugation as well as G does, and by Step 1 hcf (\Q\,p) =

1. Thus Corollary 3.5 applies and we find a fix point of the action of Q on Q, i. e.
there is some P9 € Q) such that

orbg (Pg) = {Pg}.

This means hP9h~! = P9 for all h € Q, or equivalently hP9 = P9 for all h € Q.
Thus we have in particular

QP9 = P9Q.
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Applying Proposition 1.7 this implies that QP9 is a subgroup of G. Since Q NP9 is
a subgroup of Q, its order is p® for some 0 < b < a. By the Product Formula 1.11

we then find
‘QP9| — |Q| : ‘Pg‘ — p(l ) pa — pzaib
|Q N PY| pb '

Since p® is the maximal power of p which divides the order of |G|, 2a—b < a, which

is only possible if a = b. This however implies
Q=QnNPI="P9,
O

Since a subgroup P is normal if and only if coincides with all its conjugates P9, the

following is an immediate corollary.

4.7 Corollary
Let (G,+) be a finite group, p a prime and P € Syl,(G).
Then P <G if and only if Syl,(G) = {P}.

4.8 Theorem
Let (G,+) be a group of order 2p, where p > 2 is some prime.
Then either (G,-) = (Z/2pZ,+) is cyclic or (G, ) = (D, 0) is not abelian.

Proof: By Theorem 4.6 there are subgroups P € Syl,(G) of order p and U €
Syl,(G) of order 2. Since their orders are prime numbers, they must be cyclic by
Proposition 2.5, i. e. P = (g) and U = (u) for some g,u € G. Note, that UNP = 1,
since the order of the intersection must be a divisor of 2 and of p.

By the Theorem of Lagrange |G : P| = 2, and thus by Proposition 1.15 P < G.
Moreover, by the Product Formula 1.11 we see that |[UP| = 2p, and hence G =
UP = (u, g).

Case 1: UKG.

Then, since UN P = 1, Proposition 1.16 e. applies and we have

u . g = g . 'LL.
However, then by Proposition 2.7 the element 1g has order o(ug) = 2p. Thus
G = (ug) is cyclic of order 2p, and by Theorem 2.2 its isomorphic to (Z/2pZ,+).
Case 2: U is not normal in G.
Since P is a normal subgroup of G, the map

a,: P2 P:h— h*=uhu'

takes values in P and is thus an automorphism of P. However, since o2 = o2 =
X, = idg, the automorphism «,, has order 2. By Corollary 2.10 the inversion

invp: P 5 P:h— h!

is the only automorphism of P of order 2, i. e. &, = invp. But then
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In particular, the generators w and g of G satisfy the relations of the generators T
and o of the group D;, in Exercise 1 on Assignment Set 1. This can be used to
define an isomorphism

G—=Dy:u—1,9g— 0.
We leave the details of this to the reader. O

4.9 Remark

We have just proved in particular that up to isomorphism there are only two groups
with 10 elements, which may serve as alphabets for a CDC, namely the cyclic group
7./107Z of order 10 and the dihedral group Do of order 10. This answers the question
at the end of Paragraph 0.
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CHAPTER 1II

Normal Forms of Linear and Bilinear Maps

1 Jordan Normal Form

1.0 General Assumptions and Reminder

Throughout this section K will be a field and V a finite-dimensional K-vector space.
A basis B = (vq,...,vn) of Vis a family of vectors in V such that

(i) Bis linearly independent,i.e. Y " Avi =0, A € K, implies Ay = ... =7, =0.
(ii) B generates V,i.e.Vve VIA, ..., A, €K :v=) " Aw.

Moreover, if B is a basis, then by (i) the coefficients A; in (ii) for the representation
of v are uniquely determined, and we call

Mg (v) = (A1,...,A) € K®
the basis representation of v w. r. t. B. Thus a basis B determines an isomorphism
MB:V—> K" :v— MB(\)).

Recall also, that all bases of V have the same number of elements, and this number
n = dimg(V) is called the dimension of V.
A typical example is the vector space K™ with the standard basis

E:(e1,...,en),

where e; is the column vector which has entry 1 in the i-th row and entry O else.
When considering vectors of the form (xq,...,%x,)" € K", we will frequently denote
them just by x.

1.1 Definition and Proposition (Matrix Representation)
Let' f € Endg(V)={f:V — V| fis K-linear} and B = (vy,...,vn) be a basis of V.

a. As we have noticed above, there exist uniquely determined coefficients a;; € K,
i,j=1,...,n, such that

n
f(\)j) = Z aijvi-
i=1
We call the n x n-matrix

ayr ... Qin
ME(f) = (aij)i,jzl,...,n =

ant ... Qnn

'K-linear maps from V to V are called endomorphisms.

37
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the matriz representation of f w. r. t. the basis B.2 In the lecture “Linear
Algebra” it was shown that this establishes a one-to-one correspondence be-
tween linear maps from V to V and n X n-matrices, i. e. the following map is
a bijection?

Mg : Endg (V) — Mat(n x n,K) : f —= M (f).
Note that in the case V = K™ and B = E the inverse map of ME is just
Mat(n x n,K) — Endg(B) : A — fa,
where the map f5 is defined by
fa: KM —=K':x— A-x.

Moreover, it has been shown in “Linear Algebra” how the matrix representa-
tions of vectors and of linear maps fit together. Let v € V and f € Endg(V),

then
Mg (f(v)) = Mg(f) - Mg (v), (3)
i.e. ifv= Z?:] }\i\)i, f(\)) = Z?:] Wivi and Mg(f) = (aij)i,jzl,...,n then
i an ... Qn A
Hn Ani ... GQnn )\n

b. If B’ = (vy,...,V]) is another basis of V, then the matrix

Y 'm

TBBI = (tij)ij=1

.....

with the property that
n
Vj, = Z tijvi
i=1

for j =1,...,nis called the base change from B to B’.
In “Linear Algebra” it was shown that the matrix representation of f w. r. t.
the bases B respectively B’ satisfy the following relation

ME/ () = (T§) '~ MB(F) - T (4)
Note also that
(T]?/)il — TB"
As an easy example let us consider V = K?, f : K2 = K?: (x,y)t — (2x —
y,—x)', B=E = (e1,ez) and B’ = (v}, Vv}) with v{ = (1,1)* and v, = (1, —1)".
Since
flvi)=(1,-1)'=0-vi+1-v) and f(v)=(3,-1)'=1-vi+2-V}

>The j-th column of ME(f) is thus just the

basis representation of the vector f(v;) w. r. t. the basis B.
3 Actually, Endk (V) and Mat(n x n,K) both carry the structure of a K-algebra, making M5 a
K-algebra isomorphism.
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, 0 1
MB/ — .

Dealing with the standard basis is even easier and leads to

2 1
ME:(_] 0 )

We may calculate T2, by just taking the vectors of B’ as columns, since B is

we have

the standard basis; calculating the inverse as well we get

1 1 1 1
Tg/:<_| 1) and (T]?/):%'<_I 1).

It is now an easy exercise to verify Equation (4).
Let us also check Equation (3) for one vector, say v = (2,0)%. Since v =
T-vi+1-viand f(v) =(4,-2)" =1 v} +3 -V} we get

ME, (f) - Mg (v) = (? ;) : ( : ) = ( ; ) = Mg/ (f(v)).

1.2 Definition and Proposition (Base Change)
We call two matrices A, B € Mat(n x n, K) similar and write A ~ B if and only if
there is a T € Gl,(K) such that

B=T'"A T

Similarity of matrices is an equivalence relation, as one easily sees, and the equiva-
lence class of A is called the similarity class of A.
1.3 Aim

Given f € Endg (V) we want to find a basis B of V such that ME(f)

is as simple as possible.
Taking the interplay between matrices and linear maps into consideration, this is

equivalent to the following problem:
Given A € Gl (K) find a T € Gl(K) such that T""-A-Tis as

simple as possible.
That is, we are looking for a simple representative of the similarity class of A. Such

a representative would be called a normal form of A.

Of course, we have to specify, what we mean by simple! The precise meaning has
to be looked up in Remark 1.21, where we describe what it means that a matrix is
in Jordan normal form. For the moment it is sufficient to say that simple means it

should be close to being diagonal.

1.4 Definition and Proposition
Let f € Endg (V) and A € Mat(n x n, K) be given.
We call A € K an eigenvalue of f (resp. of A) if and only if one of the following
equivalent conditions is fulfilled:
1) 30#v eV (resp. 0 # x € K") such that f(v) =A-v (resp. A-x =A-x).

2) Eig(f,A) :=Ker(f — A -idy) # {0} (resp. Eig(A,A) ;== Ker(A — A - 1) # {0}).
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3) x¢(A) =0 (resp. xa(A) =0), where x¢ = det(f—t-idy) (resp. xa = det(A—t-1))
denotes the characteristic polynomial of f (resp. A).

Vectors which satisfy the equation in 1) are called eigenvectors of f (resp. A) w. r.
t. the eigenvalue A, and the kernel in 2) is called the corresponding eigenspace.

1.5 Example
Let A= (}1) € Mat(2 x 2,K). Then

1T—t 1
XA e ( 0 1—t) ( )

That is, A = 1 is the only eigenvalue of A, and we say, it has multiplicity two, since
the factor (1 —t) occurs twice in the characteristic polynomial.

Let’s now calculate the eigenspace of A w. r. t. A. By definition this is the set of
solutions of the following homogeneous system of linear equations:

()6 (-0

Of course (x,y)" satisfies this equation if and only if x = 0. Thus

Eig(A,1) =Ker(A —1) = < (?) > .
1.6 Proposition

Let f € Endg (V) and A € Mat(nxn,K). Then f (resp. A )is diagonalisable* if and
only if V (resp. K™) has a basis of eigenvectors of f (resp. A).

Proof: Let’s first suppose that there is a basis B = (v1,...,v,) of eigenvectors, and
let A1,..., A, be the corresponding eigenvalues. Then

f(\)i) = }\i * Vi resp. A- Vi = 7\'1 *Vi.

This however implies

A 0O Lo Lo 0 A 0 Lo Lo 0
0o . - : 0 :
Mg =|: o o o e THAT=0 0 [ (5)
: L0 : U TR
0O ... ... 0 A, 0O ... ... 0 A,
where T is the matrix whose columns are the vectors vq,...,v,.
Let’s now suppose that there is a basis B = (v1,...,v,,) (resp. a matrix T € Gl,,(K))

such that Equation (5) is fulfilled, and call in the latter case the column vectors of
T just vqi,...,v,. Then

f(\)i) = ?\ivi resp. A - Vi = 7\1\)1.
Thus (vq,...,vn) is a basis of eigenvectors. O

*Recall, f is said to be diagonalisable if and only if there is a basis B of V such that ME(f) is a
diagonal matrix. Analogously, A is diagonalisable if and only if it is similar to a diagonal matrix,
i. e. if there is a T € Gl,,(K) such that T~'- A - T is a diagonal matrix.
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1.7 Example (Example 1.5 continued)

Since dimg (Eig(A, 1)) =1< 2 =dimg (Kz) and since A has no other eigenvalues,
K? does not possess a basis of eigenvectors of A, and hence A is not diagonalisable.
In particular, not every endomorphism and not every square matrix can have a

diagonal matrix as normal form!

1.8 Corollary
Let f € Endg (V) with dimg (V) =n and let A € Mat(nxn, K). Suppose that f (resp.
A) has pairwise distinct eigenvalues Ay, ..., Ay, then f (resp. A) is diagonalisable.

Proof: ® Let vq,...,v, € V be the corresponding eigenvectors of f. By Proposition
1.6 it suffices to prove that B = (vq,...,Vv,) is a basis of V. For that, however, it
suffices that B is linearly independent, since V has dimension n.

We proof by induction on k, that the vectors vq,...,vx are linearly independent.
For k = 1, there is nothing to show since by hypothesis an eigenvector is non-zero.
Let now k > 1 and let’s assume that we have already shown that vy,..., v are
linearly independent.

Let wy,..., u € K such that ZE:] uivi = 0. We have to show that then u; = ... =

we = 0.

k k k k k
5 A = A 3 pv — 0= 1(0) = 1 (Z m) Y = Y e
i=1 i=1

i=1 i=1 i=1

Subtracting both sides from each other, we get

k k-1
0= Z(Akui —Aili) v = Z(Ak —Ai) - B i
i=1 i=1
Since by induction vq,..., v 1 are linearly independent, this implies that

Ak —Ai) - i =0

fori=1,...,k—1. And since by assumption Ay — A; # 0, this implies

H=0
fori=1,...,k— 1. We are thus left with 0 = Zf:] LiVi = UxVk, and since the
eigenvector v # 0, we finally get u = 0. Thus vq,..., Vv, are linearly independent,
and in particular B is a basis of V. 0

1.9 Proposition
An endomorphism f € Endg (V) (resp. a square matriz A € Mat(n x n,K)) is
triangulable® if and only if the characteristic polynomial x; (resp. Xa) factorises
into linear factors.

5We do the proof for endomorphisms, the proof for matrices is identical, if you replace f by A
and V by K™

Recall, f is said to be triangulable if and only if there is a basis B of V such that ME(f) is
an upper triangular matrix. Analogously, A is triangulable if and only if it is similar to an upper
triangular matrix, i. e. if there is a T € Gl,,(K) such that T="-A - T is an upper triangular matrix.
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Proof: 7 Let’s first suppose we have a basis B such that

A1 * *
o . :
ME(F)=|: - ~ -~ ],
: R
0 0 An

where * represents an entry which need not be zero. Then the characteristic poly-
nomial of f is
M=t % ok
o .o : n

xs = det(f—tidy) = det (Mg(f)—tﬂ) = det L e = HU\i—t)»

in particular it factorises into linear factors.
The other direction is somewhat harder to proof. We do the proof by induction
on n = dimg(V). If n = 1, then there is nothing to prove, since every n x n-
matrix is automatically a “diagonal” matrix. Let therefore n > 1 and suppose that
endomorphisms of vector spaces of dimension 1 — 1 whose characteristic polynomial
factorises are diagonalisable.
By assumption x¢ = (A; —t) -+ - (A, —t), and Ay is therefore an eigenvalue of f. Let
0 # vi € V be an eigenvector of f w. r. t. A;. We set U = (vy), the subspace of
V generated by v;. Since vy is an eigenvector of f, this space is f-invariant, i. e.
f(u) € U for all u € U. We may therefore consider the restriction of f to U, denoted
by

fu:U—U:ue f(u).
Moreover, f induces an endomorphism on V/U by

fyu: V/U— V/U:v+ U f(v) + U,

which is well-defined since U is f-invariant.

If we extend B’ = (vq) to a basis of V by vectors v,,...,v,, then the residue
classes B” = (v, + U,...,v, + U) form a basis of the quotient space V/U. It is
straightforward to see that the matrix representations of f, f; and fy,u w. r. t. the
bases B, B’ and B” satisfy the following relation:

ME (fu) | * -+ *
Mie)=| O ,, , (6)
. Mg//(fv/u)

0

where the x’s are suitable entries. In particular, for the characteristic polynomials

we have
(A1 —=1) - (A —t) =Xr = Xry - Xeyu = (M — 1) Xfy 00

"Once again we do the proof only for the case of endomorphisms and leave it to the reader to
do the necessary replacements for matrices.
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But then fy,y is an endomorphism of an n — T-dimensional vector space whose
characteristic polynomial factorises. So, by induction, there is a basis of V/U which
triangulates fy,y. W. L. 0. g. we may assume that B” = (v +U,..., v, +U) is such
a matrix. But then by Equation 6 we see that B triangulates f. O

1.10 Remark

Proposition 1.9 says that, if we want a normal form for f (resp. A) which is at least an
upper triangular matrix, then we have to request that the characteristic polynomial
factorises! We will therefore restrict in the theorems on the Jordan normal form to
this case!

