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speed of light c   3.00 × 108 m / s

gravitational constant G   6.67 × 10 –11N⋅m2 / kg2

permittivity constant  ε0
  8.85 × 10 – 12F / m

permeability constant   µ0
  1.26 × 10 – 6H / m

elementary charge e   1.60 × 10 –19C

electron volt eV   1.60 × 10 –19J

electron rest mass  me
  9.11 × 10 – 31kg

proton rest mass  mp
  1.67 × 10 – 27kg

Planck constant h   6.63 × 10 – 34J⋅ s

Planck constant / 2π     h          1.06 × 10 – 34J⋅ s

Bohr radius  rb   5.29 × 10 – 11m

Bohr magneton   µb
  9.27 × 10 – 24J / T

Boltzmann constant k   1.38 × 10 –23J / K

Avogadro constant  NA
  6.02 × 1023mol– 1

universal gas constant R   8.31 J /mol⋅K

Powers of 10

Power Prefix Symbol

 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10– 1 deci d
 10– 2 centi c
 10– 3 milli m
 10– 6 micro µ
 10– 9 nano n
 10– 12 pico p
 10– 15 femto f

MKS Units
m = meters kg = kilograms s = seconds
N = newtons J = joules C = coulombs
T = tesla F = farads H = henrys
A = amperes K = kelvins mol = mole

Dimensions

Quantity Unit Equivalents

Force newton N J/m   kg•m/ s2

Energy joule J   N• m   kg• m2/s2

Power watt W J/s   kg• m2/s3

Pressure pascal Pa N/  m2   kg/m• s2

Frequency hertz Hz cycle/s  s–1

Electric charge coulomb C   A•s

Electric potential volt V J/C   kg• m2/A• s3

Electric resistance ohm Ω V/A   kg• m2/A2
• s3

Capacitance farad F C/V   A2
• s4/kg• m2

Magnetic field tesla T   N•s/C •m   kg/A• s2

Magnetic flux weber Wb   T• m2
  kg• m2/A• s2

Inductance henry H   V•s/A   kg• m2/A2
• s2
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Calculus 2000
A Physics-Based Calculus Text

When developing a physics curriculum, a major
concern is the mathematical background of the
student.  The Physics 2000 text was developed
teaching premedical students who were supposed to
have had one semester of calculus.  Because many
of the students had taken calculus several years
previously, and had forgotten much of it, the physics
text used strobe photographs and the computer to
carefully introduce the calculus concepts such as
velocity, acceleration, and the limiting process.  By
the time  we got to electricity and magnetism in Part
2 of Physics 2000 we relied on the student being
familiar with the basic steps of differentiation and
integration.

For students who have forgotten much of their
calculus course, or those who have not had calculus
but wish to study the Physics 2000 text, we have
written Chapter 1 of Calculus 2000.  This chapter
not only covers all the calculus needed for the
Physics 2000 text, but is also carefully integrated
with it.  The chapter is much shorter than the typical
introductory calculus text because the basic calcu-
lus concepts are discussed in the physics text and the
calculus chapter only has to deal with the formal-
ism.

After the introductory courses, the standard physics
curriculum repeatedly goes over the same topics at
successively higher mathematical levels.  A typical
example is the subject of electricity and magnetism
which is taught using integral equations in the
introductory course, using differential operators in
an upper level undergraduate course, and then
taught all over again in a graduate level course.  In
each of the courses it takes a while for the student to
realize that this is just the same old subject dressed
up in new math.

With Chapters 2 through 13 of the Calculus 2000,
we introduce a different approach.  We take the
topics that we have already introduced in Physics
2000, and show how these topics can be handled in
progressively more sophisticated mathematical
ways.  Once we have introduced the mathematical
concepts of gradient, divergence and curl in the
calculus text, we can turn the integral form of
Maxwell's equation into a wave equation for elec-
tric and magnetic fields.  With the introduction of
the Laplacian and complex variables, we can study
Schrödinger's equation and begin to solve for the
hydrogen wave patterns discussed in Chapter 38 of
the physics text.
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Beyond seeing the same topics in a more sophisti-
cated way, the student finds that new insights can
result from the advanced mathematical approach.
Chapter 10 of the calculus text is a short chapter less
than two pages.  But it is one of the most significant
chapters in the text.  For there we see that Maxwell's
equations for electric and magnetic fields require
that electric charge be conserved.  This intimate
connection between a conservation law and field
theory becomes clear when we have sufficiently
powerful mathematical tools to handle the theory.

The physics text began its discussion of vector fields
in Chapter 23, using the velocity field as its first
example.  We did that because it is much easier to
visualize the familiar flow of water than the abstract
concept of an electric field.  We saw that the stream-
lines in fluid flow went over to electric field lines,
Gauss's law in fluid theory simply represented the
incompressibility of the fluid, and Bernoulli's equa-
tion provided an introduction to the concept of
voltage and potential.

However our discussion of electric and magnetic
fields, particularly in this calculus text, go way
beyond the simple fluid flow topics we introduced in
the physics text.  In the last two chapters of the
calculus text, we turn the tables and apply to fluid
theory the mathematical techniques we learned
studying electricity and magnetism.  In Chapter 12
we discuss the concept of vorticity which is the curl
of the velocity field.  The focus is to develop an
intuitive  understanding of the nature of vorticity
and the role it plays in fluid flows, particularly
vortices and vortex rings.

Chapter 13 is an introduction to fluid dynamics.
The idea is to bring our discussion of the velocity
field up to the same level as our treatment of electric
and magnetic fields.  We begin with a derivation of
the Navier-Stokes equation which applies to con-
stant density viscous fluids.  This is then converted
into an equation for vortex dynamics from which we
derive an extended form of the famous Helmholtz
equation.  We then use that to derive the well known
properties of vortex motion such as the so called
Magnus force, and discuss the experiment Rayfield
and Reif used to measure the circulation and core
diameter of quantized vortices in superfluid helium.
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Appendix on  Cal 13 A2-1
Conserved, intuitive discussion of  Cal 13 A2-2
Continuity equation for  Cal 13 A2-3

Curvature, radius of
Definition  Cal 2-4
Rope waves  Cal 2-10
Second derivative  Cal 2-4

Curve
Area under, integral of  Cal 1-12
Besier (Adobe Illustrator)  Cal 2-6
Slope as derivative  Cal 1-30
That increases linearly, integral of  Cal 1-13
Velocity, area under  Cal 1-12

Curve fitting  Cal 2-5
Cylindrical coordinates

Curl in  Cal 8-11
Curl in solid body rotation  Cal 12-9
Curl of magnetic field of wire  Cal 8-12
Div, grad, curl, del squared, A dot del B  Form.-2
Gradient in  Cal 3-14

Radial component  Cal 3-14
Theta component  Cal 3-15

Unit vectors  Cal 3-14
Viscous force in  Cal 4-7

D
De Broglie

Schrödinger's equation  Cal 6-2
Debye, on electron waves  Cal 6-1
Decay

Exponential decay  Cal 1-32
Decaying oscillation

RLC circuit  Cal 5-10
Definite integral

Compared to indefinite integrals  Cal 1-14
Defining new functions  Cal 1-15
Introduction to  Cal 1-11
Of  velocity  Cal 1-11
Process of integrating  Cal 1-13

Del
Relation to curl  Cal 8-2

Del - gradient operator  Cal 3-7
Del cross; curl

Chapter on  Cal 8-1
Del squared

Chapter on  Cal 4-1
In Cartesian coordinates  Cal 4-3
In spherical polar coordinates

Derivation of  Cal 4-12
Spherical harmonics  Cal 6-18

Relation to curl  Cal 8-2
Relation to potential flow  Cal 12-4
Schrödinger's equation

Applied to hydrogen atom  Cal 6-14
Schrödinger's equation  Cal 4-2
Viscous force  Cal 4-1