1.11 Definition

Let f € Endg(V) and A € Mat(n x n,K) be given with characteristic polynomial
xi = (t —A)™-p resp. xa = (t —A)*-p, where p € K[t] is a polynomial such that
p(A) #0.

We then call multqg(f,A) := k resp. multqq(A, A) :=k the algebraic multiplicity of
A as an eigenvalue of f resp. A. That is, the algebraic multiplicity is the multiplicity
of A as a zero of the characteristic polynomial.

And we call multgeo (f, A) := dimg (Eig(f, ?\)) resp. multgeo (A, A) := dimg (Eig(A, 7\))
the geometric multiplicity of A as an eigenvalue of f resp. of A.

The following proposition gives a direct relation between the geometric and the
algebraic multiplicity of an eigenvalue, so that a look at the factorised characteristic
polynomial suffices to find upper bounds for the dimension of the eigenspaces.

1.12 Proposition (Geometric and Algebraic Multiplicity)

Let f € Endg (V) and A € Mat(n xn,K), and let A € K. The geometric multiplicity
of A as an eigenvalue of f resp. A s less than or equal to the algebraic multiplicity
of A as an eigenvalue of f resp. A, 1. e.

multgeo (f,A) < multqq(f,A) and multgeo (A, A) < multgg(A,A).

Proof: We do the proof for the case of an endomorphism only.
Let m := multge, (f,A) and let (vi,...,vyn) be a basis of Eig(f,A). Extend this to a
basis B = (vy,...,v,) of V. We know that

f(\)j):7\'\)j

forj =1,...,m and that there a;; € K, j=m+1,..., nand i =1,...,n, such
that

n

f(v) = Z Qi - Vi

i=1

forj=m+1,...,n. If we now set
Am+1m+1 - Amtin A m+1 ... Qiq
M = : : and M'=

An,m+1 v Ann Amm+1 ... Omn
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then

. /
M = (g }%)
m—m)Xm

Thus we have

A—1t)- 1, M’
= det =A—=t™. .
Xe ( O(mfn)xm M—t- 11nfm ( ) xm

In particular, the multiplicity multq4(f,A) of A as a zero of xy is at least m =
multgeo (f, A). O

The Theorem of Cayley-Hamilton is one of the key ingredients in the proof of the ex-
istence of the Jordan normal form and at the same time it helps actually calculating
them.

1.13 Theorem (Cayley-Hamilton)
Let f € Endg (V) and A € Mat(n x n, K), then x¢(f) =0 and xa(A) = 0.

Proof: 8 Let’s first prove the statement for matrices.
Consider the matrix By = A —t- 1 € M := Mat(n x n, K)[t] = Mat (n x n, K[t]).
Linear Algebra tells us that the adjoint matrix adj(By) € M of B; satisfies the
following equation

B¢ -adj(B¢) =det(B¢) - 1 =xa - 1. (7)

However, remembering how the adjoint of a matrix is actually defined, we find that
if adj(B¢) = (byj)ij=1

by = (1) - det(Cy),

where Cj; is derived from the matrix By by erasing the j-th row and the i-th column.
In particular, by is a polynomial in t of degree at most n — 1, since Cj; is an
(n — 1) x (n — T)-matrix where each row contains at most one entry which is a
non-constant polynomial in t, and this entry is then linear in t.

Thus the entries of adj(B¢) are all polynomials of degree at most n — 1 and we
may therefore consider adj(B¢) as a polynomial of degree at most n — 1 with ma-
trix coefficients, as indicated in Footnote 8, i. e. there are matrices By,...,B,_1 €
Mat(n x n, K) such that

By =B, 1-t"'+...4+B;-t+Bo.
Let now xa = (—1)™-t" + oy 1-t" ' +...4+ a1 - t + &, then Equation (7) implies
(A—t-1)- (Bp 1-t" .. +Bo) = ()™ Tt ot 1-T-t" 4., 4oyl -t+ap-1.

8Note that the we have the following equality of sets Mat (n x n,K[t]) = Mat(n x n,K)[t],
where the first one is the set of 1 X n-matrices whose entries are polynomials, while the second
one is the set of polynomials whose coefficients are n x n-matrices. Let’s illustrate by an example

how elements in the two sets are identified:

t2—-2 t2—t) (1 1 2 0o -1 -2 0
<t+3 0 )(o o>'t +<1 o>'t+<3 0>'
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As usually with polynomial identities, we may compare the coefficients and get:

A-Bg = a1
A-B] *BO = OC]-I[

: : (8)
A-Bn1 —Bno = Qno1- 1

— By = (_] )n -1
Multiplying the i-th row in Equation (8) by A™ we get

A Bo = Xo * 1
A?-B;  —A-Bg = o - A
: : (9)

A"-B, 1 —AY 1B, = oy - AV

—A"B,, = [(=1)"-AM

Adding the terms on the left hand side in Equation (9) we get the zero-matrix,

adding the terms on the right hand side, we get xa(A). This proves the statement.
For an endomorphism f we note that

M (x¢(f)) = x¢(MB(£)) = xmzn (MR(f)) =0,

by the previously shown result for matrices. However, if the endomorphism x¢(f) has
matrix representation O w. r. t. some basis B, then it must be the zero endomorphism.
O

1.14 Remark
Would not the following be a much shorter proof of the above theorem?

xa(A) = det(A — A - 1) = det(0) = 0.

What is wrong with this proof?

Note, that xa(A) is by definition a n X n-matrix, while det(0), the determinant of
the zero matrix, is just a number! They can hardy coincide!

The problem is, that we substituted A for the variable t in the above equation in

the wrong way!

1.15 Example (Example 1.7 continued)
The characteristic polynomial of A = (1) was calculated as xa = (1 —t)%. Let’s

now plug in A:

win=(()-G)) =6 ) -6

1.16 Lemma
Let g € Endg(V), then there is an m > 1 such that

Ker(g) € Ker (92) C ... C Ker (gm) = Ker (gk) for all k> m.

Proof: This is Exercise 4 on Assignment Set 6. O
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1.17 Theorem (Jordan Normal Form — 2 x 2-Case)

a. Let f € Endg(V) with dimg (V) = 2 such that x; = (Ay —t) - (A, —t). Then
there exists either a basis B of V such that

J(6) == MY () = (AO‘ f)

or a basis B of V such that

J(f) == ME(f) = (2 ;\) and A=A =M\,

We call J(f) a Jordan normal form of f.

b. Let A € Mat(2 x 2,K) such that xa = (A; —t) - (A2 —t). Then there exists
either a T € Glo(K) such that

R b VI
JA) =T AT_<O 7\2)

or a T € Gly(K) such that

1
](A)ZZT]-A-T:(Q 7\) and A=A\ = A,

We call J(A) a Jordan normal form of A.

Proof: We do the proof for endomorphisms by considering different cases, and we
leave it to the reader to translate this proof to the case of matrices.

1st Case: Ay # A;. Then by Corollary 1.8 f is diagonalisable, and we are done.

2nd Case: \; = A; and dimg (Eig(f,?\)) = 2. Then by Proposition 1.6 f is

diagonalisable, and we are done.

3rd Case: A\y = A; = A and dimg (Eig(f,?\)) = 1. By the Theorem of Cayley-
(f —A-idy)? = x¢(f) = 0 and thus the kernel of this map is the

whole vector space V. Taking the dimension of the eigenspace into account, we get

Hamilton we have

{0} € Ker(f — A -idy) = Eig(f,A) € Ker ((f —A-idy)?) =V

Choose any w € V \ Eig(f,A) = Ker ((f —A- idv)z) \ Eig(f,A) and set v=(f —A-
idy)(w). Then, by the choice of w,

0#v e Ker (f — A-idy) = Eig(f, A).

In particular, B = (v, w) is linearly independent and thus a basis of V. Moreover,
we have f(v) = Av, since v is an eigenvector, and f(w) = v + Aw. This leads to the

ME(f) = (2 ;) .

following matrix representation



1. JUNRUAIN INURWVIAL FUIRVIVL

The proof of the Theorem was constructive and allows to calculate the Jordan normal
form and the basis resp. transformation matrix leading to the Jordan normal form.
In the first two cases we just have to calculate a basis of the eigenspaces and they
give either the desired basis B or the transformation matrix T, if we take them as
columns of T.

1.18 Example
a. Let A= (g‘ 3 ) € Mat(2 x 2,K). Then the characteristic polynomial is
xa=det(A—t-1)=(—1—-t)2—9=t"4+2t—8=(t+4)- (t—2).

Thus we are in Case 1 and the Jordan normal form will be

J(A) = (_04 g) .

Let’s now calculate the transformation matrix T € Gl,(K).
For this we first have to calculate the eigenspace of A w. r. t. —4. Solving the
system of linear equations

() () -men()-0

Eig(A,—4) = ((1,-1)").

leads to

Similarly we solve the system of linear equations

-3 3 X X 0
(5)-() =20 ()= ()
in order to find that the eigenspace of A w. r. t. 2 is
Eig(A,2) = ((1,1)").

The transformation matrix is thus the matrix having these two vectors as
columns:

b. Let A= (31) € Mat(2 x 2,K). Then the characteristic polynomial is
xa=det(A—t-1)=0B3—t)-(1—t)+1=t>—4t+4=(t—2)>%

Thus we may be in Case 2 or in Case 3. Let’s therefore calculate the eigenspace
of A w.r.t. 2.
Solving the system of linear equations

(o)) -

Eig(A,2) = ((1,-1)").

leads to
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It thus has dimension 1 and we are actually in Case 3. The Jordan normal

J(A) = (é ;) .

Let’s now calculate the transformation matrix T € Gl,(K). For this we may

form will therefore be

choose any vector w € K? \ Eig(A,2), e. g.
=(1,0)" and v=(A-=-21)-w=(1,-1)4
Then the transformation matrix will have the vectors v and w as columuns:
1 1
T (_] O) |
1.19 Theorem (Jordan Normal Form — 3 x 3-Case)

a. Let f € Endg(V) with dimg (V) = 3 such that x; = (A —t) - (A2 —t) - (A5 —1).
Then there exists either a basis B of V such that

A0 0
J(f):=MZ(f)=]0 A 0
0 0 As
or a basis B of V such that
AT1]0
J(f):=Mz(f)=| 0 A| O
0 0N
or a basis B of V such that
A1 O
J(f):=ME(f)=| 0 A 1
0 0 A

We call J(f) a Jordan normal form of f.

b. Let A € Mat(3 x 3,K) such that xa = (A —t) - (A2, —t) - (A3 —t). Then there
exists either a T € Gl3(K) such that

0 0
I(A) =T }\2 0
0 A3
or a T € GI3(K) such that
A1]0
JAA):=T 0 A O
0 0O\
or a T € GI3(K) such that
AT O
JIA)=T 0 A1
0 0 A
We call J(A) a Jordan normal form of A.
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Proof: Again we do the proof for endomorphisms by considering different cases,
and we leave it to the reader to translate this proof to the case of matrices.

1st Case: Aj, Az, Az are pairwise distinct, or A; = A, = A3 and dimg (Eig(f, 7\])) =
3. Then by Proposition 1.6 and Corollary 1.8 f is diagonalisable, and we are done.
2nd Case: Just two of the eigenvalues coincide and the corresponding eigenspace
has dimension 2.

W. 1. 0. g. we may assume Ay = Ay # A3. Let (v1,Vv2) be a basis of Eig(f,A;) and
let v3 be an eigenvector of f w. r. t. A3. Since v3 ¢ Eig(f,A3) = (vq,Vv2), the vector
space (v1,v2,v3) has dimension 3. This implies that B = (vy,v;,v3) is a basis of V
of eigenvectors, thus

A0 0
ME(f)=|[0 A, 0
0 0 Az

3rd Case: Just two of the eigenvalues coincide and the corresponding eigenspace
has dimension 1. Again w. 1. 0. g. we may assume A\; = A; # A3.

Claim: Eig(f,A\;) = Ker(f —A;idy) € Ker ((f — N idv)z).
With the aid of the dimension formula for linear maps and taking Proposition 1.12
into account we may calculate the dimension of Im(f — Azidy) as

dimg (Im(f—7\3 idv)) = dimg (V)—dimg (Ker(f—7\3 idv)) = 3—dimg (Eig(f,?\g)) =2.
Since by the Theorem of Cayley-Hamilton we have

(f —Avidy)? o (f — A3) = x:¢(f) = 0,
we have

Im(f — Azidy) C Ker ((f — Ayidy)?),

so that the latter vector space has dimension at least 2. Thus, since the eigenspace
of f w. r. t. Ay has by assumption only dimension 1, the claim follows in view of
Lemma 1.16.

Choose now any v, € Ker ((f— A\ -idv)z) \ Eig(f, A1) and set vi = (f — A -idy)(v2).
Moreover, let v3 be any eigenvector of f w. r. t. A3. Then, by the choice of v;,

0 #v; € Ker (f— A1 -idy) = Elg(f,?n),

and (vq,Vv,) are linearly independent. Since Ker ((f — N idv)z) N Eig(f,A3) = {0}
by Exercise 6 on Assignment Set 6, also B = (vq,Vv;,Vv3) is linearly independent and
thus a basis of V. Moreover, we have f(v;) = Ajvq, since vy is an eigenvector w. r.
t. A1; f(v2) =v1 + A1va; and finally f(v3) = Azvs. This leads to the following matrix

representation
A 1T (0
Mip(f)=| 0 A | O
0 0 |A;s

4th Case: A\ = Ay = A3 and dimg (Eig(f,A])) =2
Claim: Ker ((f — A idv)z) =V.
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Let g = f — Ajidy. The Theorem of Cayley-Hamilton gives 0 = x¢(f) = g>. Hence
Ker (g°) = V.

By Lemma 1.16 we know that the ascending chain
Ker(g) C Ker (g%) C Ker (¢°) C ...

will be strictly ascending until the moment where it becomes stationary for good.
Since Ker(g) = Eig(f, A7) has dimension 2 this implies

Ker(g) & Ker (%) = Ker (¢°),

and thus the claim follows.

Choose now any v, € Ker ((f—?n -idv)z) \ Eig(f, A1) and set vi = (f —A-idy)(v2) €
Eig(f, A1). Moreover, since Eig(f, A1) has dimension 2, we may choose v3 € Eig(f,A;)
linearly independent of v;. Then B = (vq,v;,Vv3) is linearly independent and thus
a basis of V. Moreover, we have f(v;) = Ajvq, since vy is an eigenvector w. r. t.
A1; f(v2) = v + Ayvy; and finally f(v3) = Ayvq. This leads to the following matrix

representation
AT 10
MEf)=] 0 A | O
0 0 [N

5th Case: \1 = Ay = A3 and dimg (Eig(f,A])) =1.
Claim: {0} C Ker(f —Ajidy) € Ker ((f — A idv)z) C Ker ((f — N\ idv)3) =V.
As in Case 4 we see that g = f — A;idy satisfies

Ker (93) =V,
and since Ker(g) = Eig(f,A;) has only dimension 1, Ker ((f — N\ idv)z) must have
at least dimension 2 in view of Lemma 1.16. Suppose its dimension was 3. Then

g(gv)) =g*(v) =0 forallveV.
Hence
Im(g) € Ker(g) = Eig(f, A1).
However, by the dimension formula we have
dimy (Im(g)) = dimg (V) — dimg (Ker(g)) =3—-1=2,

in contradiction to the fact that the eigenspace has only dimension 1. Thus Ker (92)
lies strictly between Ker(g) and Ker (g%).