For 3D flows  Cal 4-6
In cylindrical coordinates  Cal 4-7
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Delta function
Definition of  Cal 7-8
In three dimensions  Cal 7-8
Used in Gauss' law  Cal 7-9

Delta i,j
Handling multiple cross products  Cal 13 A1-5
Used in dot product  Cal 13 A1-2

Delta i,j and epsilon i,j,k
Appendix on  Cal 13 A1-1

Density of circulation
Stokes' law  Cal 12-11

Derivative
As a limiting process  Cal 1-6, Cal 1-18, Cal 1-

23, Cal 1-28, Cal 1-30
As the Slope of a Curve  Cal 1-30
Constants come outside  Cal 1-24
Negative slope  Cal 1-31
Of exponential function e to the  x  Cal 1-28
Of exponential function e to the ax  Cal 1-29
Of function  x to the n'th power  Cal 1-24
Of sine function  Cal 1-38
Partial  Cal 5-24
Second

Chapter on  Cal 2-1
Constant acceleration formulas  Cal 2-9

Third, boat lofting  Cal 2-5
Derivative, partial

Order of, appendix on  Cal 9-8
Derivative, second  Cal 2-2

Geometrical interpretation  Cal 2-3
Of a sine wave  Cal 2-2

Differential equation
Fast way to find real solutions  Cal 5-10
For LC circuit

Solving with complex numbers  Cal 5-8
For LRC circuit

Transient  solutions  Cal 5-22
For R, L, and C circuits  Cal 5-6
Homogenous  Cal 5-9
To integral equation  Cal 3-4

Differentiation. See also Derivative
Chain rule  Cal 1-25
More on  Cal 1-23

Differentiation and integration
As inverse operations  Cal 1-18

Velocity and position  Cal 1-18
Fast way to go back and forth  Cal 1-20
Position as integral of velocity  Cal 1-20
Velocity as derivative of position  Cal 1-20

Dimensions of
Capacitance Front cover-2
Electric charge Front cover-2
Electric potential Front cover-2
Electric resistance Front cover-2
Energy Front cover-2
Force Front cover-2
Frequency Front cover-2
Inductance Front cover-2
Magnetic field Front cover-2
Magnetic flux Front cover-2
Power Front cover-2
Pressure Front cover-2

Dirac equation
Discussion of  Cal 6-12

Divergence
Chapter on  Cal 7-1
Relation to curl  Cal 8-2
Shrinking the surface integral  Cal 7-2
Theorem  Cal 7-5

Handling a point charge  Cal 7-7
Relation to curl  Cal 8-3

Divergence and curl
Surface & line integrals shrunken  Cal 7-1, Cal 7-2
Uniquely determined field  Cal 12-2

Divergence and gradient compared  Cal 7-5
Divergence free fields  Cal 7-10
Dot product

Relation to curl  Cal 8-2
Use of delta i,j  Cal 13 A1-2

Driven LRC circuit  Cal 5-19
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E
Einstein

Summation convention  Cal 13-5
Electric and magnetic fields

In terms of scalar and vector potentials  Cal 11-3
Electric charge

Conservation of
Consequence of Maxwell's equations  Cal 10-1

Continuity equation for  Cal 10-2
Dimensions of Front cover-2

Electric field
Gradient of voltage  Cal 3-3

Equation for  Cal 3-7
Field of point charge  Cal 3-10
Interpretation  Cal 3-6

In terms of scalar & vector potentials  Cal 11-3
Of a line charge

Using gradient in cylind. coord.  Cal 3-19
Of a point charge

Using gradient in spherical coord.  Cal 3-18
Wave equation for

With sources  Cal 11-6
Electric potential

Dimensions of Front cover-2
Plotting experiment  Cal 3-2
Related to fluid flows  Cal 12-3

Electric resistance
Dimensions of Front cover-2

Electromagnetic waves
Chapter on wave equation  Cal 9-1

Electromagnetism
Classical theory of  Cal 11-3

Electron
In Standard model of elementary particles  Cal 7-7
Point particle?  Cal 7-7

Energy
Dimensions of Front cover-2

Energy levels, hydrogen
Calculation of lowest  Cal 6-15
Lowest two from Schrödinger's equation  Cal 6-7

Epsilon i,j,k
Use in cross product  Cal 13 A1-3

Handling multiple cross products  Cal 13 A1-5
Epsilon i,j,k and delta i,j

Appendix on  Cal 13 A1-1

Equation
Continuity

For electric charge and current  Cal 10-2
Extended Helmholtz equation  Cal 13-15
Magnus  Cal 13-21

Airplane wing  Cal 13-24
Maxwell's

Derivation of the wave equation  Cal 9-4
Vector identities for  Cal 9-2

Navier-Stokes  Cal 13-2
Nonlinear effects  Cal 13-7

Schrödinger's. See Schrödinger  wave equation
Vector

Components with derivatives  Cal 1-7
Vortex dynamics equation  Cal 13-12
Wave, one dimensional  Cal 2-1

General form of  Cal 2-14
Solutions using complex variables  Cal 5-24

Wave, relativistic
Dirac's  Cal 6-12
For zero rest mass particles  Cal 6-2
Particles with rest mass  Cal 6-3
Schrödinger's  Cal 6-3

Euler's  number e = 2.7183. . .  Cal 1-17
Expansion, binomial  Cal 1-23

Derivation of  Cal 2-6, Form.-9
Expansion, series

Exponential function in complex variables  Cal 5-4
Sin and cosine  Cal 5-4
Taylor series  Cal 2-7

Experiments II
Potential plotting  Cal 3-2

Exponential decay  Cal 1-32
Exponential form complex number  Cal 5-3
Exponential function

As function of sin and cos  Cal 5-5
Derivative of  Cal 1-28
Exponential decay  Cal 1-32
Indefinite integral of  Cal 1-29
Integral of  Cal 1-29
Introduction to  Cal 1-16
Inverse of the logarithm  Cal 1-16
Series expansion  Cal 1-28
y to the x power  Cal 1-16

Extended Helmholtz's theorem  Cal 13-15
Discussion of  Cal 13-16
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F
Fall line. See Gradient: Of voltage: Interpretation

As a field line  Cal 3-23
Faraday's law

In terms of the vector potential  Cal 11-3
Non potential field  Cal 12-3

Feynman  Cal 7-7
Quantized vortices  Cal 12-16

Parabolic surface of rotating helium  Cal 12-6
Field

Divergence free  Cal 7-10
Plotting experiment  Cal 3-2
Pressure field  Cal 3-1
Scalar field  Cal 3-7
Uniquely determined, conditions for  Cal 12-2
Vector field

Created by gradient  Cal 3-1
Vorticity field  Cal 12-18

Field lines
And contour lines  Cal 3-23
Two dimensional slope  Cal 3-24

Fluid dynamics
Introductory chapter on  Cal 13-1
Vorticity  Cal 12-1

Fluids
Compressible

Continuity equation for  Cal 10-3
Laminar flow  Cal 4-8
Newtonian, definition of  Cal 4-4
Potential flow  Cal 12-3

In a straight pipe  Cal 12-5
Zero vorticity  Cal 12-3

Solid body rotation  Cal 12-9
Viscous force on  Cal 4-5
Vorticity as a source of fluid motion  Cal 12-7

Flux
Of vorticity in flow tube  Cal 12-18
Rate of change of through moving circuit  Cal 13-

15
Flux equation, derivation of  Cal 7-11
Force

Conservative forces
And Faraday's law  Cal 11-2

Dimensions of Front cover-2
Non potential

In Navier-Stokes equation  Cal 13-11
Viscous

In cylindrical coordinates  Cal 4-7
In pipe flow  Cal 4-7
On a fluid element  Cal 4-5