Choose now v3 € V \ Ker ((f -\ idv)z) arbitrary, and set v; = (f — Ajidy)(v3) €
Ker ((f—Ayidy)?) and v; = (f — Ayidy)(v2) € Ker(f —Ayidy) = Eig(f,A¢). In view
of the above claim these vectors form a basis B = (vq, v, v3) and since f(vq) = Ajvy,
f(v2) =vi + A1vz and f(v3) = v, + Ajvs, we get the following matrix representation

A1To0
ME(f)=| 0 A 1
0 0 A
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In the same way as for the 2 x 2-case the above proof provides an algorithm to
calculate the Jordan normal form of an endomorphism resp. a square matrix and

the corresponding basis respectively the transformation matrix.

1.20 Example
Let us consider the matrix

32 1
A=|0 3 1 |eMat(3x3K).
1 —4 -1

The characteristic polynomial is
xa =det(A—t-1)=—t34+5t2—8t+4=(2—1)*-(1—1).

The eigenvalues are thus A; = A; = 2 and A3 = 1, and we are either in Case 2 or
in Case 3. To decide which of the cases it is, we have to calculate the eigenspace
Eig(A,2), i. e. we have to solve the following system of linear equations:

(522 L) ()-C)

Using the Algorithms of Gaufl and the fact that the third line of the above matrix
is equal to the negative of the sum of the first two lines, we find that the eigenspace
has dimension 1 and is
Eig(A,2) = <(1,—1,1)t>.

We are therefore in Case 3 and the Jordan normal form of A is

2 1|0

JA)=1| 0 2|0

0 0|1
In order to find the transformation matrix T we also have to calculate Ker ((A—le)z)
and Eig(A,1).
The system of linear equations

0 0 0 X X 0

1 3 2|yl =(A=21)*[v]| =0

2 6 4 z z 0
leads with the aid of the Gauf} algorithm to

Ker ((A —21)%) =((1,-1,1),(2,0,—1)")

and we may therefore choose v, = (2,0, —1)' € Ker ((A — ZIL)Z) \ Eig(A,2) and set
V) = (A—Zﬂ) V) = (],—],])t.
The corresponding system of linear equations for Eig(A, 1)

£ 6 (-0

gives the one-dimensional solution space

Eig(A, 1) =((0,1,-2)")

and we may set v3 = (0,1, —2)*.
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Hence the transformation matrix T has these vectors as column vectors

1T 2 0
T=|-1 0 1
T -1 =2
1.21 Remark (Jordan Normal Form)

Let f € Endg (V) such that x; = (A; — t)™ - -+ (A, — t)™ with pairwise distinct A;.
Then there is a basis B of V such that?

J(f) = MZ(f) = D DIJiA)
i=1j=1%k=1
J.AJ | 0 0
0 v TN

where
e mM; = min {m > 1 ‘ Ker ((f — ?\iidv)m) = Ker ((f — A\ idv)m“) },
e t;; =rank ((f -\ idv)j*]) — 2 -rank ((f -\ idv)j) + rank ((f -\ idv)j+]),
o = Z;li] ty;, and

A T 0 .o .00

« i) = | | e Mati x 5,0,

0
1
Ai

O ... ... ... 0

We call J(f) a Jordan normal form of f.

Of course, an analogous statement for square matrices holds as well.

The proof of these will be a major issue in the course Algebra II in Term 2.
Note, that the above description allows to calculate the Jordan normal form once
we know a factorisation of the characteristic polynomial, just by calculating certain
ranks of endomorphisms resp. matrices, which can easily be done with the aid of the
Gauf} algorithm.
Note also, that over so called algebraically closed fields, such as the complex numbers,
every polynomial factorises, so that every square matrix has a Jordan normal form
as representative of its similarity class!

9Recall that if we have two matrices A € Mat(m x n,K) and B € Mat(p x q,K), then A®B €
Mat ((m +7p) x (n+ q),K) denotes the block diagonal matrix

Aop= (A Omxa )
Op><n B
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2 Normal Forms of Symmetric Bilinear Forms & Matrices
and Quadratic Forms

2.0 General Assumptions Throughout this section K will be a field of char(K) #
2, and V will be a finite-dimensional K-vector space.

2.1 Definition
a. A map
b:VxV—=K

is called a bilinear form if and only if*° for all v,w,u €V and A\, n € K
bAV+ pw,u) =A-b(v,u) + u-b(w,u)
and
b(u,Av+ uw) =A-b(u,v) + 1 - b(u, w).
We denote by Bilg (V) the set of all bilinear forms on V.
b. A bilinear form b € Bilg(V) is called symmetric if and only if for all v,w € V

b(v,w) =Db(w,v).

2.2 Example
a. (Determinant) Let V = K%, The determinant map

det : K2 x K2 5 K : @ , b — det ar by .
a b, a b

is a bilinear form on K? which is not symmetric.

b. (Scalar Product) Let V = R™. The standard scalar product on R™

(,)iRY X R = R:(x,y) = x-y =) xui
i=1
is a symmetric bilinear form.
c. (Standard Example) Let V = K™ and let A € Mat(n x n,K) be fixed. The
map
ba: K" x K" — K (x,y) Hzt-A-g:Zinaﬁyj
i=1 j=1
is a bilinear form.

Moreover, ba is symmetric if and only if A = A, i. e. if A is symmetric.

Proof: If b, is symmetric, then a;; = ba(ei, ej;) = ba(ej, ei) = aj and A is
symmetric.

On the other hand, if A = A", then

balx,y) =x"-A-y=x"At-y=(x""At-y) =y'-A-x=ba(y,x)

and thus ba is symmetric. O

10T, e., if b is linear in the first component and linear in the second component.
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2.3 Definition

Let B = (vq,...,v.) be a basis of V. We call the matrix
Mz (b) = (b(vl,v])) € Mat(n x n,K)

the matriz associated to b or the matriz representation of b with respect to B.

2.4 Example
Let V= R? and b = (-,-) be the standard scalar product. Let E be the standard
basis of R? and B = ((1 D5 (T, O)t) another basis. Then

Me(b) = ((]) ?) and  Mg(b) = (? :) .

2.5 Proposition
Let B = (vy,...,vn) be a basis of V. The map

Mg : BIIK(V) — Mat(n X n, K) :b— Mg (b)

1S a bijection.
Moreover, b is symmetric if and only if Mg(b) is symmetric.
Note also, for viw € V we have

b(v,w) = Mg(v)" - Mg(b) - Mg(w) = by m) (Ms(v), Mg(w)).
Proof:
Claim: Mg is injective.
Let b, b’ € Bilg(V) such that Mg(b) = Mg(b’). Then for alli,j =1,...,n we have
b(vi,v;) = b'(vi,v5).
Letv=>)1

Aivi € Vand w =} 15y € V be given, then

n n n

ZZ}“HJ (vi, V) :Zihujb’ (vi,v;) = b'(v,w).

i=1 j=1 i=1 j=1
Thus b = b’, and Mg is injective.
Claim: Mg is surjective.
Let A € Mat(n x n, K) be given. Define
b:VxV—oK:(v,w)—ba(Mg(v), Mg(w)) =Mz(v)' - A-Mg(w). (10)
Since Mg (Av+Av') = AMg(v) +A'Mg(Vv'), the map b is actually bilinear, and since
b(vi,Vvj) = balei, ;) = ay,
its matrix representation is Mg(b) = A. Thus Mg is surjective.
Claim: b is symmetric if and only if Mg(b) is symmetric.

By Equation (10) we know
b(\), W) = bMB (b) (MB (\)), Mgz (W)) .

However, applying Example 2.2 c., we have b is symmetric if and only if by (p) is
symmetric if and only if Mg(b) is symmetric. O
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2.6 Remark
We have just shown that once we have fixed a basis of V then symmetric bilinear
forms and symmetric n x n-matrices are virtually the same thing!

Aim: Given b € Bilg(V) symmetric, find a basis B of V such that Mg(b) has a

simple form!

2.7 Proposition (Base Change)
Let B and B' be two bases of V and let b € Bilx(V). Then

Mg (b) = (Tg,)" - Mg(b) - Tg.
This allows us to define the rank of the bilinear form to be rank(b) = rank (Mg(b)),

and this number is independent of the chosen basis B

Proof: Let’s denote the matrix on the right hand side by (ai;)ij=1,..n-
n

Let B = (vi,...,va), B' = (v{,...,v}) and suppose v{ = } " tyv, i. e. Tg, =

yVn
(tij)i=1,..,n- Then

b(v{,vj) =b (Z Vi, ) tlj"L) =3 ) tutib(vi, )
pa =1

= (tri.. tai) - (b(Vk,VL))k‘IZ] Sty b))t = ay,

since (tyi...tn;) is the i-th row of (Tl'f,)t and (ty5...tn;)" is the j-th column of TE,.
Note, that the rank of a matrix is not changed when the matrix is multiplied by

invertible matrices. Thus the rank of b as defined does not depend on the chosen
basis B. 0

2.8 Example (Example 2.4 continued)
We have

“)O)t:O (]vl)t—}—] (]1O)t and (Ovl)t:] ' (]’])t_}_(_])(],o)t’

hence the base change matrix TP is

0 1
T,!?:(] _]>.

Using the results in Example 2.4 we may verify the result of Proposition 2.7 in this

example:

meo)= (3 0) = (0 1) (01) (6 1) = - Mato -2

2.9 Remark
a. If we define for A, B € Mat(n x n, K) symmetric
A~B &= ITeGl(K) : T"-A.T,

then we have defined an equivalence relation on the set of all symmetric n x n-

matrices.

Aim: Find in each equivalence class a representative of a simple form!
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Due to the above remarks this is the same thing as finding for a given symmetric
matrix A a basis B of K™ such that Mg(ba) has a simple form.

If T € Gl,(K) and t; denotes the i-th column of T and if the matrix T*-A-T =
(Cij)ij=1...n, then

ba(tit) =t At =cy,
that is, the ij-th entry of T*- A - T is just the bilinear form ba evaluated at the

i-th and j-th column of T!
In particular ba (e, e;) = aij, when A = (aij)ij=1,.n-

2.10 Theorem (Normal Form of Symmetric Bilinear Forms & Matrices)

a.

Let b € Bilg(V) be symmetric, then there is basis B = (v1,...,vn) of V such
that Mg(b) is a diagonal matriz, i. e. b(vi,v;) =0 if i #j.

Let A € Mat(n x n,K) be symmetric, then there is a T € Gl,.(K) such that

Tt AT is a diagonal matriz.

We call such a diagonal matriz then a normal form for b resp. A.

Proof: a. We do the proof by induction on n = dimg (V), where in the case n = 1

there is nothing to show, since 1 x T-matrices are by default diagonal.

Let’s now assume that m > 1 and that we have already proved the result for
n — 1-dimensional vector spaces.

If b(v,v) =0 for all v € V, then for arbitrary v,w € V we have

0=b(v+w,v+w)—Db(v,v) —b(w,w) =b(v,w) +b(w,v) =2-b(v,w), (11)

and hence b(v,w) = 0 for all v,yw € V|, since char(K) # 2. Then, however,
Mg (b) is the zero matrix for any basis, and in particular it is diagonal.

We may therefore assume that there is some v € V such that b(v,v) # 0. Set
U = (v) and U+ = {u € V| b(v,u) = 0}. By Exercise 3 on Assignment Set 7
we know that U' is a subspace such that V = U4 U™ .

Claim: UNn U+ = {0}.

Let u € UNU™*. Then there is a A € K such that u = Av and

0=>b(v,u) =A-b(v,v).

However, since b(v,v) # 0, A must be zero, and hence u = 0.
This shows in particular that dimg (UL) =n—1, and therefore we may apply
induction to the bilinear form

b Ut x Ut — K: (u,w) — blu,w).

Hence, there is a basis B’ = (vy,...,v,_1) of Ut such that b(vi,v;) = 0 for all
i1 #j. But then B = (vq,...,v,) with v, = v is a basis of V and we have for
all1,j=1,...,n with i1 #

b(\)i,\)j) =0.
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b. By Part a. there is a basis B of K™ such that Mg(ba) is a diagonal matrix. Set
T = T§ € Gl (K) where E is the standard basis of K™, in other words let the
vectors in B be the columns of T, then

Ma(ba) = (T§)" - Me(b) - TE =T A-T.
O
Note that this proof gives a recursive algorithm for finding a basis of V resp. a
transformation matrix T which diagonalises b resp. Al

2.11 Corollary (Theorem of Sylvester)
Let b € Bilg(V) and A € Mat(n x n, K) both be symmetric and of rank .

a. K= C: There exists a basis B of V such that

1, Or n—r
MB(b) :ﬂreaonfr: ( ‘ . )

OTL*]" Xr OT‘L*T

and there is some T € Gl,,(C) such that

]11‘ Or n—r
Tt'A'T:1r®Onr:<o ‘ X )

n—rxr OT‘L*T

b. K=R: There exists a basis B of V such that

]15 Os><t Osxnfr
MB(b) - ILs @ *ﬂt 7 Onfr - Ot><s —1 Osxnfr

Onfr XS OT‘L*'r Xt Onfr
and there is some T € Gl,.(R) such that

ﬂ-S Os><t Osxnfr
TVA.T= s —-1:0, , = Otxs —1¢ | Ogxn—r )

OTL*T X8 OT‘L*T Xt OTL*T

where v = s + t = rank (MB(b)) resp. ¥ = s + t =rank(A).
s s called the index of b resp. of A, s —t its signature. Both s and t are
uniquely determined by b resp. by A.

Proof: It suffices to consider bilinear forms, since the result for matrices follows as
in Theorem 2.10.
a. By Theorem 2.10 there is a basis B’ = (v],...,v/,) of V such that b(v{,v{) =0

Y5
for alli #j. W. 1. 0. g. we may assume

b(vlvl) {%0) iz])"‘)r)

=0, i=r+1,...,n.
Choose for i =1,..., 1 some square root /b(v{,v{) € C of b(v{,v{) and define

Vi
1 / .
vi,oi=1,0.00r
NG v ) y 'y
Vv = { b(vi,v{)

v! i=r+1,...,n.

i

Then B = (vq,...,Vvn) is a basis of V such that Mg (b) has the desired form.
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b. By Theorem 2.10 there is a basis B’ = (v],...,v/) of V such that b(v{,v{) =0

v )
for alli#j. W. 1. o. g. we may assume
>0, i=1,...s,
b(vi,v)) { <0, i=s+1,...,s+t,
:O) l:S+t+],,TL

Let’s define
m.v{, i=1,...s,
Vi = W.v{’ i=s+1,...,s+t,
v, i=s+t+1,...,n

Then B = (vy,...,Vvn) is a basis of V such that Mg (b) has the desired form.
It remains to show that s and t are uniquely determined. Note first, that
obviously 1 = s +t = Tank(MB(b)) and this rank is independent of the
chosen basis by Proposition 2.7.

Claim: s = max { dimg(U) | U < V,b(v,v) > 0V 0 #v € U}, and thus in
particular s depends only on b, and not on the chosen basis B.

By choice, the subspace U = (vy,...,vs) < V satisfies for 0 # Y {_; Ajvy € U

n n

b (i Ai\’i,i?\j\ﬁ) = i Z}\i}\ib(vivvj) = Z}\izb(viyvi) > 0.
i= j=

i=1 j=1 i=1
Thus s is at most the maximum on the right hand side.
Set W = (vgy1,...,Vn). In the same way as above we see that for w € W

b(w,w) <0.
Let U" < V such that b(v,v) > 0 for all 0 #v € U'. Then U' N W = {0}, and
hence
dimg (U') = dimg (U + W) — dimg (W) + dimg (U N W)
<n—(t+n—t—s)) =s.

Thus s is also at least the maximum on the right hand side, which proves the
claim.
If however s and r only depend on b, then t =1 — s does so as well.

2.12 Example (Symmetric Gauf3 Algorithm)

Recall first that any invertible matrix T is the product of elementary matrices

T=P-Py

where an elementary matrix P; corresponds to performing one of the elementary

operations in the Gaufl algorithm, i. e. permuting rows or columns resp. adding

multiples of rows or columns to each other. Recall moreover, that multiplying with

an elementary P from the right is a column operation, while multiplying with the

matrix P from left is the corresponding row operation!
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Thus the relation
B = T“A-T

= PL---Pt.A.Py---Py
says that A can be transformed into B by successively performing row/column opera-
tions, where each row operation is immediately also performed as column operation!
This gives an algorithm to find a normal form for a symmetric A.
Let for example A = (41) € Mat(2,R). Then

1

1 1 T
RiII—=II-51 29 Cll=I-51 /5 o R/C.IHﬁI 10\ R/C:II—v2I1
2

—N

—
O —
— O
—

})4> 1 - 1

03 03
Thus the signature of A, its index and its rank are all 2.

2.13 Definition

a. A homogeneous polynomial of degree 2

q :ZCIﬁXiz-l-Z'ZCthin € Klxq, ..., xn

i=1 i<
is called a quadratic form. By Klxq,...,xnl2 we denote the set of all such
polynomials.
Note, since char(K) # 2, every homogeneous polynomial of degree 2 has this
form!

b. Let b € Bil(V) be symmetric. We call the map
qv: V= K:ve b(v,v)

the quadratic form associated to b.
Note, if Mg(b) = (ayj)ij=1..n and Mg(v) = (Y1,...,Yn)" for some basis B of
V, then

U1 n
do(v) = (Y1, .-, Yn) - (Qi)ij=1,n - < : > = Z auyi +2- Z aijyiy;.
YUn i=1

i<j
Thus, once we have fized a basis B of V, qp is a homogeneous polynomial

function of degree 2 in the coordinates w. r. t. B.
We define for B = (vq,...,vn)

Me(qo) = )

i=1j

n
2
b(\)i,\)j) C XXy = E aiiXy +2- E aijXiX; € K[X], e ,Xn]
i=1

1 i<j

and call this the basis representation of qp with respect to B.

2.14 Example (Example 2.8 continued)
We have calculated Mg(b) = (4 1), and hence

Mz(qy) = Zx% —|—x% + 2Xx1%2.
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2.15 Proposition
a. Letb € Bilg(V) be symmetric. Then for viw € V

b(v,w) =3 - (do(v+ W) — qu(v) — dp(w)).

In particular, the bilinear form b is uniquely determined by its associated qua-

dratic form.

b. Let q € K[xy,...,x] be a quadratic form, and let B be a basis of V. Then
there is a symmetric b € Bilg (V) such that

q =Mg(dp).
c. The map
{b € Bilx(V) | b symmetricy — Klx1,...,xnl2 : b — Mz(qp)
15 bijective.
Proof: a. This is just Equation (11) in the Proof of Theorem 2.10.

b. Let q=3 1", qux{+2- ZK]. dijxiX; be given, and set A = (qy)ij=1...,
dji == gy for 1 <j. Then A € Mat(n x n,K) is symmetric and by Proposition
2.5 there is a (unique) symmetric bilinear form b € Bilg (V) such that Mg(b) =
A, which implies
Mg(qv) = g.

c. Part a. gives the injectivity, and Part b. the surjectivity.

2.16 Corollary (Normal Forms of Quadratic Forms)
Let b € Bilg(V) be symmetric.

a. There is a basis B of V such that Mg(dp) = Y i, aix? with a; = qp(vi).
b. If K = C, then there is a basis B of V such that Mg(qp) = Y_._, x?, where

i=1%i>
r = rank(b).
c. IfK=R, then there is a basis B of V such that Mg(dy) = >_;_; x{— et X2,
where s = index(b) and r = rank(b).
Proof: This follows right away from Theorem 2.10 and Corollary 2.11. O

3 Normal Forms of Orthogonal, Unitary and Self-Adjoint
Endomorphisms and Matrices

3.0 General Assumptions Throughout this section IK = R, the field of real
numbers, or K = C, the field of complex numbers. By

Ko KiA—A

we denote the complex conjugation, and if A € R, then of course A = A. V will be a

finite-dimensional IKK-vector space.
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3.1 Definition
A scalar product on V is a map (-,-) : V x V — K such that
(i) forviw,u e Vand A, u € K we have

Av+ pw,u) = A (vyu) + p- (w,u)
and
WAV + pw) = A - (U, v) + - (u, w).
(i) (v,w) = (w,Vv) forvwe V.
(iii) (v,v) >0for 0 #ve V.

The first property is called the sesqui-linearity of the scalar product, the second

property is called its anti-symmetry and due to the third property it is said to be
definite.

3.2 Remark

If K =R, then a scalar product is just a definite symmetric bilinear form.

3.3 Example
a. (Standard Scalar Product) Let V = K", then the map

n
= E Xi Ui
i1

is a scalar product, the so called standard scalar product.

() K'Y x K" = K (x,y) — x*-

<]

b. Let V=RI[x]l., ={p € R[x] | deg(p) < n}. The map

1

() : VXV R:(p,a) Hjop(x)-q(x)dx

defines a scalar product on V, due to the rules for integrals.

3.4 Definition

a. A tuple (V,(-,->) consisting of a finite-dimensional K-vector space V and a

scalar product (-,-) is called a (finite-dimensional) Hilbert space. If K = R,
one calls it also Euclidean space.

b. If (V, (-, )) is a Hilbert space and B = (vq,...,vyn) is a basis of V such that
1, i=j,
(vi,vj) = 0y = { .
then B is called an orthonormal basis (ONB) of V.
c. If (V, (-, )) is a Hilbert space and v € V, then we define
VIl = v/ (v, v)
and call this the length or the norm of v.
d. If (V, (-, )) is a Hilbert space and U <V a subspace, then we call

Ut =pveVv|yvu=0vuel}

the orthogonal complement of U.
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3.5 Example (Explanation for the Notion ONB)
Let V =R? and (-, -) be the standard scalar product.
If x € R? is some vector, then by the Theorem of Pythagoras the length of x is

indeed just |x|| = \/x} + x3.
]RZ
Xz4\

O| X1

And if x € R? and y € R? are two vectors in the plane, then some geometrical
observations lead to an algorithm for calculating the angle £(x,y) between these

two vectors.

1 X
T
sin(o) [~ .
E y_ Y
\ Iyl
sin(B) =7 w0
1
COS((X)COS(B)

For this we scale the vectors so that they have length one by dividing them by their

and —%.. Using the notation in the above

length, i. e. we consider the vectors HTXH ol

plan we have

X1 [yl
Using the theorems from trigonometry we have

A(x,y):4<<x y)zoc—[.’):(p.

cos(@) = cos(ox— )
= cos(a)cos(B) + sin(e) sin(p)

—  X1yi1+x2y>
o (11Tl
—  xv)
(Il
or alternatively
£(x,y) = @ = arccos (M> .
x| - [l

In particular, x and y are orthogonal to each other if and only if cos(¢@) = 0 if and
only if (x,y) =0.

We have thus seen, that the standard scalar product determines angles, lengths and
thus distances in R?, and we may therefore use scalar products in general in order
to generalise these properties.
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From now on we will assume that (V, (-, >) 15 a Hilbert space, i. e. that V is endowed
with a fixed scalar product.

The following Lemma tells us how to find the base representation of a vector with
respect to an ONB without having to solve a system of linear equations.

3.6 Lemma (Parseval-Equation)
Let B = (v1,...,vn) be an ONB of the Hilbert space (V, (-, >) and let v € V, then

n

v= Z(v,vﬁ - Vi
i=1
Proof: Since B is a basis, there are unique elements A;,...,A, € K such that

v=3 " A Using the scalar product and the fact that B is an ONB we find

(v, v3) <Z7\1Vl,v]> ZK (vi,v;) = A;.

3.7 Lemma
Ifvi, ..., vy € V such that (vi,v;) = &y fori,j=1,...,7, then (vi,..., V) is linearly
independent.

Proof: Let Aq,...,A; € K such that Y} ;Ajv; =0. Then forj=1,...,r

O:<i7\ivi,vj> Z?\ (vi,v5) = A

Hence, (v1,...,V;) is linearly independent. O

3.8 Theorem (Gram-Schmidt)

Let U <V be a subspace of the Hilbert space (V, (-, >), then any ONB of U can be
extended to an ONB of V. In particular, every Hilbert space has an ONB.
Moreover, V=U @ U+,

Proof: Let B = (vq,...,v;) be an ONB of U, n = dimk (V) and m =n—r. We do
the proof by induction on m. If m =0, then n = r and hence U =V, so that B is
already an ONB of V.

Suppose now that m > 0 and that the statement holds true for m — 1, i. e. for

subspaces of dimension r + 1. By assumption r < m, and hence there is some
ve VU We set

v/ :v—Z<v,v-L> v #0
i=1

and

Vi1 =
Th = L) — 1 and
en <v‘r+]>v'r+]> - TvE an

|
vovi) =35 mvi) - vuv) v — (v

(Vri1, Vi) =
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Hence, by Lemma 3.7 (vq,...,vy41) is an ONB of the subspace U' = (vq,...,v.41),
which has dimension * + 1. So by induction (vi,...,Vv,41) can be extended to an
ONB of V. Finally, it is Exercise 4 on Assignment Set 8 to show V=U® U+. O

3.9 Example
Let V = K3 and (-,-) be the standard scalar product.
a. The standard basis E = (ey, ez, e3) fulfils (ei, €;) = &5, and is thus an ONB of
(]KSv <'» >)
b. Let U=((2,1,2),,(3,1,1)") < K> w; = (2,1,2)" and u, = (3,1, 1)"
Let’s first of all find an ONB of U, using the algorithm of Gram-Schmidt.
Step 1: vi = 1+ -u; = % - (2,1,2)%

s
Step 2: Set
V,:u,2*<uz,\)]> V1 = (3)1a])t7§ % . (2)112)t: (])0171)t)
and then 1 ]
V) =——*'V)=—=" (],O,—])t.

[l V2
Then B = (vq,v2) is an ONB of U.

Let us now extend B to an ONB of V.
Step 3: For this we choose some vector uz = (1,0,0)" & U. We then set

vi=u3 — (uz,vi) - v — (U3, v2) - v
= “)an)t_%'(za])z)t_%'(]aov_])t
:]]_8(]’_4’])’

and hence
V3=V =550 (1,415
Then (vi,vs,v3) is an ONB of K? which extends an ONB of U.

3.10 Idea

When we consider Hilbert spaces, that is vector spaces together with the additional
structure of a scalar product, then we should like to restrict our attention to maps
from V to V which respect the structure, i. e. maps f : V. — V which are K-linear
and which respect the scalar product.

However, what does it mean that an endomorphism respects the scalar product?
We will give two different interpretations of this in the following definition, both of
which make sense and lead to interesting classes of endomorphisms.

As always, we will treat the case of square matrices at the same time.

3.11 Definition
Let f € Endk (V) and A € Mat(n x n, K).
a. If (f(v),f(w)) = (v,w) for all vyw € V| then f is said to be orthogonal (if
K = R) or unitary (if K = C).

b. If (f(v),w) = (v, f(w)) for all vyw € V| then f is said to be self-adjoint. If
K = R we say also f is symmetric, and if IK = C we say likewise f is hermitian.
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If A € Gl.(K) and A~ = A", then A is called orthogonal (if K = R) or
unitary (if K = C). We set O(n) ={B € Mat(n xn,R) | A is orthogonal} and
Un) = {B € Mat(n x n,C) | A is unitary}. These are subgroups of Gl,(R)
resp. of Gl,,(C), as one easily verifies.

If A= Kt, then A is called self-adjoint, in the real case also symmetric and in
the complex case also hermitian.

3.12 Example
Let V = K™ and let (-,-) be the standard scalar product.

a.

Let A € Mat(n x n,K) and let a,,...,a, denote the columns of A. Then
A" =A"ifand only if A' - A = 1 if and only if At - A = 1 if and only if
a; - a5 = &y for all i,j if and only if (ay,...,a,) is an ONB of K™.

This shows e. g. that the following matrix is orthogonal and self-adjoint

(3 %)
Vi V2
Let A € Gl,(K) be such that A~ = A'. Then
fa: K" — K" : x— A-x
is an orthogonal resp. unitary endomorphism.

Proof: Let x,y € K". Then

(falx), faly)) = (A-x)"- Ay

:XtAtK

<]
I
I
ﬁ
>
>
<]
I
I
ﬁ
<]
I
N
(3
<
~

Let A € Mat(n x n,K) be self-adjoint, then fa is self-adjoint.
Proof: Let x,y € K™ Then

(fAlx),y) = (A-x)'-g=x" A T=x" (A) - T=x"A-T = (x,faly)).

Let (V, (-, )) be any Hilbert space and let B = (vq,...,vy) and B’ = (v{,...,v;,)

Y 'n

be two ONB. Then the base change matrix T, is orthogonal resp. unitary.

Proof: Let TP = (tij)ij=1,.n and denote by t; the i-th column of this matrix.
Then v{ = 3 I, tijv; and therefore

(b i) = Zi: oty = Zl ]Z ti - - (vi, V)
n
- <Zi:] tlkvh Zj:] t]lv]> - <v]I<)v{> == 6k1.

O
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3.13 Proposition
Let g € Endk (V) be orthogonal resp. unitary. Then:

a. [[f(v )H = || for allveV.

(f(v),fw)
b, T = an HWH for allv,iwe V.

Hence, f preserves lengths, distances and angles.

Proof: a. Forv eV we have [f(v)[| = /(f(v),f(v)) = /(v,v) = |IV].

b. This follows from Part a. and the definition of orthogonal resp. unitary.

U

3.14 Proposition
Let B be an ONB of V, f € Endgk (V). Then:

a. f is orthogonal resp. unitary if and only ME(f) is so.

b. f is self-adjoint if and only if ME(f) is so.
Proof: Let B = (vq,...,vn), then the Parseval-Equation 3.6 gives

f(\)j) = Z(f(vj),vi) *Vi.
i=1

Hence ME(f) = (aij)ijer,.n with ai; = (f(vj),vi). Let’s denote the columns of

ME(f) by a,,...,q,.
a. We then find

n
<f( § al]\)l)E AV
n
=3 ) @@ (vi, ) E ai; - @i = (g5, qy).

i=1 k=1
Taking Example 3.12 a. into account, we have M (f) is orthogonal/unitary if
and only if (g;, a;) = 65 Vj, Lif and only if (f(vj), f(w)) = & = (vj,w) Vj, L.
If f is orthogonal/unitary, then the last condition is obviously satisfied and
therefore M5 (f) is orthogonal /unitary.
If conversely Mg (f) is orthogonal /unitary, and v = 3 | Ajvj,w = 3 1" | w1 €
V, then by the above equivalence we get

FW)Fw) =3 S AT (Fvy), fv)) = D AT (v, v) = (v, W),

b. Letv=73 " Avi,w=3 " v € V. Then

and
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If, now, ME(f) is self-adjoint, then @; = a;;, and thus f is self-adjoint.
If f is self-adjoint, then we may apply the above inequalities to v = v; and
w = v; for i,j arbitrary, in order to find a; = @ for all i,j. Thus ME(f) is
self-adjoint.