Formulary  Form.-1
Discussion of  Cal 4-2

Fractal geometry  Cal 3-23
Frequency

Dimensions of Front cover-2

Functions delta i,j and epsilon i,j,k
Appendix on  Cal 13 A1-1

Functions obtained from integration  Cal 1-15
Logarithms  Cal 1-15

G
Gamma

Speed of sound  Cal 2-18
Gauge invariance

Choice of vector potential divergence  Cal 11-4
Gauge invariant theory  Cal 11-4

Gauss' law
Derived from differential equation  Cal 7-7
Electric field of point charge

Using delta function  Cal 7-9
Geometrical interpretation

Of Gradient  Cal 3-4, Cal 3-22
Equations for  Cal 3-25

Of second derivative  Cal 2-3
Geometry, fractal  Cal 3-23
Gibbs, Willard; gradient notation  Cal 3-7
Gradient

A summary of gradient formulas  Cal 3-18
As a vector field  Cal 3-28
Chapter on  Cal 3-1
From a Geometrical Perspective  Cal 3-4, Cal 3-22

Equations for  Cal 3-25
In Cartesian coordinates  Cal 3-12
In cylindrical coordinates  Cal 3-14

Coaxial cable  Cal 3-21
Electric field of line charge  Cal 3-19
Radial component  Cal 3-14
Theta component  Cal 3-15

In spherical coordinates
Phi component  Cal 3-17
Theta component  Cal 3-17

Of pressure  Cal 3-29
Of voltage  Cal 3-3

Field of point charge  Cal 3-10
Interpretation  Cal 3-6
Parallel plate capacitor  Cal 3-8
Voltage inside conductor  Cal 3-9

Operator "del"  Cal 3-7
Relation to curl  Cal 8-2
Vector and scalar fields  Cal 3-1

Gradient vector
In three dimensions  Cal 3-28
Steepest slope  Cal 3-25
Transformation of  Cal 3-25

Gravity
Quantum theory of  Cal 7-7

Gyroscope like behavior
Of vortex line due to non potential force  Cal 13-18

Gyroscopes
Superfluid  Cal 12-17
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H
Half-life

In exponential decay  Cal 1-33
Of muons, exponential decay  Cal 1-33

Heisenberg, Werner  Cal 1-2
Helium, superfluid  Cal 12-6
Helmholtz theorem

Application to smoke rings  Cal 12-21
Derivation from Navier-Stokes equation  Cal 13-11
From extended Helmholtz theorem  Cal 13-16
Introduction to  Cal 12-19

Helmholtz theorem extended
Discussion of  Cal 13-16
Including non potential forces  Cal 13-15

Homogeneous solution for RLC equation  Cal 5-23
Homogenous differential equation  Cal 5-9, Cal 5-23
Hydrodynamic voltage

Gradient of and Bernoulli's equation  Cal 13-9
Hydrogen atom

Bohr radius  Cal 6-7
Schrödinger's equation for  Cal 6-6
Schrödinger's equation solutions  Cal 6-7

Lowest two energy levels  Cal 6-7
Non spherically symmetric  Cal 6-18
Spherical harmonics  Cal 6-18

Standing wave patterns in  Cal 6-8
Hydrogen wave patterns

Lowest energy ones  Cal 6-8

I
Illustrator™, Adobe  Cal 2-6
Imaginary numbers  Cal 5-2
Impedance  Cal 5-15

Formulas for  Cal 5-18
Impulse

Of a vortex ring  Cal 13-23
Impulse equation  Cal 13-23

Indefinite integral
Definition of  Cal 1-14
Of exponential function  Cal 1-29

Inductance
Dimensions of Front cover-2

Infinities in the gravitational interaction
String theory  Cal 7-7

Instantaneous velocity
And the uncertainty principle  Cal 1-2
Calculus definition of  Cal 1-5

Integral
As a sum  Cal 1-10
Calculating them  Cal 1-11
Definite, introduction to  Cal 1-11
Formula for integrating x to n'th power  Cal 1-

14, Cal 1-27
Indefinite, definition of  Cal 1-14
Of 1/x, the logarithm  Cal 1-15
Of a constant  Cal 1-13
Of a curve that increases linearly  Cal 1-13
Of a velocity curve  Cal 1-12
Of exponential function e to the ax  Cal 1-29
Of the velocity vector  Cal 1-10

As area under curve  Cal 1-12
Of x to n'th power

Indefinite integral  Cal 1-27
Integral formulas

Many of them  Form.-5
Integral, line

Becomes curl for infinitesimal paths  Cal 8-3
Integral sign  Cal 1-10
Integral, surface

Shrinking for divergence  Cal 7-2
Integral to differential equations  Cal 3-4
Integration

Equivalent to finding area  Cal 1-11
Introduction to  Cal 1-8
Introduction to finding areas under curves  Cal 1-13
Why computers do it so well  Cal 1-12

Integration and differentiation
As inverse operations  Cal 1-18
Fast way to go back and forth  Cal 1-20
Position as integral of velocity  Cal 1-20
Velocity as derivative of position  Cal 1-20

Integration formulas  Cal 1-27
Intensity

Of wave function  Cal 6-9
Interpretation of solutions to Schrödinger's Eq.  Cal

6-9
Interval, evaluating variables over  Cal 1-10
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L
Laminar flow  Cal 4-8, Cal 7-10
Landau, Lev

Superfluid helium  Cal 12-6
Landau's prediction for  Cal 12-6

Laplacian
Relation to curl  Cal 8-2

Laplacian (del squared)
Chapter on  Cal 4-1
Relation to potential flow  Cal 12-4

LC circuit
Ringing like a bell  Cal 5-11

Leibnitz  Cal 1-2
Leptons

Standard model of elementary particles  Cal 7-7
Lifetime

Muon, exponential decay  Cal 1-32
Light

Speed of light
From one dimensional wave equation  Cal 9-7

Structure of electromagnetic wave  Cal 9-1, Cal 9-
6

Limiting process  Cal 1-2
Definition of derivative  Cal 1-30
In calculus  Cal 1-5
Introduction to derivative  Cal 1-6
With strobe photographs  Cal 1-3

Line charge, electric field of
Calculated using calculus

In cylindrical coordinates  Cal 3-19
Line integral

Becomes curl for infinitesimal paths  Cal 8-3
Localized non potential force

Effect on vortex motion  Cal 13-17
Lofting, boat  Cal 2-5
Logarithms

Integral of 1/x  Cal 1-15
Introduction to  Cal 1-15
Inverse of exponential function  Cal 1-16

LRC circuit. See RLC circuit
LRC circuit, ringing like a bell  Cal 5-11

M
Magnetic and electric fields

In terms of scalar and vector potentials  Cal 11-3
Magnetic field

Analogous to vorticity in fluids  Cal 12-7
Of a straight wire

Calculating curl of  Cal 8-12
Curl of  Cal 8-10

Wave equation for
With sources  Cal 11-6

Magnetic flux
Dimensions of Front cover-2

Magnus equation
Airplane wing  Cal 13-24
Relative motion of vortex line and fluid particles

Cal 13-20
The equation  Cal 13-21

Magnus formula
Exact for curved vortices  Cal 13 A2-1

Magnus lift force  Cal 13-25
On fluid core vortices - a pseudo force  Cal 13-26

Mass
Continuity equation for flow of  Cal 13-5

Maxwell's equations
All forms of  Cal 11-6
Conservation of electric charge  Cal 10-1
Derivation of the wave equation  Cal 9-4
In differential form  Cal 8-9
In terms of scalar and vector potentials  Cal 11-3
Introducing vector potential into  Cal 11-3
One dimensional wave equation

Gives speed of light  Cal 9-7
Plane wave solution  Cal 9-6
Relativistic wave equation for photons  Cal 6-3
Vector identities for  Cal 9-2
Vector potential in  Cal 11-2

Measurement limitation
Due to uncertainty principle  Cal 1-2

Measurement of quantized circulation  Cal 13-20
Measuring time constant from graph  Cal 1-34
MKS units Front cover-2
Modulus