U

3.15 Theorem (Normal Forms for Unitary Endomorphisms & Matrices)

a. Iff € End¢(V) is unitary, then there is an ONB B = (vy,...,vn) of V such
that f(\)i) = 7\'1\);L and |}\1‘ = ], 1. €.

A0 L. ... 0
0 :
Mg(f) =
: . .0
0O ... ... 0 A,
b. If A € U(n), then there is a T € U(N) such that for some Ay € C with A =1
A 0 .o o0 0
0 . :
TVA-T=

: . .0
0O ... ... 0 A,

Proof: a.
Claim: If A is an eigenvalue of f, then |A| = 1.
By assumption there is some 0 # v € V such that f(v) = Av. Thus
AN (v, V) = (A, W) = (f(v), f(v)) = (v, V).
Since the scalar product is definite (v,v) # 0, and hence A> =A-A =1.
Claim: f has an ONB of eigenvectors.

We do the proof by induction on n = dimg(V), where for the case n = 1 there
is nothing to show.

We may therefore assume that n > 1 and that unitary endomorphisms on
Hilbert spaces of dimension n — 1 are diagonalisable w. r. t. an ONB.

Since IK = C, the characteristic polynomial of f factorises and, hence, f has an
eigenvalue A, with corresponding eigenvector 0 # v, € V of length |[v,|| = 1
and by the above claim A, - A, = 1. We set U = (v,,), and we show

f(ut) cut,

For this let uw € U+. Then

7

<f(u')>vn> — }\n ) ) <f(u')>vn>
An - (f(U), Anvn) = Ay - (f(u), f(v)) = An - (U, vy) = 0.

Thus f(u)Lvy,, and hence f(u) € U*.
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We may therefore consider the endomorphism f restricted to U+
f|:LlL — Ut u— f(u),

which by default is unitary again.
Thus by induction, since dimyg (UL) =mn — 1, there is an ONB (vq,...,vn_1)
of U+ such that

f(vi) = Aiwy
fori=1,...,mn—1 and some A; € C with |[A\;] = 1.
However, (vi,v;) = &; for all i,j = 1,...,m, since v; € (v,)=. Thus by
Lemma 3.7 B = (vq,...,vs) is an ONB of V and f(v;) = Av; with [A{] =1 for

alli=1,...,n.

b. We may apply Part a. to V = C™ with the standard scalar product and the

endomorphism f = fo. Then T = T{ will do, where B is the ONB which Part

a. gives us, and E is the standard basis. Note that by Proposition 3.14 f is
unitary and by Example 3.12d. T € U(n).

O

3.16 Remark (Normal Forms of Orthogonal Endomorphisms & Matrices)
The case of orthogonal endomorphisms and matrices is considerably harder, due to
the fact, that over R the characteristic polynomial need not factorise. However, one
can show the following generalisation.

If f € Endg (V) is orthogonal resp. A € O(n), then there is an ONB B of V resp. a
T € O(n) such that

/A] 0O --- 0 /A1 0 --- 0

men = | O A2 T e TaT= | O LA

o e TR o e TR

where either A; = (1) € Mat(1 x 1,R) or A; = (—1) € Mat(1 x 1, R) or

o cos(o)  sin(oy)
AI_(zﬁn(m) cos(oq)>

for some «; € [0, 27).

3.17 Theorem (Normal Forms of Self-Adjoint Endomorphisms & Matrices)
a. Let f € Endk(V) be self-adjoint, then there is an ONB B = (v,...,va) of V
such that f(vi) = Avy with A € R fori=1,...,n, i. e
AM 0O L. ... O

0
Mg (f) =

0 ... ... 0 A
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b. If A € Mat(n x n,K) is self-adjoint, then there is a T € O(n) resp. T € U(n)

such that
N T ¢ O O
0 )
TVA .- T=
: . .0
0O ... ... 0 A,

and Ay ER fori=1,...,n.

Proof:

Claim: If A is an eigenvalue of f, then A € R.

By assumption there is some 0 # v € V such that f(v) = Av. Thus

A (vv) = Av,v)y = {(v),v) = v, fV) = WA = A - (v,

Since the scalar product is definite (v,v) # 0, and hence A = A, i. e. A € R.

Claym: If A is an eigenvalue of A, then A € R.

By assumption A is an eigenvalue of the self-adjoint endomorphism fA, and thus by
the above claim A € R.

a.

Claim: f has some eigenvalue!
Let B be any ONB of V and M = ME(f), then by Proposition 3.14 M =
M ¢ Mat(n xn, K) C Mat(n xn, C). We may thus consider M as a complex

matrix, no matter whether its entries are real or complex. Therefore
xf = xm € K[t] C C[t],

and considered as a complex polynomial it must have a zero A € C in the
complex numbers. This, however, is an eigenvalue of the matrix M considered
as complex matrix, and by the above claim it is therefore a real number, with
the property x¢(A) = xm(A) = 0. That is, it is an eigenvalue of f!

Claim: f has an ONB of eigenvectors.

We do the proof by induction on n = dimg(V), where for the case n = 1 there

is nothing to show.

We may therefore assume that n > 1 and that unitary endomorphisms on

Hilbert spaces of dimension n — 1 are diagonalisable w. r. t. an ONB.

We have just shown that f has an eigenvalue A,, with corresponding eigenvector

0 # vy € V of length |v,|| =1 and A,, € R. We set U = (v,,), and we show
f(ut) cut,

For this let u € U*. Then

fw,w) = Q@ fvn)) = WAV = Ay - (v, = 0.
Thus f(u)Lvy,, and hence f(u) € U*.
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We may therefore consider the endomorphism f restricted to U+
iUt — Ut tue fu),

which by default is self-adjoint again.
Thus by induction, since dimyg (UL) =mn — 1, there is an ONB (vq,...,vn_1)
of U+ such that

f(vi) = Ay
fori=1,...,n—1 and some A; € R.
However, (vi,v;) = &; for all i,j = 1,...,n, since v; € (v,)*. Thus by
Lemma 3.7 B = (vq,...,v,) is an ONB of V and f(v;) = A;v; with A; € R for

alli=1,...,n.

b. We may apply Part a. to V = K™ with the standard scalar product and the
endomorphism f = fo. Then T = TE will do, where B is the ONB which
Part a. gives us, and E is the standard basis. Note that by Proposition 3.14 f
is self-adjoint and by Example 3.12 T € O(n) resp. T € U(n).

O

3.18 Example
Consider the matrix

o -1 i
A=|-1 0 —i| e Mat(3x3,C).
-1 i 0
Since A = Kt, the matrix A is self-adjoint. It is our aim to diagonalise A w. r. t. an
ONB, so first of all we have to find the eigenvalues of A.

xa =det(A—t-1)=—t34+3t—2=(1+t)*-(2—1),

which implies that the eigenvalues are —1 and 2.

We next have to find ONB’s of the eigenspaces of A, using the Gauf} algorithm and
the algorithm of Gram-Schmidst.

In order to find Eig(A,—1) we solve the linear system of equations

() ()= (9)-0)

The algorithm of GauB gives Eig(A,—1) = ((1,1,0),(0,1,—1)"). We use the algo-
rithm of Gram-Schmidt to transform these vectors into an ONB of the eigenspace,
and we get

1,1,0), 1,1, -20)t,

\)] e % . ( \)2 = ﬁ . (
We then calculate the eigenspace Eig(A,2) with the aid of

(3 3) () ()-)
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and get Eig(A,2) = <(1 ,—1, —i)t>. Gram-Schmidt tells us to cut this vector down
to length 1 in oder to have an ONB of Eig(A, 2)

V3:%' (])7])7i)t'

Thus the matrix having these vectors vy, Vv,,v3 as columns is the wanted transfor-

mation matrix,

R
T: ﬁ \/—g *? EZ/I(3),
0 —% ¥
and
-1 0 0
TV"AT=|0 -1 0
o 0 2

The above results on normal forms of self-adjoint matrices allow a classification of
real symmetric bilinear forms with respect to base changes which respects distances
and angles, i. e. with respect to ONB’s. This is desirable when we consider geometric
interpretations of symmetric bilinear forms respectively quadratic forms.

3.19 Corollary (Normal Forms of Quadratic Forms by ONB’s)
a. Let A € Mat(n x n,R) be a symmetric matriz, then there is a T € O(n) such

that
A0 Lo .0 0
0 )
TLA T =
: . .0
0O ... ... 0 A,
where Ay, ..., An € R are the eigenvalues of A.

b. Let b € Bilg(V) be symmetric, then there is an ONB of V such that

A 0 oo 00 0
0 .
Mg (b) =
S
0 0 A,

and

Mg(qp) = Z Aixt.
i1

Proof: Part a. follows from Theorem 3.17 and the fact that for orthogonal matrices
we have T~ = TH!

Part b. then is an immediate consequence of Part a. and the correspondence between
symmetric matrices and symmetric bilinear forms studied in Section 2. U
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4 Normal Forms of Cone Sections

4.0 General Assumptions We consider R? endowed with the standard scalar
product (-,-). By
I(]Rz) = {(p ‘R?> 5 R?*| @ is an isometry}
we denote the group of isometries of the real plane. From the course on “From
Groups to Geometry” it is known that
I(R?) ={t,0of |ve R} fe O(2)},
where T, : R? = R? : x — v + x is the translation by v. I. e. every isometry can be
decomposed as an orthogonal endomorphism followed by a translation.
4.1 Definition
Let Q ={p € R[x1,x2] | deg(p) = 2}. For p,q € Q we define
p~q &= Jeel(R),0£AA€R : q=A-(pog).
One easily checks that this defines an equivalence relation on Q, since (I(]Rz),o)
and (R \ {0}, -) are groups. We call the elements of Q conics.

As always, we are interested in finding simple representatives for the equivalence

classes of this relation, and we call them normal forms.
4.2 Remark
A polynomial p € Q has the form

2 2
P = onxy + 2xx1x2 + 022%5 + xxq + oxz + &

:(X]1X2)' (‘X” 0‘12> : <X1> +(OC],OCZ)' <X1> +O(‘
x21  X22 X2 X2
=(x,S-x)+ (a,x) + «,
xX11 X12

where x = (x1,x2)", g1 := 012, @ = (a7, 02)" and S = (&} 22 ) is symmetric.
We are actually interested in the zero set of p, i. e. in

Z(p) = {(x,y) € R* | p(x,y) = 0}.

E. g. p = x2 — x3, then Z(p) is the standard parabola in R?.

Note that multiplying p with a non-zero constant A does not change Z(p), and
changing the coordinates by an isometry preserves distances and angles, that is,
Z(p) will be changed by a rotation or reflection followed by a translation.
E.gletp=x2—xf, d=—x3+x1+2x+1, f=fa with A= (%), v=(1,2)"
and @ = 1, o f. We claim that ¢ = p o @, in particular p ~ q. For this just note

po @ =p(t(f(x1,x2))) =
p(t(—x2,%1)) =p(—x2+ 1,x1+2) = (x1 +2) — (—x2 + 1)* = q.

Note that Z(q) can be derived from Z(p) by applying ¢~ to it!

In order to be able to find the normal forms of
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4.3 Lemma
Let S € Mat(2 x 2,R) be symmetric.

a. Ker (SZ) = Ker(S) and Im (52) =Im(S).
b. For all a € R? there is some c € R? such that S?>-c+S-a=0.
Proof: a. It is clear, that Ker(S) C Ker (Sz). Let now x € Ker (SZ). Then
0 = (x, $*) = (Sx, Sx).
This, however, implies Sx = 0, and thus x € Ker(S).
Again it is clear that Im (SZ) C Im(S). But then the dimension formula gives
dimpg Im (S?) = 2 — dimg Ker (§%) = 2 — dimg Ker(S) = dimg Im(S).
Hence Im (32) =Im(S).
b. We have S - (—a) € Im(S) = Im (Sz). Thus there is a ¢ € R? such that
S?.c =S (—a), which proves the claim.
O

4.4 Theorem (Classification of Cone Sections)

Let p = (x,Sx) + (a,x) + o« € Q be arbitrary with S = (&)} «2) € Mat(2 x 2,R)
symmetric and a = (1, x2)t € R?.

Then p is equivalent to one of the following normal forms:
I. det(S) > 0.
L1: o0 and oty > 0. p~ (Ax1)? 4+ (Axx2)? — 1 and Z(p) is an ellipse.
1.2 o0 and ot <0.p ~ (AMx1)? 4+ (A2x2)? + 1 and Z(p) is the empty set.
I3: aa=0.p~(Ax1)?+ (A2x2)? and Z(p) is a single point.
IT: det(S) < 0.
II.1: «#0.p~(Ax1)?>— (Axx2)?> — 1 and Z(p) is a hyperbola.

I1.2: a=0.p ~ (Mx1)? — (Ax2)? and Z(p) consists of two different lines
through the origin.
II: det(S) =0, a# (0,0)". p~xF —Ax2 and Z(p) is a parabola.
IV: det(S) =0, a=(0,0)".

IV.1: o« #0 and S has a positive eigenvalue. p ~x3 — A, A > 0, and Z(p) con-
sists of two parallel lines.

IV.2: «#0 and S has a negative eigenvalue. p ~ x5 + A, A > 0, and Z(p) is
the empty set.

IV.3: a=0.p~x3 and Z(p) consists of a line counted twice.

Proof: 1st Case: a = (0,0)%: Let’s first consider the case a = (0,0)".
By Corollary 3.19 there is a T € O(2), such that

Tes.T=T.s.T=( " © )
0
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Note that not both eigenvalues @y and p; can be zero, since S # 0. Hence we may
assume g #= 0 and py > yy if uy #0.
The endomorphism fr : R? — R? : x — Tx is a rotation or a reflection and we have

p(Tx) = (Tx(S-T)x)+«
= (%, (TS -T)x) +

= WX} + upx3 + o

Multiplying with a suitable constant, we may assume that either x =0 or o« = —1.
Define A; = \/ILTJ, then we have to distinguish the following cases.

Case 1.1: yq, up > 0: This is equivalent to the fact that S is positive definite and
hence that det(S) > 0 and a7 > 0. If « = —1, we are in Case 1.1, and if o« = 0, we
are in Case 1.3.

Case 1.2: yq, 1wy < 0: This is equivalent to the fact that —S positive definite, hence
that det(S) = det(—S) > 0 and —a;y7 > 0. Is « = —1, we are in Case 1.2, and for
o« = 0 its again Case 1.3, since we may multiply the polynomial once more by —1.
Case 1.3: u; > 0, up < 0: This is equivalent to pg - up = det(S) < 0. « = —1 leads
to Case II.1 and o = 0 to Case II.2.

Case 1.4: w3 >0,u, =0 or w; <0, uy =0: This is Equivalent to det(S) = 0. If
iy > 0 and o« = —1 we are in Case IV.1, for 1; < 0 and o« = —1 we get Case 1V.2,
and for o« = 0 it is Case 1V.3.

2nd Case: a # (0,0)': In Case a = (0,0)* we got around without applying any

translations. This will now be different.
For ¢ € R? the translation te: R? — R? : x — x+c leads to the following coordinate

transformation for p

p(x+¢) = (x+¢,Sx+Sc)+2(a,x+c)+
= (x,Sx) +2(a+ Sc,x) + (c, Sc) + 2(a,c) + « (12)
= (x,5x) +2(b,x) + B,

where b = a+ Sc and § = (c, Sc) + 2(a,c) + «.