Spring  Cal 2-15
Momentum of fluid particles

Navier-Stokes equation  Cal 13-2
Motion

Of charged vortex rings  Cal 13-18
Of vortex line, relative directions  Cal 13-22

Moving circuit
Vector Identity for  Cal 13-12

Multiple cross products
Easy way to handle  Cal 13 A1-5

Muon
In Standard model of elementary particles  Cal 7-7
Lifetime, exponential decay  Cal 1-32
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N
Navier-Stokes equation  Cal 13-2

As starting point for fluid theory  Cal 13-7
Bernoulli equation derivation  Cal 13-8
Derivation of Helmholtz's theorem from  Cal 13-11
Final equation!  Cal 13-7
Momentum of fluid particles  Cal 13-2
Newton’s second law for fluids  Cal 13-2
Non potential forces in  Cal 13-11
Nonlinear equation  Cal 13-7
Rate of change of momentum  Cal 13-2
Role of  viscosity  Cal 13-7
Viscosity term in  Cal 13-10

Curl of vorticity  Cal 13-10
Negative slope  Cal 1-31
Neutrinos

In Standard model of elementary particles  Cal 7-7
New functions, obtained from integration  Cal 1-15
Newtonian Fluids

Definition of  Cal 4-4
Newton’s laws

Second law
For fluids, the Navier-Stokes equation  Cal 13-2

Non potential field  Cal 12-3
Non potential forces

In extended Helmholtz theorem  Cal 13-15
In Navier-Stokes equation  Cal 13-11
Localized

Causing sideways motion  Cal 13-17
Rayfield-Reif experiment  Cal 13-16

Nonlinear equation
Navier-Stokes equation  Cal 13-7

Normalization of wave function  Cal 6-10

O
One dimensional wave equation  Cal 2-1, Cal 2-14

Maxwell's equations
Gives speed of light  Cal 9-7

Solutions using complex variables  Cal 5-24, Cal
5-25

Order of partial derivative  Cal 9-8
Oscillation

Decaying  Cal 5-10

P
Parabolic profile, pipe flow  Cal 4-8
Parabolic surface, rotating fluid

Superfluid helium  Cal 12-6
Telescope mirror  Cal 12-6

Parallel plate capacitor
Example of  voltage gradient  Cal 3-8

Partial derivative  Cal 5-24
Order of

Appendix on  Cal 9-8
Partial derivative operator  Cal 8-2
Particular solution, driven RLC circuit  Cal 5-22
Perpendicular components of flow  Cal 12-2
Phi component

Gradient in spherical coordinates  Cal 3-17
Photons

Relativistic wave equation for  Cal 6-3
Physical constants

In CGS units Back cover-1
In MKS units Front cover-2

Pipe flow
Calculating viscous forces  Cal 4-7
Measuring viscosity coefficient  Cal 4-9
Parabolic profile  Cal 4-8
Potential flow in  Cal 12-5
Pressure force  Cal 4-9
Viscous force formula  Cal 4-8

Plane, tangent  Cal 3-23
Plane wave

Discussion of  Cal 9-6
Solution for Maxwell's equations  Cal 9-6

Plotting
Experiment, electric potential  Cal 3-2

Plywood model. See Gradient: Of voltage: Interpre-
tation

Point charge
Divergence theorem  Cal 7-7
Quantum electrodynamics  Cal 7-7

Point particles
Delta function  Cal 7-8
Problems with gravity theory  Cal 7-7
Standard model  Cal 7-7

Postscript™  language  Cal 2-6
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Potential,  magnetic
Wave equation for  Cal 11-4

Potential, electric
Wave equation for  Cal 11-4

Potential energy
Electric potential energy

Electric field as gradient of  Cal 3-4
Schrödinger's Equation  Cal 6-6

Potential flow
And the Laplacian (del squared)  Cal 12-4
Bernoulli’s equation in  Cal 13-9
Definition of  Cal 12-3
Examples of

In a sealed container  Cal 12-4
In a straight pipe  Cal 12-5

Superfluids  Cal 12-6
Zero curl, no vorticity  Cal 12-3

Power
Dimensions of Front cover-2

Power series. See Series expansions
Powers of 10, names of Front cover-2
Prediction of motion

Using calculus  Cal 1-9
Pressure

Dimensions of Front cover-2
Pressure field  Cal 3-1

Pressure force
As gradient of pressure  Cal 3-29
In pipe flow  Cal 4-9
Per unit volume  Cal 3-30

Probability wave, Schrödinger's Equation  Cal 6-9
Projectile motion

And the uncertainty principle  Cal 1-4
Calculus definition of velocity  Cal 1-5

Pulse
Formation of wave pulse  Cal 2-14

Q
Quantized angular momentum

In hydrogen wave patterns  Cal 6-8
Quantized circulation

Measurement of  Cal 13-20
Quantized vortex ring

Rayfield-Reif experiment  Cal 13-16
Quantum electrodynamics

Feynman, Schwinger, and Tomonaga  Cal 7-7
Point charges  Cal 7-7

Quantum mechanics
Concept of velocity  Cal 1-4

Quantum theory
Vector potential needed in  Cal 11-3

Quantum theory of gravity  Cal 7-7
Quantum vortices  Cal 12-15

Core of  Cal 12-16
Giant Bohr atom  Cal 12-15
Number in rotating bucket  Cal 12-16

Quarks  Cal 7-7
In Standard model of elementary particles  Cal 7-7

R
Radial component

Gradient in cylindrical coordinates  Cal 3-14
Radian measure  Cal 1-35
Radians to degrees  Cal 5-4
Radius of curvature

Definition  Cal 2-4
Second derivative  Cal 2-4

Rate of change of momentum
Of fluid particles, Navier-Stokes equation

When mass is conserved  Cal 13-6
Rayfield-Reif experiment  Cal 13-16

Creation of vorticity  Cal 13 A2-9
Motion of charged vortex rings  Cal 13-18

RC circuit
Differential equation for  Cal 5-6

Solving with complex numbers  Cal 5-8
Labeling voltages  Cal 5-7

Real part of complex number  Cal 5-2
Relativistic physics

Electromagnetic radiation, structure of  Cal 9-
1, Cal 9-6

Relativistic wave equation
For zero rest mass particles  Cal 6-2
Particles with rest mass  Cal 6-3
Schrödinger's  Cal 6-3

Resonance
In driven RLC circuits  Cal 5-21

Rest mass
Non zero

Relativistic wave equation for  Cal 6-3
Zero

Relativistic wave equation for  Cal 6-2
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Right-hand rule
For Cartesian coordinates  Cal 3-12

RLC circuit
Decaying oscillation  Cal 5-10
Differential equation for  Cal 5-11
Driven LRC circuit  Cal 5-19
Impedance  Cal 5-15

Formulas for  Cal 5-18
Labeling voltages  Cal 5-7
Solution using complex variables  Cal 5-12
Transient  solutions  Cal 5-22

Roller bearings
For wheel on fixed axle, Stokes' law  Cal 12-13

Rope
Wave equation for  Cal 2-10

Rotated coordinate system
Components of a vector in  Cal 3-26

Rotating bucket of superfluid helium
Quantized vortices in  Cal 12-16

Rotating shaft
Total circulation of  Cal 12-12
Velocity field of  Cal 12-12

S
Scalar and vector potentials

Chapter on  Cal 11-1
Scalar field  Cal 3-7

Gradient gives vector field  Cal 3-29
Pressure  Cal 3-29

Scalar potential
And the electric field  Cal 11-3
Relation to vector potential  Cal 11-2
Wave equation for  Cal 11-4

Coulomb gauge  Cal 11-6
Gauge invariant form  Cal 11-4
Wave gauge  Cal 11-5

Schrödinger, Erwin  Cal 6-1

Schrödinger's equation
Allowed standing wave patterns, hydrogen  Cal 6-

7
Angular momentum in solutions  Cal 6-18
Applied to the hydrogen atom  Cal 6-14
Bohr radius  Cal 6-7
Calculation of lowest energy level  Cal 6-15
Chapter on  Cal 6-1
Complex conjugate of wave function  Cal 6-9
Coulomb potential  Cal 6-6
Del squared in  Cal 4-2
Felix Block story on  Cal 6-1
For hydrogen atom  Cal 6-6
Full three dimensional form  Cal 6-6
Hydrogen atom solution  Cal 6-6, Cal 6-7
Ideas that led to it  Cal 6-2
Intensity of wave function  Cal 6-9, Cal 6-10
Interpretation of solutions  Cal 6-9
Lowest two energy levels  Cal 6-7
Non spherically symmetric solutions  Cal 6-18

Spherical harmonics  Cal 6-18
Normalization of wave function  Cal 6-10
Potential energy in  Cal 6-6
Probability interpretation  Cal 6-9
Second energy level  Cal 6-16
Solutions of definite energy  Cal 6-14
Solved for hydrogen atom  Cal 6-14
Why it is complex  Cal 6-5

Schrödinger's relativistic wave equation  Cal 6-3
Two solutions  Cal 6-4

Schwinger  Cal 7-7
Second derivative  Cal 2-2

Constant acceleration formulas  Cal 2-9
Geometrical interpretation  Cal 2-3
Of a sine wave  Cal 2-2
Radius of curvature  Cal 2-4

Second energy level, hydrogen  Cal 6-16
Second viscosity coefficient  Cal 4-6
Series expansions  Cal 1-23

Binomial  Cal 1-23
Exponential function

Complex variables  Cal 5-4
Exponential function e to the x  Cal 1-28
Sine and cosine  Cal 5-4
Taylor  Cal 2-7

Sideways motion of vortex line
Caused by localized non potential force  Cal 13-17

Sine function
Amplitude of  Cal 1-37
Definition of  Cal 1-35, Cal 1-36
Derivative of, derivation  Cal 1-38
Series expansion  Cal 5-4

Sine waves
As function of complex exponential  Cal 5-5
Second derivative  Cal 2-2
Traveling wave  Cal 2-14
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Single vortex line  Cal 13 A2-4
Singly connected surface, Stokes' law  Cal 12-13
Slinky™

Compressional wave on  Cal 2-15
Slope of a curve

And contour maps  Cal 3-23
As derivative  Cal 1-30, Cal 3-23
Formula for  Cal 1-30
In two dimensions  Cal 3-23
Negative slope  Cal 1-31
Steepest slope, gradient vector  Cal 3-25

Smoke rings  Cal 12-20
Approaching each other  Cal 12-21
Creating  Cal 12-21

Role of viscosity in  Cal 12-21
Prediction of Helmholtz’s theorem  Cal 12-21
Stability of  Cal 12-21
Titanium tetrachloride for  Cal 12-20

Soap film analogy
Stokes' law  Cal 8-7

Solar neutrinos. See Neutrinos
Solid body rotation  Cal 12-9

Curl of velocity field  Cal 12-10
Sound

Speed, formula for  Cal 2-20
Speed of air molecules  Cal 2-21
Speed of, calculating  Cal 2-17
Wave equation for  Cal 2-17, Cal 2-20

Adiabatic expansion  Cal 2-18
Sound waves, speed of

Formula for  Cal 2-21
Source of fields, conserved  Cal 10-3
Source terms for wave equations  Cal 11-6
Speed of

Air molecules  Cal 2-21
Sound, formula for  Cal 2-20
Vortex rings

Circular rings  Cal 12-20
Two dimensional rings  Cal 12-19

Wave pulses
On rope, calculus derivation  Cal 2-13

Waves
One dimensional wave equation  Cal 5-24

Spherical coordinates
Derivation of del squared in  Cal 4-12
Div, grad, curl, del squared, A dot del B  Form.-3
Gradient in  Cal 3-16

Phi component  Cal 3-17
Theta component  Cal 3-17

Schrödinger's equation  Cal 6-6
Unit vectors  Cal 3-16

Derivative of changing unit vectors  Cal 4-12
Spherical harmonics  Cal 6-18

Spline fitting  Cal 2-5
Spring

Wave equation for  Cal 2-17
Speed of wave  Cal 2-17

Spring modulus  Cal 2-15
Stability of smoke rings  Cal 12-21
Standard model of elementary particles  Cal 7-7

Leptons  Cal 7-7
Electrons  Cal 7-7
Muons  Cal 7-7
Neutrinos  Cal 7-7
Tau particle  Cal 7-7

Quarks  Cal 7-7
Standing waves

Patterns in hydrogen  Cal 6-8
From Schrödinger's equation  Cal 6-7

Wave equation  Cal 2-14
Stokes' law

Applied to wheel on fixed axle  Cal 12-13
Convert line to surface integral  Cal 8-4
Derivation of  Cal 8-4
Final result  Cal 8-6
Introduction to  Cal 8-3
Revisited  Cal 12-11
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Calculus Chapter 1
Introduction to Calculus
This first chapter covers all the calculus that is needed
for the Physics 2000 text. The remaining chapters allow
students to look at the physics from an advanced
mathematical point of view.

This chapter, which replaces Chapter 4 in Physics
2000, is intended for students who have not had
calculus, or as a calculus review for those whose
calculus is not well remembered.  If, after reading
part way through this chapter, you feel your calculus
background is not so bad after all, go back to
Chapter 4 in Physics 2000, study the derivation of
the constant acceleration formulas beginning on
page 4-8, and work the projectile motion problems
in the appendix to Chapter 4.  Those who study all of
this introduction to calculus should then proceed to
the projectile motion problems in the appendix to
Chapter 4 of the Physics text.

CHAPTER 1 INTRODUCTION TO
CALCULUS
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LIMITING PROCESS
In Chapter 3 of Physics 2000, we used strobe photo-
graphs to define velocity and acceleration vectors.
The basic approach was to turn up the strobe flashing
rate, as we did in going from Figure (3-3) to (3-4)
shown below. We turned the rate up until all the
kinks are clearly visible and the successive displace-
ment vectors give a reasonable description of the
motion.  We did not turn the flashing rate too high,
for the practical reason that the displacement vectors
became too short for accurate work.

In our discussion of instantaneous velocity we con-
ceptually turned the strobe all the way up as illus-
trated in Figures (2-22a) through (2-22d), redrawn
here in Figure (1).  In these figures, we initially see
a fairly large change in  v0  as the strobe rate is
increased and  ∆t  reduced.  But then the change
becomes smaller, and it looks as if we are approach-
ing some final value of  v0  that does not depend on
the size of  ∆t , provided  ∆t  is small enough.  It looks
as if we have come close to the final value in Figure
(1c).

The progression seen in Figure (1) is called a limit-
ing process.  The idea is that there really is some true
value of  v0  which we have called the instantaneous
velocity, and that we approach this true value for
sufficiently small values of  ∆t .  This is a calculus
concept, and in the language of calculus, we are
taking the limit as   ∆∆ t  goes to zero.

THE UNCERTAINTY PRINCIPLE
For over 200 years, from the invention of calculus by
Newton and Leibnitz until 1924, the limiting pro-
cess and the resulting concept of instantaneous ve-
locity was one of the cornerstones of physics.  Then
in 1924 Werner Heisenberg discovered what he
called the uncertainty principle which places a limit
on the accuracy of experimental measurements.

Heisenberg discovered something very new and
unexpected.  He found that the act of making an
experimental measurement unavoidably affects the
results of an experiment.  This had not been known
previously because the effect on large objects like
golf balls is undetectable.  But on an atomic scale
where we study small systems like electrons moving
inside an atom, the effect is not only observable, it
can dominate our study of the system.