Case 2.1: 3¢ € R?:b=a+ Sc = (0,0)": The transformation p — p(t.(x)) reduces
to the first Case “a = (0,0)"”. Hence p is equivalent one of the Cases I, IT or IV.
Case 2.2: Vc € R?:b=a+ Sc # (0,0)": By Lemma 4.3 there is a ¢ € R? such that

Sb = S%c 4+ Sa = 0. If we define & := —%, then the translation t. sp leads to

px+c+08b) = (x,5x)+2(a+S(c+8b),x)+ (c+8b,S(c+8b)) +2(a,c+8b) + o
= (x,Sx) +2(b + 8Sb,x) + 5*(b, Sb) +25(b, b) + B
= (x,5x) +2(b,x) +25(b,b) + B
= (x,5x) +2(b,x).
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Taking into account that O is certainly an eigenvalue of S, since Sb = 0, and since
S # 0, Corollary 3.19 implies the existence of a T € O(2), such that

D=Tt.s.T=T'.5.T=( " ),
0 0

where Wy # 0. In particular we are in the case det(S) = 0.
Moreover, for Tt'b =: (i, A)* we have, taking Tt = T~ into account,
(i, 0) = (T*-S-T)- (T'h) =T*- (Sb) =0,
and hence T'b = (0,A)", where A # 0, since T' is invertible and b # (0,0)". But
then the map x — Tx transforms the polynomial (x, Sx) + 2(b, x) into
(Tx, (S-T)x) 4+ 2(b, Tx) = (x*, Dx) + 2(T', x) = wix{ + 2Ax2.
I e
d =P ((tessp © fr)(x)) = wixi + 2Axy,

and we are in Case III. O

4.5 Remark
The sets Z(p) with p € Q are called cone sections since all of them, except for

the cases 1.2, TV.1 and IV.2, can be realised as intersections of the double cone
C =02 _+x2_x2=0Min R3 with a anitahle nlane

Y X

[.1: Ellipse [.3: Point I1.1: Hyperbola

I1.2: Two Lines with Intersection III: Parabola IV.3: Double Line
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APPENDIX A

Assignments and Solutions

Assignment Set 1

Exercise 2 should be handed in for marking. Exercises with an asterisque (*) are
considered challenging, and you should not spend too much time on trying to solve
them.

Exercise 1: Let n > 2 be an integer. Denote by 0 = (12 ... n) € $, the n-cycle
with (i) =1+ 1 fori <mnand o(n) =1, and by T € $, the permutation with
Ti)=mn+1—ifori=1,...,n.

a. Show that o™ = (1), 7> = (1), and 0" =0

b. Show that (o,7) = {¢',T0 0! ‘ i=0,...,n—1}is a group of order 2n. We
denote this group by D, and call it the dihedrial group of order 2n.

c. Define a permutation 7 : Dy, — D2, on Dy, by 7t(0%) = 0™ ' and (toct) =
To o'. Setting 71 := 7t € Sym(D,,) fori =1,..., 1, T > 3 any integer, show

that the check digit code Cp,, (7‘(1, coy T (1 )) detects errors of type II.
Note: If you have problems dealing with the general case, you may just replace n by any

of the numbers n =3, 4 or 5.

Exercise 2: Let (G,-) be a group such that g = eg for all g € G. Show that G
is abelian.

Exercise 3: Let p be a prime number and set Z[%] = {p% €Q ‘ n,zezZ,n> O}.

a. Show that Z[%] is a subgroup of (Q,—I—), i. e. of the rational numbers with
respect to addition.
* : 1 — 1
b.* Find all the subgroups of (Z [5] , —}—) and of (Zpoo,—l—), where 7,0 = Z[E]/Z
is the factor group of Z [%] by the normal subgroup Z.
Note: It will turn out that every strict subgroup of Zp~ is finite and cyclic, while the

Zp itself is not even finitely generated!

Exercise* 4: Let (C,+,-) denote the field of complex numbers, and denote by i
the imaginary unit with i> = —1. Consider the subgroup

Qs:=((174'),(95)) < GL(C)

of the group of invertible 2 x 2-matrices over C with respect to matrix multiplication.
Find all the subgroups of Qs.
77
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Assignment Set 2

Exercise 1: Let (G,-) is a group, g € G and n = min{m €eZ|m>0gm=
eg} < oo. Show that (g) = {ec =¢° ¢',¢?...,g" '}.

Exercise 2: Which of the sets A ={z€ Z |z >0}, B= {% lz € A} and AUB is
a group with respect to the multplication of integers?

Exercise 3: Show that E ={z € C | |z| = 1} is a subgroup of (C \ {0}, -), where C
denotes the complex numbers.

Exercise 4: Let R.o = {x € R|x > 0}. Define
o :R>0 X ]R,>o — IR,>0 . (X’y) }—)Xoy ::Xy.

Is (R~g,0) a group?
Assignment Set 3
Exercises 1 and 3 should be handed in for marking.

Exercise 1: Let (G,-) be a finite group and let U,V < G. Use the Theorem of
Lagrange to prove the following statements.

a. fVCU, then |G:V|=|G:U|-|U:V]|.
b. Ifgcd(IG:U\,\G:VI):1,thenG:U-V.

Exercise 2: Let (G,-) be a group, U; < G for i € I. Show that [);.; U; < G.

Exercise 3: Let (G,-) be a group, N,Ny, N, <G, U< G.
a. NNnu<u.
b. NyNN; <G

Exercise 4:

a* Let m=(ajay ... ax) € 8, be a k-cycle and 0 = (by b, ... b)) € &, be an
l-cycle. Show that that 7w and o are conjugate (i. e. 3 ( € S, s. t. (oo} = 0)
if and only if k = L.
Hint, if k =1 then it is easy just to give (, for the opposite direction I recommend to have a look at
™ and o,

b. We know that any permutation in $,, has a unique representation as a product
of disjoint cycles. Suppose that T = (; 0...0 (, is such a representation for
7 € 8, and suppose that (; is a ki-cycle with k; > ky > ... > k.. We then
call (kq,...,k;) the cycle type of m.
Use part a. in order to show that two permutations are conjugate if and only
if they have the same cycle type.
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c. Use these results to show that
Ky ={(1),(12)(34),(13)(24),(14)(23)}

is a normal subgroup of %4, the so called Kleinian group of order 4.
Hint, in oder to see that it is a subgroup of $4 it is best to write down the group table, which shows

the closedness with respect to the group operation and with respect to taking inverses.

Exercise 5: Find all the subgroups of Dg = <(1 234),(14)2 3)>, which was
introduced on the assingment set 2. Which of the subgroups are normal subgroups?

Solution to Exercise 1 a. By the Theorem of Lagrange we know

G| G| uj
IG:V|=—,|G: U/ =—, and [U: V|= —.
\4 ] Vi

This proves the claim.

b. Weset H=UNYV. Then by Part a. we have
IG:VI||G:H and |G: Ul ||G:HLI.

Thus also the least common multiple divides |G : H|, i. e.

IG: V|- |G: U

G:V|-|G: Ul =
ged (\G V|, IG: U\)

=lem (|G: V|,|G:U[) | IG: HJ,

and there is a number m > 0 such that
16l Ig G

m-—- -—=m-|G:V|-|G: U/ =|G:H|l=—.
V| U H|

From this equation we deduce with the product formula

uf- V]
= \|G|-m > |G|
=G m>l6

Being a subset of G, this implies U -V = G.

u-vi=

Solution to Exercise 2

Since eg € U for all i € I, eg € [ Ui, so that this set is non-empty. Let

u, v € N,y Ui. We have to show that w-v,u™' € M, ; U;. By assumption u,v € U;

for all i € I, and thus w-v,u~! € U; for all i € I, since the U; are subgroups. But

then w-v,u ' € Mo Ui, and (;; U < G.

Solution to Exercise 3 a. Being the intersection of subgroups, N N U is a sub-
group of G, which is contained in U. Hence, it’s a subgroup of U. It remains

to check the normality condition. Let w € U and n € NN U. Then
u-n-u'eNNU,

since N is a normal subgroup of G and U is closed under multiplication. Thus,
NNnUu<u.
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b. Being the intersection of subgroups Ny N N, is a subgroup of G. It remains to
check a normality condition. Let g € G and n € Ny N N;. Since both, N; and

N, are normal subgroups of G, we get
g-n-gleN
fori=1,2,and thus g-n-g '€ NyNN..

Solution to Exercise 4 a. Let {1,....,n}={ay,...,a.} ={by,..., b}
“&”  Suppose k = 1. We define a permutation ¢ € $,, by

. ay ... Qp
C_<b1 bn>'

The inverse of C is then just

Cil _ b] . e bTL
a ... ay |
We claim that (omo (' = o. For this we apply both maps to b,
i=1,...,mn
C(aip1) =byyy =o(by), if1<i<k=1,
(ComoC ") (by) = ¢(m(ai)) =< Clar) = by = o(by), ifi=k=1,

“=” We may assume that k < 1. Let { € $, be such that (omo (! = 0.
Then
ot = (Como ) =Com ol =Co (ol = (1)
Hence, | = o(0) <k, and thus k = L.

b. Let t=C(io...0( and 0 =Ty0...01s, where (; is a ki-cycle with k; > k, >
...>k; and T3 is an li-cycle with [y > 1, > ... > 1.
“=”  Suppose there is a & € $,, such that £omo &' = 0. By Part a. we then
have that

wi=Eo (o0&
also is a kji-cycle. We deduce thus that

wiowyo...ow,=(E£0 o0& ") o (o0& ) o...0(Eol0E )
:E,O(C]oczo,,,ocr)oaq:607{0&71:0'.

Thus the cycle type of 0 must be (ki, ..., k). However, it is also (14, ..., 1),
which implies that

(k1. k) = (L, ..o, Ls).

“&”  Let’s now suppose that r = s and (kq,...,k;) = (l;,...,1;). Moreover,
suppose that ¢; = (ai1...aix) and T3 = (byy...byy,) fori=1,... 1
Then

{],...,TL}:{CIL]"i:],...,T,j:],...,]C'L}:{bi_j|1'.:],...,T',j:],...,ki}.
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As in the proof of Part a. we define a permutation

arr ... Qrk
=" o
( b]y] . br,kr )
and it follows for b; ;

_ Elayj1) = by = o(byy), if 1 <5 <k,
Eomo& 1) (by;) = &(n(ayy)) = ) ) LR
( ) (s (i) &lay1) = by = o(byy), if j = k.
This proves that &omo &' = 0.

c. Wesete=(1),a=(12)(34),b=(13)(24)and c = (14)(23). Then the
multiplication table of K4 looks like

Lefalb]e]
ellelalb|c
allale|c|Db
biblcl|le|a
cllc|blale

This shows that K, is closed under the multiplication and that every element
has an inverse. Thus K4 < S, is a subgroup.

Let now ¢ € $,, be given and 7 € K;. We have to show that (oo (" € K4 in
order to see that I is a normal subgroup. If Tt = e, then the product is again
e and belongs to IK4. If 7t € {a,b,c}, then by Part b. the product (o mo ¢!
has cycle type (2,2). However, all elements of this cycle type in $4 belong to
[K4. Thus the product does as well.

Solution to Exercise 5
Note, that with 0 = (1 2 3 4) and T = (1 4)(2 3) we have by Exercise 1 on
Assignment Set 1

Ds = {id, 0,0% 0% 1,100,T00% To 0%}
{(]), (1234),(13)(24),(1432),
(14)(23),(13),(12)(34), (24)}.

If U < Dg, then by the Theorem of Lagrange |U| € {1,2,4, 8}.

If U] =1, then of course U = 1.

If Ul = 2, then U is cyclic and generated by one element of order 2. Thus U is one
of the groups (1), (To o), (To 0?), (To 6*), or (0?).

If U] =4, then U may be cyclic or it only contains elements of order at most 2. If
it is cyclic, then it must contain two elements of order 4, which are inverse to each
other, thus U = (o). Otherwise U is one of the two groups (T, T0oa?) or (Tog, T00>).
If [U| = 8, then of course U = Dg.
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Assignment Set 4
Exercises 1 and 2 should be handed in for marking.

Exercise 1: Let o« € Hom(G, H), where (G,-) and (H, %) are groups.
a. Im(a):= «(G) < G and is called the image of «.

b. If « is bijective, then o' € Hom(H, G).
In particular, (Aut(G),o) is a subgroup of (Sym(G),o).

Exercise 2: Let (G,:) be a group and let N, N’ << G be two normal subgroups.
Prove the Isomorphism Theorem (N -N')/N’=N/(NNN’).

Exercise 3: Suppose that A and B are finite sets with the same number of ele-
ments. Show that the groups ( Sym(A), o) and (Sym(B),o) are isomorphic.

Exercise 4: Let (G, -) be a group. We call Z(G) ={h € G| gh=hgV g € G} the
centre of G, i. e. the set of elements in G which commute with all other elements.!
a. Z(G)<G.

b. If G/Z(G) is cyclic, then G is abelian.?

Exercise* 5: [Generators and Relations]
Let x and y be two different symbols. Consider the set of words

W= {x"”yf51 coex®yPr o, B € Z,r > 11U {e),

where e is just a symbol defining the so called empty word. We use the common
exponential laws in order to simplify such words and we consider words which become
the same that way to be the same, e. g.

3 3 3,5-3-2,-3 3,3 3-3

x3y5y’3xoy’2x’ = x3y5y’3y’2x’ =Xy X T=XX T =X =e.
There is then a natural way to multiply words just by putting them together, and
having the empty word e operate as the identity. This way W becomes a group,
and obviously W = (x,y) is generated by the elements x,y.3

Moreover, if M = {w; = wj,...,w, = W/} is a set of equations of words in W -
called relations-, then we consider the smallest normal subgroups which contains

the set M' = {w;"-wi,...,w;'-w/}
NM) = [ N,
M’CNCOW(X)
and we denote by (x,y | wi = wj,...,w, = w]) the quotient group of W by the
normal subgroup N(M). By abuse of notation we will denote the generators of this
quotient group still by x and y rather than by xN(M) and yN(M).

!Note, that obviously G is abelian if and only if G = Z(G).

2This then implies G = Z(G)!

3You are not required to prove these facts! Their proof is quite tedious and can be found - in
a more general setting - in many textbooks, e. g. Michael Weinstein, Examples of Groups, pp. 52ff.
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a. Show that W has the following universal property: given any group (G, -) such
that G = (g, h), then there is a unique epimorphism o : W — G such that
«(x) = g and «(y) = h.

Moreover, if the relations w; = w/ still hold when you replace x by g and y by
h, then o« induces an epimorphism

Wyl wr=wr, oW =w)) — Giw o a(w).

with ®(x) = g and x(y) = h.*

b. Show that the group (x,y | x™ = e,y? = e,yxy~' = x ') is isomorphic to
Dy,

c. Show that the group <x,y ‘ x'=eyt=c,yxy! = x*]> is isomorphic to Qg.

d. Show that a non-abelian group of order 8 is either isomorphic to Dg or to Qg.

Solution to Exercise 1 a. Since ey = «(eg) € Im(x), the set is non-empty.
Moreover, for g, g’ € G we have oc(g)*oc(g’) = oc(g-g’) € Im(a) and a(g)~' =
x(g™") € Im(a). Hence, Im(a) < H.

b. Let h,h' € H be given. Since « is bijective, there are elements g, g’ € G such

that o(g) = h and oc(g’) = h’. We thus have for the inverse mapping o'

o '(hxh') =a '(«(g)*alg") =a '(xlg-g') =g-g'=a'(h) -« ' (h).

For the “in particular part” just note that we have shown in the lecture that
Aut(G) is closed under composition of maps and that we have just proved that
it is also closed under taking inverses. Moreover, since idg € Aut(G), it is a
non-empty subset of Sym(G), and hence a subgroup thereof.
Solution to Exercise 2
Note that N - N’ is actually a group, and N’ is a normal subgroup thereof. We have
also seen that N N N’ <IN, so that the quotient groups in this statement actually
exist! Let’s now define a map by

a:N—=N-N/N":n—nN"
We are going to show that this map is an epimorphism with kernel NNN’, and then
we apply the Homomorphism Theorem.
Step 1: o is a homomorphism.
Let n,m € N, then ax(n-m) =nmN’=nN’"-mN’' = «(n) - a(m).
Step 2: « is a surjective.

Let nn'N’ € NN’/N’ be arbitrary with n € N and n’ € N’. Then «(n) = nN' =
nn'N’) thus « is surjective.

Step 3: Ker(ax) = NN N

“That the relations w; = w! are satisfied when replacing x by g and y by h is the same as
saying that N(M) is contained in the kernel of «.
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We have n € Ker(«) if and only if nN’ = N’ if and only if n € N’ N N.
Applying now the Homomorphism Theorem we get

N/NNN’ = N/Ker(a) = Tm(a) = NN’/N’.

Solution to Exercise 3
Since A and B have the same order, there exists a bijection

d:A — B.

We use this to define a map

«:Sym(A) — Sym(B):m— pomod .
This map is obviously bijective with inverse

B:Sym(B) — Sym(A):m— ¢ 'omo d.
Moreover, for 7t, 0 € Sym(A) we have

a(moo)=domocod '=dpomod 'opoood ' =ux(m) o alo).

Thus « is also a homomorphism, hence it is an isomorphism.

Solution to Exercise 4 a. Let’s show first that Z(G) is actually a subgroup of
G. Since eg commutes with any element in G, it belongs to Z(G), so that the
set is non-empty. Let h,h' € Z(G) and g € G arbitrary. Then

hh'g=hgh’ =ghh’ and h'g= (g 'h) ' '=(hg ") ' =gh,

hence hh/,h™! € Z(G) and Z(G) < G.
It remains to check the normality condition. Let for this g € G and h € Z(G).
Then

ghg ' =hgg ' =heg =h € Z(G).

b. By assumption there is some g € G such that G/Z(G) = <gZ(G)> is generated
by the coset gZ(G). This, however, implies that

G =] d"Z(G).

keZ

Let now h, h' € G be arbitrary. We then find k,k’ € Z and u,u’ € Z(G) such
that h = g*u and h’' = g¥'u/. Thus, using the exponential laws and the fact
that w and W' commute with any element in G, we get

hh' = g*ug®'u’ = g¢¢¥'uu’ = ¢ g*u'u = g*'u/g*u = h'h.
Thus G is commutative.
Solution to Exercise 5 a. We define a map
oW — G:x¥ .- yPr s g¥ ... hPr,

Note that the representation of an element in W as a word is not unique; we
used the exponential laws to identify certain words! We therefore have to check
that the definition of & does not depend on the given representation. However,
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since the exponential laws also apply in G, two representations of the same
word will lead to the same image. Hence, o is welldefined.

Moreover, it is indeed clear that « is a homomorphism mapping x to g and y
to h, and since G is generated by g and h the homomorphism is also surjective.
Let’s now show the uniqueness. Let p € Hom(W, G) be such that f(x) = ¢
and B(y) = h, and let x* -.-yPr € W be any word. Using the rules for

homomorphisms

B(qu UBT) — B(x)"” B(U)B“ = go‘1 hBT — o((xoq yB“)

It remains to show that o induces an epimorphism from (x,y | wy =wj,...,w, =
wl) to G, if g and h satisfy the relations wy = w! for i =1,...,r. Note that
the latter is the same as saying that

w; 'w] € Ker(a),

and since Ker(a) is a normal subgroup of W we thus have N(M) C Ker(«).
We only have to show that the above map o is welldefined, then it’s clear
that it is an epimorphism. Let w and w’ be two words which coincide in
X,y wi=wi,...,w, =w/)), i. e. WN(M) =w'N(M). Thus

ww’ e N(M) C Ker(x),

1 1

and hence eg = a(w 'w') = a(w) " a(w’), which implies a(w) = a(w’).
The morphism & is therefore welldefined.

Recall from Exercise 1, Set 1, that

Dy, = (0,7) = {0', 10" |i=0,...,n 1}
and that the generators o and 7 satisfy the relations

o =(1),7?=(1) and Tor =0
Hence by Part a. there is an epimorphism

1

a:(x,y|[x"=ey’=eyxy ' =x") — Dsn..

1

Once we know that the group (x,y | x™ =e,y* = e,yxy ' =x ') has at most

2n elements, we are therefore done, since then the map must be bijective.
The same proof as in Exercise 1, Set 2, applies in order to show

(xy|[x"=ev=eyxy ' =x")={xY |i=0T1j=0,....n1}.
Recall from Exercise 5, Set 2, that
Qs =(A,B)y={A'B [1=0,...,3;j=0,1}
where A = (97) and B = (9§). Moreover, we have shown there
A*=1,B*=1 and BAB'=A"T
We may therefore once more apply Part a. in order to get an epimorphism

a:{xy|x'=eyt=eyxy =x") — Qs.
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And the same proof as in Exercise 5, Set 2, shows that
(xy|x'=ey'=eyxy ' =x")={xY|i=0,...,3;j=0,1}.

Hence the group has at most 8 elements, and since « is a surjection on a set
with 8 elements, this must be a bijection.

Since G is not abelian, it is not cyclic, and hence it does not contain any element
of order 8. By the Theorem of Lagrange the elements of G must therefore be
of order 1, 2 or 4.

Suppose that G does not contain any element of order 4. Then g2 = eg for all
g € G, and hence g = g~' for all g € G. Let g,h € G be given. Then

gh=(gh)'=h'g ' =hg.

This means that G is abelian in contradiction to our assumption.

Hence there is some g € G of order 4. Then N = (g) is a subgroup of index 2,
and is therefore a normal subgroup. Let u € G\ N and U = (u). Since N <G,
the set UN is a subgroup of G with more than 4 elements. By the Theorem of
Lagrange it must therefore be equal to G. That is

G = UN = (u, g).

Moreover, since N is a normal subgroup, we have ugu~' € N and this element
has the same order as the element g, which is 4. There are only two choices
for this in N, namely g and g~'. If ugu™' = g, then ug = gu. However, if the
two generators of G commute, then G is abelian, which it is not by assumption.
Therefore

1

ugu | = g*].

We now have to distinguish two cases. u could be of order 2 or it could be of
order 4.
If o(u) = 2, then g and u satisfy the relations

gt =eu*=e and ugu =g
Hence by Part a. we get — in the same way as in Part b. — an isomorphism

(xy|x'=ey’=eyxy ' =x") =G.

But by Part b. this group is also isomorphic to Ds.
If o(u) =4, then g and u satisfy the relations

gd=eu=e and ugu'=g

—1
Hence by Part a. we get — in the same way as in Part c. — an isomorphism

(xy|x'=eyt=eyxy ' =x") =G.

But by Part c. this group is also isomorphic to Qg.



AL UINIVIINGL oLl 9

Assignment Set 5

One of the Exercises 1 or 3 should be handed in for marking.

Exercise 1: Let (G,-) be a group and N < G.
Show that N is a normal subgroup of G if and only if G = Ng(N).

Exercise 2: [Class Equation] Let (G, ) be a finite group. We call for g € G the
set Cg(g) ={h € G | hg = gh} the centraliser of g in G.

a. Show that the group G acts on the set G by conjugation, i. e. show that
x:G — Sym(G):g— oy
is a homomorphism, where &y : G — G : h— h% = ghg .

b. Show that there are g;,...,gn € G such that
Gl=) 1G:Calgi)l.
i=1
c. Show that there gi,..., g, € G such that |G : Cg(gi)| > 1 and

Gl =1Z(G) + ) |G : Calgi)l.
i=1

Hint, show that Cg(g) is just the stabiliser Stabg(g) of g under the group operation in a. and use the
Orbit Stabilser Theorem. By Z(G) we mean the centre of G introduced in Exercise 4, Set 4.

Exercise 3: Let (G,-) be a group of order p™ for some prime p. Show that
1IZ(G)| > 1.

Hint, use the class equation.

Exercise 4: Show that any group of order p?, p some prime, is abelian.

Hint, use Exercise 3 above and Exercise 4, Set 4.

Exercise* 5: Calculate Z(Dg) and Z(Qg).

Hint, you may use Exercise 3 above and Exercise 4, Set 4, in order save many calculations.

Exercise 6: Use Corollary 4.7 to show that Dg is not a normal subgroup of $4.

Solution to Exercise 1

By definition Ng(N) = {g €q ‘ N =N¢9= gNg*]}. However again by definition,

N is normal if and only if N9 = N for all g € G, and this is then the case if and

only if g € Ng(N) for all g € G, i. e. G = Ng(N).

Solution to Exercise 2 a. Note, we have already shown in the lecture that the
maps &gy are automorphisms of G, hence they are in particular bijective and
belong to Sym(G).

We have to show that «(g-g') = «(g) o a(g’), or with the above notation
Kgg' = &g 0 Xgr. Let h € G. Then

age (M) = (9g")-h-(gg") " = gg’hg’ 'g7" = ag(g'ng" ') = g0y (h)) = (xg00tg) (M),
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b. We note that Stabg(g) = {(h € G | g" = g} = Cg(g), and by the Orbit
Stabiliser Theorem we therefore have |orbg(g)| = |G : Cg(g)|.
Since G operates on G, there are g1,...,gn € G such that G = [ ["; orbg(g:)
is the disjoint union of the orbits of the g;. Thus

Gl =) lorbg(gi)l =) |G : Calgi)l-
i=1 i=1

c. Note that g € Z(G) if and only if gh = hg for all h € G if and only if
g =hgh ' = g" for all h € G if and only if orbg(g) = {g" | h € G} = {g}
consists only of one element.

Let g1,...,9n € G be as in Part b. and suppose that they have been ordered in

such a way that the orbits of gi,..., g, consist of more than one element and
the orbits of g,i1,...,gn all contain only one element. We have just proved
that then
n
Z(G) = | orbal(gs).
i=r+1

The result therefore follows from Part b.

Solution to Exercise 3
By the Class Equation we know there are g1,..., g, € G such that

p" =G| =1Z(G)[+ ) |G : Cglgil, (13)

i=1
and |G : Cg(gi)| > 1foralli=1,...,7. Since this index |G : Cg(gi)| is a divisor of
|G| = p™, it must be divisible by p. Considering the Equation (13) modulo p we get

Z(G)| = 0(mod p).

Thus the number must be divisible by p as well, in particular it is greater than 1.

Solution to Exercise 4

Let G be a group of order p?. By Exercise 3 the centre Z(G) has order greater than
1, and by the Theorem of Lagrange its order must then be p or p%. If the order is
p?, then G = Z(G) and G is abelian.

Suppose therefore the order of Z(G) was p, then however G/Z(G) has also order p
and is therefore cyclic. Hence by Exercise 4, Set 4, G is again abelian. (However,
this implies Z(G) = G and its order is p? in contradiction to our assumption! That
is, this case will not occur.)

Solution to Exercise 5

For both groups Dg and Qg the centre must have order 1, 2, 4 or 8 by the Theorem
Lagrange. By Exercise 3 above it cannot be 1.

If the order was 8, that is, if the centre was the whole group, the group would be
abelian, which both are not.

If it had order 4, then the quotient group by the centre would be of order 2 and
hence cyclic. But then again, by Exercise 4, Set 4, the group itself would be abelian,
which it is not.
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Thus it must have order 2 in both cases. It therefore suffices in both cases to find
one element of order two which commutes with all the other elements, and this one
will then generate the centre.

Using the notation from Exercise 1, Set 1, and Exercise 5, Set 2, we see that 0% € Dg
and A? = B? € Qg will do, i. e.

Z(Dg) = (0?) and Z(Qs) = (A?).

Solution to Exercise 6

Besides Dg = <(1 234),(14)2 3)> the group %4 contains two other subgroups
of order 8 — both of which are isomorphic to Dg — namely <(1 243),(13)2 4)>
and <(1 324),(14)2 3)>. Since 8 = 23 is the maximal power of 2 which divides
the order of %4, which is 4! = 24, these three groups are 2-Sylow subgroups of %,.
Having more than one 2-Sylow subgroup, none of them can be normal by Corollary
4.7.
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Assignment Set 6

One of the Exercises 1 or 3 should be handed in for marking.

Exercise 1: Calculate the eigenvalues and the eigenspaces of the following matrix
and decide whether it is diagonalisable, triangulable or neither of the two:

0

1
0 ? € Mat(4 x 4, R).
1

SN
wn — O —

Exercise 2: Let V = {Z%:o a;xt ‘ ap, a1, a; € ]R} be the 3-dimensional vector
space of polynomials of degree less than or equal to 2, and let A € R be fixed.
Consider the map

2 2 2
f:V—>V:Zaixir—>Zai(x—l—k)i—?\-Zai-i-xi’].
i=0 i=0 i=1
Show the following:

a. fis R-linear.

b. Calculate ME(f), where B = (1,x, xz) is the canonical basis of V.

c. Calculate the characteristic polynomial x;.

Exercise 3: Let V be an n-dimensional K-vector space, and let f € Endg (V) such
that f* 1 £ 0, but f* = 0, where 0 means the zero-map. Show:

a. Thereis av € V such that B = (f“*] (v), f2(v), ... ,f(v),v) is a basis of V.

b. Find the matrix representation ME(f) w. r. t. the basis B in Part a.

Exercise 4: Let V be a finite-dimensional K-vector space and let g € Endg(V).
Show there is an m > 1 such that

Ker(g) ¢ Ker (¢°) € ... C Ker (g™) =Ker (g*) forall k>m.

Exercise 5: Use the Theorem of Cayley-Hamilton to show that for A € Gl (K)
there is a polynomial g = Z?;Ol b;tt € K[t] such that A~ = g(A) = Z?;Ol b;AlL

Exercise 6: Let f € Endg(V) and let A, u € K be two different eigenvalues of f.
Show that for any m > 0

Eig(f,A) N Ker ((f — pidy)™) = {0}.

Solution to Exercise 1

xa = det(A —t1) = (3 —1t) - (2 —t)3, and hence A is triangulable, since the char-
acteristic polynomial factorises. Eig(A,2) = <(1,0,0,1)t, (0,0,1,0)t>, Eig(A,3) =
((1,1,1,1)).

A is not diagonalisable, since K* does not posses a basis of eigenvectors of A.
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Solution to Exercise 2 a. Let p = axx? + ajx + ap,q = bax? + byx + by € V
and v, u € R be given. Then

2 2 2
f(up+vq) = f (Z(ai + by) -xi> = Z(uaﬁvbi)-(x+7\)i—7\-z(uaﬁrvbi)-i-xi’]
i—0 i—0 i1
2 2
:“<Z (x +A)—A- Za1 ixt ) V(Zblx—i—k —A- ZbL i-xt 1) = uf(p)+vf(q).
=0 —

b. Note that f(1) =1, f(x) = (x+A)—A =x and f(x?) = (x+A)*—2Ax = x*+2?,
hence

C. Xf=XmB(f) = (1T—1)°.
Solution to Exercise 3 a. By assumption f* ' # 0, so there is a v € V such
that " 1(v) # 0. Define B as in the claim using this vector v.