One particular consequence of the uncertainly prin-
ciple is that the more accurately we measure the
position of an object, the more we disturb the motion
of the object.  This has an immediate impact on the
concept of instantaneous velocity.  If we turn the
strobe all the way up, reduce  ∆t  to zero, we are in
effect trying to measure the position of the object
with infinite precision.  The consequence would be
an infinitely big disturbance of the motion of the
object we are studying.  If we actually could turn the
strobe all the way up, we would destroy the object
we were trying to study.

Figures 3-3 and 3-4 from Physics 2000
Strobe photographs of a moving object.  In the first photograph,
the time between flashes is so long that the motion is difficult to
understand. In the second, the time between flashes was reduced
and the motion is more easily understood.
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1

∆t = 0.4 Sec

0

V0

V01

∆t = 0.025 Sec

0

V0

1

∆t = 0.1 Sec

0

Vi~

instantaneous velocity

(c)

(d)

(a)

(b)

Figure 1
Transition to instantaneous velocity. As we reduce  ∆∆ t ,
there is less and less change in the vector  V0 . It looks
as if we are approaching an exact final value.
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Uncertainty Principle on a Larger Scale
It turns out that the uncertainty principle can have a
significant impact on a larger scale of distance than
the atomic scale.  Suppose, for example, we con-
structed a chamber that is 1 cm on each side, and
wished to study the projectile motion of an electron
inside.  Using Galileo’s idea that objects of different
mass fall at the same rate, we would expect that the
motion of the electron projectile should be the same
as more massive objects.  If we took a strobe photo-
graph of the electron’s motion, we would expect to
get results like those shown in Figure (2).  This
figure represents projectile motion with an accelera-
tion g = 980 cm/sec2 and    ∆t = .01sec,  as the reader
can easily check.

When we study the uncertainty principle in Chapter
40 of the Physics text, we will see that a measure-
ment which is accurate enough to show that position
(2) is below position (1), could disturb the electron
enough to reverse its direction of motion.  The next
position measurement could find the electron over
where we drew position (3), or back where we drew
position (0), or anywhere in the region in between.
As a result we could not even determine what
direction the electron is moving.  This uncertainty
would not be the result of a sloppy experiment, it is
the best we can do with the most accurate and
delicate measurements possible.

The uncertainty principle has had a significant im-
pact on the way physicists think about motion.
Because we now know that the measuring process
affects the results of the measurement, we see that it
is essential to provide experimental definitions to
any physical quantity we wish to study.  A concep-
tual definition, like turning the strobe all the way up
to define instantaneous velocity, can lead to funda-
mental inconsistencies.

Even an experimental definition like our strobe
definition of velocity can lead to inconsistent results
when applied to something like the electron in
Figure (2).  But these inconsistencies are real.  Their
existence is telling us that the very concept of
velocity is beginning to lose meaning for these small
objects.

On the other hand, the idea of the limiting process
and instantaneous velocity is very convenient when
applied to larger objects where the effects of the
uncertainty principle are not detectable.  In this case
we can apply all the mathematical tools of calculus
developed over the past 250 years.  The status of
instantaneous velocity has changed from a basic
concept to a useful mathematical tool.  Those prob-
lems for which this mathematical tool works are
called problems in classical physics; those problems
for which the uncertainty principle is important, are
in the realm of what we call quantum physics.

Figure 2
Hypothetical electron projectile motion experiment.
The uncertainty principle tells us that such an
experiment cannot lead to predictable results.
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Figure 3
Definitions of      ∆∆Ri  and vi .

i

i  1
∆Ri

Ri  1
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∆R   i Ri= –Ri  1+

V i = ∆R   i
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CALCULUS DEFINITION OF VELOCITY
With the above perspective on the physical limita-
tions of the limiting process, we can now return to
the main topic of this chapter—the use of calculus in
defining and working with velocity and accelera-
tion.

In discussing the limiting process in calculus, one
traditionally uses a special set of symbols which we
can understand if we adopt the notation shown in
Figure (3).  In that figure we have drawn the coordi-
nate vectors  Ri  and  Ri+1  for the i th and (i + 1)
positions of the object.  We are now using the
symbol   ∆Ri to represent the displacement of the ball
during the i to i+1 interval.  The vector equation for

  ∆Ri  is

  ∆Ri = Ri+1 – Ri (1)

In words, Equation (1) tells us that   ∆Ri  is the
change, during the time   ∆t,  of the position vector  R
describing the location of the ball.

The velocity vector  vi  is now given by

  
vi =

∆Ri
∆t (2)

This is just our old strobe definition   vi = si/∆t , but
using a notation which emphasizes that the displace-
ment   s i = ∆Ri  is the change in position that occurs
during the time  ∆t .  The Greek letter ∆  (delta) is
used both to represent the idea that the quantity   ∆Ri
or  ∆t  is small, and to emphasize that both of these
quantities change as we change the strobe rate.

The limiting process in Figure (1) can be written in
the form

  
vi ≡ limit

∆t→0
∆Ri
∆t (3)

where the word “limit” with   ∆t→0  underneath, is to
be read as “limit as  ∆t  goes to zero”.  For example
we would read Equation (3) as “the instantaneous
velocity   vi   at position i is the limit, as   ∆t  goes to
zero, of the ratio   ∆Ri /∆t .

 
”

For two reasons, Equation (3) is not quite yet in
standard calculus notation.  One is that in calculus,
only the limiting value, in this case, the instanta-
neous velocity, is considered to be important.  Our
strobe definition   vi = ∆Ri /∆t  is only a step in the
limiting process.  Therefore when we see the vector

 vi , we should assume that it is the limiting value, and
no special symbol like the underline is used.  For this
reason we will drop the underline and write

  
vi = limit

∆t→0
∆Ri
∆t (3a)
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The second change deals with the fact that when  ∆t
goes to zero we need an infinite number of time steps
to get through our strobe photograph, and thus it is
not possible to locate a position by counting time
steps. Instead we measure the time t that has elapsed
since the beginning of the photograph, and use that
time to tell us where we are, as illustrated in Figure
(4).  Thus instead of using  vi  to represent the
velocity at position i, we write  v(t)  to represent the
velocity at time  t.  Equation (3) now becomes

  
v(t) = limit

∆t→0
∆R(t)

∆t (3b)

where we also replaced   ∆Ri  by its value   ∆R(t)  at
time t.

Although Equation (3b) is in more or less standard
calculus notation, the notation is clumsy.  It is a pain to
keep writing the word “limit” with a   ∆t→0 under-
neath.  To streamline the notation, we replace the
Greek letter ∆  with the English letter  d  as follows

  
limit
∆t→0

∆R(t)
∆t

≡ dR(t)
dt (4)

(The symbol ≡  means defined equal to.) To a
mathematician, the symbol   dR(t)/dt   is just short-

hand notation for the limiting process we have been
describing.  But to a physicist, there is a different,
more practical meaning.  Think of dt as a short  ∆t ,
short enough so that the limiting process has essen-
tially occurred, but not too short to see what is going
on.  In Figure (1), a value of dt less than .025 seconds
is probably good enough.

If dt is small but finite, then we know exactly what
the  dR(t)  is.  It is the small but finite displacement
vector at the time  t.  It is our old strobe definition of
velocity, with the added condition that dt is such a
short time interval that the limiting process has
occurred.  From this point of view, dt is a real time
interval and  dR(t)

 
a real vector, which we can work

with in a normal way.  The only thing special about
these quantities is that when we see the letter d
instead of ∆ , we must remember that a limiting
process is involved.  In this notation, the calculus
definition of velocity is

 

v(t) =
dR(t)

dt
(5)

where  R(t)  and  v(t)  are the particle’s coordinate vec-
tor and velocity vector respectively, as shown in Figure
(5).  Remember that this is just fancy shorthand nota-
tion for the limiting process we have been describing.

t = .3sec

t = .2sect = .1sec

t = 0sec

t = .4sec

t = .5sec

R(t)
at t = .3 sec

Figure 4
Rather than counting individual images, we can
locate a position by measuring the elapsed time t.
In this figure, we have drawn the displacement
vector   R(t) at time t = .3 sec.