Since V has dimension n it suffices to show that B is linearly independent. For
this let Aq,..., Ay € K such that > [ ; Ay - " (v) = 0. We have to show that

AM=...=A\y =0.
Suppose this is not the case and let m € {1,...,n} be minimal such that
Am # 0. Then

0=fm™1(0) =" (Z Mﬂ'l@))

Z f“ i+m— 1 ‘|‘7\ fn—m4m— 1 )‘|‘ Z }\ifnfierfl(v) :Amfnfl (\)),

i=m+1
where the first sum is zero since Ay = ... = A1 = 0, and the last sum
vanishes, since f™ is the zero-map. However, by assumption neither A,, nor

f*~1(v) vanish, which leads to a contradiction.

b. Since f(f*(v)) = f*"(v) and this is 0, if k =n — 1, we get

o1 0 ... 0
Mi(f) = | : )
: 1
0 0

Solution to Exercise 4
If v € Ker (g*), then g**'(v) = g(g*(v)) = g(0) = 0. Thus for all k > 1 we have

Ker (g*) C Ker (g*'). (14)

Moreover, since the vector space V is finite dimensional, the chain of kernels cannot
ascend forever. Let therefore

m= min{k > 1 ‘ Ker (gk) = Ker (gk+1)}.
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We have to show that then Ker (gm) = Ker (gk) for all k > m, and we do this by
induction on k. We get the induction base k = m for free. Let’s now suppose that
k > m and that we have already shown Ker (g™) = Ker (g "). By Equation (14)
we thus get Ker (g™) = Ker (g~ ") C Ker (g¥).

It remains to prove the opposite inclusion. Let therefore v € Ker (gk) be given.
Then 0 = g¥(v) = g~ '(g(v)). Hence g(v) € Ker (g~ ") = Ker (g™), and thus

g™ (v) =g™(g(v)) =0.

However, by definition of m we have Ker (gm) = Ker (gm“) and thus we have
shown

v € Ker (gmH) = Ker (gm).
Solution to Exercise 5
Let xa = (—1)™™ + an 1t ' 4+ ...+ ap € K[t] be the characteristic polynomial of
A.
Since A is invertible, the kernel of A consists only of the zero-vector. Hence
Eig(A,0) = Ker(A) = {0}, which implies that 0 is not an eigenvalue of A. Hence
ao = Xa(0) # 0. Define

_(*”n —1 An— -2
g= " -tV g o g S e K.

“ao ~ao
Then

g(A)-A=— xa(A)+1=1,
where the latter equality is due to the Thm. of Cayley-Hamilton. Thus g(A) = A",

Solution to Exercise 6

We do the proof by induction on m > 0. For m = 0 the kernel of (f — pidy)° = idy
consists only of the zero-vector, so there is nothing to show.

Let now m > 0 and suppose the claim has been proved for m — 1. Let then
v € Eig(f,A) N Ker ((f — pidv)m), we have to show the v = 0. By assumption

0 = (f — pidy)™(v) = (f — pidy)™ " ((f — widy)(v) = (F — pidy)™ ' (F(v) — )
= (f—pidy)™ (A=) -v) = (A=) - (f = pidy)™ ' (v).
Since A # u this implies (f — pidy)™ ' (v) =0, and therefore
v € Eig(f,A) N Ker ((f — pidy)™ ") ={0}.
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Assignment Set 7

Exercise 3 should be handed in for marking.

Exercise 1: Find a Jordan normal form and the corresponding transformation
matrix T for the following matrices:

0 1 1 -3 —1
A:(Oz ;), B:(4] ;), C=12 1 -1 and D=]|-1 -3
—6 -5 -3 -2 =2

Exercise 2: Find a Jordan normal form for the Endomorphism in Exercise 2 on
Assignment Set 6.

Exercise 3: Let V be a K-vector space, U < V a subspace, and b € Bilg(V).
Show

a. Ut={veV]|bv,u)=0Vuc Ujis asubspace of V.
b.* If U= (v) and b(v,v) #0, then V = U+ U+,
Exercise 4: Consider b : K2 — K% : ((x1,%2)%, (1,12)") = 2- %1 -y1 +x1 - Y2 +
Y1+ X2 — X2 - Yz. Let E = (eq,ez) be the standard basis of K? and B = (vy,v,) with
vi = (1,1)" and v, = (1, —1)" some other basis.

a. Show that b is a bilinear map.

b. Calculate the matrix representations Mg (b) and Mg(b).

c. Calculate the transformation matrix TE and verify

M (b) = (Tg)" - Me(b) - Tg.

Exercise 5: Let b € Bilg(V) be a bilinear form and q =qp : V — K:v = b(v,v)
its associated quadratic form. Show that for all u,v,w € V

dlu+v+w) —qu+v) —qv+w) —glu+w) +q(u) + q(v) + q(w) =0.

Solution to Exercise 1

xa=(1-1-2-1, xe=06-1% xc=2+t)* - 2-1), xpo=2+1t)’.
1

(0 1 (10 (1 (2 -
A‘(z 3)’ ](A)_<oz’ T_<1 2 T _<1 1)'

1
1
0
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Solution to Exercise 2
We showed in Exercise 2 on Assignment Set 6 that for B = (1,x, xz)
1.0 A2
Mi(f)=[o0 1 o
0 0 1
Thus dimg (Eig(f, 1 )) = dimpg (Ker(f — idv)) = 3 —rank (Mg(f) — I[) = 2, which
implies that the following matrix is a Jordan normal form for f:

— O O

11
J(f)=10 1
00

Solution to Exercise 3 a. Since b(0,u) =b(0+0,u) =b(0,u)+b(0,u) for any
u € U, we see that b(0,u) = 0 for any u € U. Therefore 0 € U* and the latter
is non-empty. Let now v,w € U+, A, u € K and u € U. Then

b(Av + uw, u) = Ab(v,u) + ub(w,u) =0,
and hence Av 4+ pw € U*. This shows that U™ is a subspace of V.
b. Let w € V be arbitrary. We have to show that w is a sum of a vector in U and

one in Ut. Set A = :((‘;'Vv")) c Kand u=w —A-v. Then

b(v,u) =b(v,w—Av) = b(v,w) — Ab(v,v) = 0.

Hence, u € U+, and w = Av +u € U + U+, This proves the claim.

Solution to Exercise 4 a. Note that b((x1,xz)t, (U1,Y2)") = (x1,%2)-A-(y1,Y2)",
where A = (4 ;). Since matrix multiplication is distributive, b is a bilinear

form, and since A = A', i. e. since A is symmetric,

bx,y) =x"A-y=x"-Aty=(A-x)"y=((A-x)"y) =y" (A-x) =b(y,x).

Hence, b is symmetric.

b. Just calculating b(e;, ;) and b(vi,v;) for all i,j we get

O I BRI G

c. The base change T has the vectors of B as column vectors, since E is the
standard basis, thus

TE:G _]1) and  Mg(b) = (TE)" - Mg(b) - TE.

Solution to Exercise 5
Let u,v,w € V be given. Note that

qgu+v+w)=bu+v+wu+v+w)
= b(u,u)+2b(u,v+w)+b(v+w,v+w) = q(u) +2b(u,v)+2b(u,w)+q(v+w)
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and

q(u+v) =bu+v,u+v) =>b(u,u) + 2b(u,v) + b(v,v) = q(u) + 2b(u,v) + q(v)
and

q(u+w) = b(u+w,u+w) = b(u,u)+2b(u, w)+b(w,w) = q(u)+2b(u, w)+q(w)
Using these results we finally get

qu+v+w)—qu+v) —qv+w)—qlut+w)+qu) +q(v) +qgw)

= (q(u) +2b(u,v) + 2b(u, w) + q(v+w)) — (q(u) + 2b(u,v) + q(v))
—q(v+w) — (q(u) +2b(u,w) + qg(w)) + q(u) + q(v) + q(w) = 0.
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Assignment Set 8

Exercise 1 should be handed in for marking.

Exercise* 1: We call a bilinear form b € Bilg (V) positive definite if and only if
b(v,v) >0 forall 0 #v € V. Let A = (a}} a;3) € Mat(2 x 2,R) be a symmetric
matrix. Show, the bilinear form ba is positive definite if and only if a;; > 0 and
det(A) > 0.

Hint, use Corollary 2.11 to find a T € Gl2(R) such that T*-A-T =(§ ) with a,b € {—1,0, 1}, and note

that T*- A-T = (ba(ti,t;)), ,_, , if tx denotes the k-th column of T.

Li=1,

Exercise 2: Calculate the rank, the index and the signature of the bilinear form
corresponding to the following symmetric matrices:

0010

-1 4 0011
A= Mat(2 x 2, R d B= Mat(4 x 4, R).
(4 —16)6 at(2x 2,R) an 110 1 € Mat(4 x 4,R)

0110

Exercise 3: Use the Algorithm of Gram-Schmidt to calculate an ONB of the
subspace <(1,—1,1,—1)t, (1,0,1,0)% (2,2, ],O)t> of K* w. r. t. the standard scalar
product.

Exercise 4: Let (V, (-, >) be a Hilbert space and U < V a subspace of V. Show
that

a. U+ < Vis a subspace of V.
b, V=U® UL i e V=U-+Uand UN UL ={0).

Hint, in b. show first that UNU" = {0} and calculate then the dimension of U+ U™, taking Gram-Schmidt

into consideration.

Exercise 5: Find for the following matrix an orthogonal matrix T which diago-
nalises it:
1 0 =2
A= 0 -1 0
-2 0 -1

Exercise 6: Let f € Endg(V), (V, (-, >) a finite-dimensional Hilbert space. Show
there is a unique endomorphism® f* € Endg (V) such that for all v,w € W

(f(v), w) = (v, f*(w)).

6Note, f* is called the adjoint of f, and f is self-adjoint if and only if f = f*!
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Solution to Exercise 1
We start by collecting some useful remarks. By Corollary 2.11 there is an invertible
matrix T = (t” t”) € GI(IR) such that

t21 t22
oA T=(% 0, (15)
0 b

with a,b € {—1,0,1}. This gives
det(A) - det(T)*=det (T*-A-T)=a-b (16)

The columns t; = (t11,t21)" and t; = (12, t22)" of T form a basis of K%, since T is

invertible, and we have

ba(t, t1) =a, ba(ti,t2) =baltzy,t1) =0 and ba(ty, t2) =b. (17

Let v = A1ty + A2tz Then
ba(v,v) = Ala + A3b. (18)
If ba is positive definite, then
arp =baler,e1) >0
and in view of Equation (16) and (17) we have
det(A) - det(T)* = ba(ts, t1) - balts, t2) > 0,

and hence also det(A) > 0.

Suppose now, vice versa, that a;; > 0 and det(A) > 0. We have to show that
ba(v,v) >0 for all v € K2.

Note first of all, that det(A) > 0 implies either a =b =1 or a =b = —1 in view of
Equation (15) and (16). Let A;,A; € R be such that e; = Ajt; + Asty, then

O<an = bA(e1,ez) = 7\%&+7\§b

Thus we must have a =b = 1.

Let now v = Aty + At € K? be arbitrary, then by Equation (18) ba(v,v) =
A2+ A3 >0, since a =b = 1. Hence b is positive definite.

Solution to Exercise 2

The normal forms of A and B may be calculated using the symmetric Gauf3-Algorithm’
and turn out to be

1 0 O 0

(1 O) respectively 01 0 0
0 o0 0 0 =1 o0

0o 0 0 -1

Thus rank(A) = 1, index(A) = 0 and signature(A) = —1, while rank(B) = 4,
index(B) = 2 and signature(B) = 0.

"For B do the following row-column-operations (R/C): 1) II — II —I; 2) III ~ III — II; 3)
T T+ 11 4) T - T —T; 5) T 1T+ 3TV 6) TV o TV — 11
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Solution to Exercise 3
Let u; = (1,—1,1,—1)%, up, = (1,0,1,0)* and uz = (2,2,1,0)". Using the Algorithm
of Gram-Schmidt, we get:

We set
V£:u2*<u,2,\)]>'\)] :(1>0)1>0)t7%' (])7])1)71)t:%'(1)])1>])t

and then again

And finally
Vé = u3—(u3,v1>-v1—<u3,v2>-v2 = (2)21 ])O)t_};'(])_])]a_] )t_%'(]a])]a])t = %'(],2,—],—2)t.

Hence

HV]éH 'Vé — \/L]_O : (1)2) 7],*2)t.

And (\)],\)2,\)3) is an ONB of U = <LL],LL2,LL3>.

V3 =

Solution to Exercise 4 a. Since 0 is orthogonal to every vector, 0 € U* and the
latter is non-empty. Let now v,w € U+, A, u € K and u € U. Then
(Av + pw, 1) = A{v, 1) + w{w, u) =0,
and hence Av + pw € U*. This shows that U™ is a subspace of V.

b. We show first that U N UL = {0}. If v € UN U, then (v,v) = 0. Since the
scalar product is definite, this implies v = 0.
It remains to show that V = U + U*. Extend an ONB (vq,...,v,) of U to an
ONB (v1,...,vn) of V. Then v,41,...,vy € Ut and hence

dimg (U) >n—1 = dimg(V) — dimg (W).
By the dimension formula for U + U+ we therefore get
dimg (V) > dimg (U+U™) = dimg (U) 4+ dimg (U") —dimg (UNUT) > dimg (V).
This, however, implies dimy (V) = dimyk (U + UL) and V=U+ U,

Solution to Exercise 5

Note first, since A is symmetric, hence self-adjoint over R, there exists an orthogonal
matrix T such that T~'- A - T is a diagonal matrix, and the columns of T are an
ONB of eigenvectors of R3.

We have xa = (3 —t) - (1 —t)?, so that

-1 0 0
TV"A.T=(0 -1 0
0o 0 3

In order to calculate T, we have to calculate the eigenspaces w. r. t. —1 and 3, and
then to use Gram-Schmidt to orthonormalize them. This gives

Eig(A,—1) = ((0,1,0)", % +(1,0,1)") and Eig(A,3) = <% -(1,0,—1)%).
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Thus the following matrix will do:

o L L

V2 V2

T=1]1 0 0
o L _1

V2 V2

Solution to Exercise 6
Let’s first show the existence of f*. For this we choose an ONB B = (vq,...,v,) of
V. We define f* on the basis vectors

n

o (v) =D (v, f(w)) -y (19)

i=1
fori=1,...,n. By linear continuation this defines an endomorphism f* € Endg(V),
Leifv=y)1,Av €V, then

f*(\)) = Z Z?\] . <\)j,f(\)i)> * Vi,

=1 i=1
We have to show that (f(v),w) = (v, f*(w)) for allv,w € V.
By the Parseval-Equation we have

n

f* (Vj) = Z(f* (vj),vi> * Vi, (20)

i=1
The uniqueness of the basis representation of a vector gives in view of Equation (19)
and (20) therefore

(v, f(vi)) = (" (v3), W)
or equivalently
(flvi), vi) = (vi, T (v5))
foralli,j=1,...,n. Let now v =3 Ayvi and w = 3 ', ;v; be given, then

n n n n

(f(v),w) = Z Z A (f(vi), vy) = Z Z A (vi, T7(v5)) = (v, £ (w)).

i=1 j=1 i=1 j=I
It remains to show the uniqueness. Let therefore f' € Endg(V) be any endomor-
phism such that
(f(v), w) = (v, f'(w)) (21)
for all v,w € V. We have to show f'(w) = f*(w) for all w € V. From Equation
(21) if follows that

0=, f'(w))— (v, f"(w)) = (v, f'(w) — (w))
for all v,w € V. Fix w and choose now v = f'(w) — f*(w), then
(f'(w) — f*(w), f'(w) — f*(w)) =0,

which implies f'(w) — *(w) = 0, since the scalar product is definite.
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