Figure 5
Instantaneous position and velocity at time t.

R(t)

V(t)
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ACCELERATION
In the analysis of strobe photographs, we defined both
a velocity vector v and an acceleration vector a .  The
definition of a , shown in Figure (2-12) reproduced
here in Figure (6), was

  
ai ≡

vi+1 – vi
∆t (6)

In our graphical work we replaced  vi  by   s i/∆t  so that
we could work directly with the displacement vectors

 s i and experimentally determine the behavior of the
acceleration vector for several kinds of motion.

Let us now change this graphical definition of accel-
eration over to a calculus definition, using the ideas
just applied to the velocity vector.  First, assume that
the ball reached position  i  at time  t  as shown in
Figure (6).  Then we can write

 vi = v(t)

  vi+1 = v(t+∆t)

to change the time dependence from a count of
strobe flashes to the continuous variable t.  Next,
define the vector   ∆v(t)  by

  ∆v(t) ≡ v(t+∆t) – v(t) = vi+1– vi (7)

We see that   ∆v(t) is the change in the velocity vector
as the time advances from  t  to    t+∆t . The strobe
definition of  ai can now be written

   
a(t)

strobe
definition

=
v(t + ∆t) – v(t)

∆t
≡ ∆v(t)

∆t (8)

Now go through the limiting process, turning the
strobe up, reducing  ∆t  until the value of  a(t)  settles
down to its limiting value.  We have

   
a(t)

calculus
definition

= limit
∆t→0

v(t + ∆t) – v(t)
∆t

= limit
∆t→0

∆v(t)
∆t

(9)

Finally use  the shorthand notation d/dt for the
limiting process:

 
a(t) =

dv(t)
dt

(10)

Equation (10) does not make sense unless you re-
member that it is notation for all the ideas expressed
above.  Again, physicists think of dt as a short but
finite time interval, and  dv(t)  as the small but finite
change in the velocity vector during the time interval
dt.  It’s our strobe definition of acceleration with the
added requirement that  ∆t  is short enough that the
limiting process has already occurred.

Components
Even if you have studied calculus, you may not
recall encountering formulas for the derivatives of
vectors, like  dR(t)/dt  and  dv(t)/dt  which appear in
Equations (5) and (10).  To bring these equations
into a more familiar form where you can apply
standard calculus formulas, we will break the vector
Equations (5) and (10) down into component equa-
tions.

In the chapter on vectors, we saw that any vector
equation like

 A = B + C (11)
is equivalent to the three component equations

 Ax = Bx + Cx

Ay = By + Cy

Az = Bz + Cz

(12)

The advantage of the component equations was that
they are simply numerical equations and no graphi-
cal work or trigonometry is required.

Vi

Vi  1+

–Vi
a i –V )iVi  1+(

∆t
=

–ViVi  1+( )

position at 
time t position at 

time t + ∆t

Figure 6
Experimental definition of the acceleration vector.
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The limiting process in calculus does not affect the
decomposition of a vector into components, thus
Equation (5) for  v(t)  and Equation (10) for  a(t)
become

 v(t) = dR(t)/dt (5)

 vx(t) = dRx(t)/dt (5a)
 vy(t) = dRy(t)/dt (5b)

 vz(t) = dRz(t)/dt (5c)

and

 a(t) = dv(t)/dt (10)

 ax(t) = dvx(t)/dt (10a)

 ay(t) = dvy(t)/dt (10b)

 az(t) = dvz(t)/dt (10c)

Often we use the letter x for the x coordinate of the
vector R and we use y for  Ry and z for  Rz .  With this
notation, Equation (5) assumes the shorter and perhaps
more familiar form

 vx(t) = dx(t)/dt (5a’)
 vy(t) = dy(t)/dt (5b’)
 vz(t) = dz(t)/dt (5c’)

At this point the notation has become deceptively short.
You now have to remember that x(t) stands for the x
coordinate of the particle at a time t.

We have finally boiled the notation down to the point
where it would be familiar in any calculus course.  If we
restrict our attention to one dimensional motion along
the x axis, then all we have to concern ourselves with
are the x component equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt
(10a)

INTEGRATION
When we worked with strobe photographs, the pho-
tograph told us the position  R(t)  of the ball as time
passed.  Knowing the position, we can then use
Equation (5) to calculate the ball's velocity  v(t)  and
then Equation (10) to determine the acceleration

 a(t) .  In general, however, we want to go the other
way, and predict the motion from a knowledge of the
acceleration.  For example, imagine that you were in
Galileo's position, hired by a prince to predict the
motion of cannonballs.  You know that a cannonball
should not be much affected by air resistance, thus
the acceleration throughout its trajectory should be
the constant gravitational acceleration g .  You know
that  a(t) = g . How then do you use that knowledge
in Equations (5) and (10) to predict the motion of the
ball?

The answer is that you cannot with the equations in
their present form.  The equations tell you how to go
from  R(t) to  a(t),  while to predict motion you need
to go the other way, from  a(t)  to  R(t) .  The topic of
this section is to see how to reverse the directions in
which we use our calculus equations.  Equations (5)
and (10) involve the process called differentiation.
We will see that when we go the other way the
reverse of differentiation is a process called integra-
tion.  We will see that integration is a simple con-
cept, but a process that is sometimes hard to perform
without the aid of a computer.

R

y

x
Figure 7
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Prediction of Motion
In our earlier discussion, we have used strobe pho-
tographs to analyze motion.  Let us see what we can
learn from such a photograph for predicting motion.
Figure (8) is our familiar projectile motion photo-
graph showing the displacement s  of a ball during
the time the ball traveled from a position labeled (0)
to the position labeled (4).  If the ball is now at
position (0) and each of the images is (.1) seconds
apart, then the vector s  tells us where the ball will be
at a time of (.4) seconds from now.  If we can predict
s , we can predict the motion of the ball.  The general
problem of predicting the motion of the ball is to be
able to calculate  s(t)  for any time t.

From Figure (8) we see that s  is the vector sum of the
individual displacement vectors  s1 ,  s2 ,  s3  and  s4

 s = s1 + s2 + s3 + s4 (11)

We can then use the fact that   s1 = v1∆t ,   s2 = v2∆t ,
etc. to get

  s = v1∆t + v2∆t + v3∆t + v4∆t (12)

Rather than writing out each term, we can use the
summation sign Σ to write

  
s = vi∆tΣ

i = 1

4
(12a)

Equation (12) is approximate in that the  vi  are
approximate (strobe) velocities, not the instanta-
neous velocities we want for a calculus discussion.
In Figure (9) we improved the situation by cutting

  ∆t  to 1/4  of its previous value, giving us four times
as many images and more accurate velocities  vi .

We see that the displacement s  is now the sum of 16
vectors

 s = s1 + s2 + s3 + ... + s15 + s16 (13)

Expressing this in terms of the velocity vectors  v1  to
 v16  we have

  s = v1∆t + v2∆t + v3∆t + ... + v15∆t + v16∆t (14)

or using our more compact notation

  
s = vi∆tΣ

i = 1

16
(14a)

While Equation (14) for s  looks quite different than
Equation (12)—the sum of sixteen vectors instead
of four—the displacement vectors s  in the two cases
are exactly the same.  Adding more intermediate
images did not change where the ball was located at
the time of t = .4 seconds.  In going from Equation
(12) to (14), what has changed as a result of shorten-
ing the time step   ∆t , is that the individual velocity
vectors  vi  become more nearly equal to the instan-
taneous velocity of the ball at each image.

Figure 8
To predict the total displacement s , we
add up the individual displacements si .

1

2

3

4

0 S 1

S =   S + 1 S + 2 ... + S 16

S 2

S 3

S 4

S 

t=0 

t=.4 sec 

4

8

12

16

0S 1 1 2 3

S =   S + 1 S + 2 ... + S 16

S 

t=0 

t=.4 sec 

S 16

Figure 9
With a shorter time interval, we add up more
displacement vectors to get the total displacement s .
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If we reduced   ∆t  again by another factor of 1/4, so
that we had 64 images in the interval t = 0 to t = .4 sec,
the formula for s  would become

  
s = vi∆tΣ

i = 1

64
(15a)

where now the  vi  are still closer to representing the
ball's instantaneous velocity.  The more we reduce

  ∆t , the more images we include, the closer each  vi
comes to the instantaneous velocity  v(t) .  While
adding more images gives us more vectors that we
have to add up to get the total displacement s , there
is very little change in our formula for s .  If we had
a million images, we would simply write

  
s = vi∆tΣ

i = 1

1000000
(16a)

In this case the  vi  would be physically indistinguish-
able from the instantaneous velocity  v(t) .  We have
essentially reached a calculus limit, but we have
problems with the notation. It is clearly inconve-
nient to label each  vi  and then count the images.
Instead we would like notation that involves the
instantaneous velocity  v(t)  and expresses the begin-
ning and end points in terms of the initial time ti  and
final time tf , rather than the initial and final image
numbers i.

In the calculus notation, we replace the summation
sign  Σ  by something that looks almost like the
summation sign, namely the integral sign  .  (The
French word for integration is the same as their word
for summation.)  Next we replaced the individual  vi
by the continuous variable  v(t)  and finally express
the end points by the initial time ti  and the final time
tf .  The result is

   
s = vi∆tΣ

i = 1

n
→

as the number
n becomes
infinitely
large

v(t)dt
ti

tf (17)

Calculus notation is more easily handled, or is at
least more familiar, if we break vector equations up
into component equations.  Assume that the ball
started at position i which has components  xi = x(ti)
[read  x(ti)  as “x at time ti ”] and  yi = y(ti)  as shown
in Figure (10).  The final position f is at  xf = x(tf)
and  yf = y(tf) .

Thus the displacement s  has x and y components

 sx = x(tf) – x(ti)

 sy = y(tf) – y(ti)

Breaking Equation (17) into component equations
gives

 
sx = x(tf) – x(ti) = vx(t)dt

ti

tf

(18a)

 
sy = y(tf) – y(ti) = vy(t)dt

ti

tf

(18b)

Here we will introduce one more piece of notation
often used in calculus courses.  On the left hand side
of Equation (18a) we have  x(tf) – x(ti)  which we
can think of as the variable x(t) evaluated over the
interval of time from ti  to tf .  We will often deal with
variables evaluated over some interval and have a
special notation for that.  We will write

  
x(tf) – x(ti) ≡ x(t)

ti

tf
(19)

You are to read the symbol  x(t) ti
tf  as "x of t evaluated

from ti  to tf ".  We write the initial time ti  at the bottom
of the vertical bar, the final time tf  at the top.

f

i

x f

f

x 

(x  – x )      

x(t ) 
i

i

i x(t ) f

y 
f

y 
i

f
(y

  –
 y

 )
   

   
i

S 

Figure 10
Breaking the vector s  into components.



We use similar notation for any kind of variable, for
example

  
f(x)

x1

x2

≡ f(x2) – f(x1) (19a)

(Remember to subtract when the variable is evalu-
ated at the value at the bottom of the vertical bar.)

With this notation, our Equation (18) can be written

 
sx = x(t)

ti

tf
= vx(t)dt

ti

tf
(18  a′ )

 
sy = y(t)

ti

tf
= vy(t)dt

ti

tf
(18  b′ )

Calculating Integrals
Equation (18) is nice and compact, but how do you
use it?  How do you calculate integrals?  The key is
to remember that an integral is just a fancy notation
for a sum of terms, where we make the time step  ∆t
very small.  Keeping this in mind, we will see that
there is a very easy way to interpret an integral.

To get this interpretation, let us start with the simple
case of a ball moving in a straight line, for instance,
the x direction, at a constant velocity  vx .  A strobe
picture of this motion would look like that shown in
Figure (11a).

Figure (11b) is a graph of the ball's velocity  vx(t)  as
a function of the time t.  The vertical axis is the value
of  vx , the horizontal axis is the time t.  Since the ball
is traveling at constant velocity,  vx  has a constant
value and is thus represented by a straight horizontal
line.  In order to calculate the distance that the ball
has traveled during the time interval from ti  to tf ,
we need to evaluate the integral

  

sx = vx(t)dt
ti

tf
distance ball
travels in
time interval
t i to t f

(18a)

To actually evaluate the integral, we will go back to
our summation notation

  
sx = vxi∆tΣ

i initial

ifinal

(20)

and show individual time steps   ∆t  in the graph of  vx
versus t, as in Figure (11c).

We see that each term in Equation (20) is repre-
sented in Figure (11c) by a rectangle whose height is

 vx  and whose width is   ∆t .  We have shaded in the
rectangle representing the 7th term   vx7∆t .  We see
that   vx7∆t  is just the area of the shaded rectangle,
and it is clear that the sum of all the areas of the
individual rectangles is the total area under the
curve, starting at time ti  and ending at time tf .  Here
we are beginning to see that the process of integra-
tion is equivalent to finding the area under a curve.

With a simple curve like the constant velocity  vx(t)
in Figure (11c), we see by inspection that the total
area from ti  to tf  is just the area of the complete
rectangle of height  vx  and width  (tf – ti) .  Thus

  sx = vx × (t f – ti) (21)

This is the expected result for constant velocity, namely

   distance
traveled = velocity × time

for
constant
velocity

(21a)

Figure 11b
Graph of   vx(t)  versus t for the ball of Figure 11a.

Figure 11a
Strobe photograph of ball moving at
constant velocity in x direction.

t 

x 

ft i

t  
t i

v x

v (t) x

t f

Figure 11c
Each       vx∆∆ t  is the area of a rectangle.

t  
t ∆t 

i

v x
v x7

v (t) x

t f
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To see that you are not restricted to the case of
constant velocity, suppose you drove on a freeway
due east (the x direction) starting at 9:00 AM and
stopping for lunch at 12 noon.  Every minute during
your trip you wrote down the speedometer reading
so that you had an accurate plot of  vx(t)  for the entire
morning, a plot like that shown in Figure (12).  From
such a plot, could you determine the distance  sx  that
you had traveled?

Your best answer is to multiply each value  vi  of your
velocity by the time   ∆t  to calculate the average
distance traveled each minute.  Summing these up
from the initial time  ti = 9:00 AM  to the final time

 tf = noon , you have as your estimate

  sx ≈ vxi∆tΣ
i

(The symbol ≈  means approximately equal.)

To get a more accurate value for the distance trav-
eled, you should measure your velocity at shorter
time intervals   ∆t  and add up the larger number of
smaller rectangles.  The precise answer should be
obtained in the limit as   ∆t  goes to zero

  
sx = limit

∆t → 0
vxi∆tΣ

i
= vx(t)dt

ti

tf
(22)

This limit is just the area under the curve that is
supposed to represent the instantaneous velocity  vx(t) .

Thus we can interpret the integral of a curve as the
area under the curve even when the curve is not
constant or flat.  Mathematicians concern them-
selves with curves that are so wild that it is difficult
or impossible to determine the area under them.
Such curves seldom appear in physics problems.

While the basic idea of integration is simple—just
finding the area under a curve—in practice it can be
quite difficult to calculate the area.  Much of an
introductory calculus course is devoted to finding
the formulas for the areas under various curves.
There are also books called tables of integrals where
you look up the formula for a curve and the table tells
you the formula for the area under that curve.

In Chapter 16 of the Physics text, we will discuss a
mathematical technique called Fourier analysis.
This is a technique in which we can describe the
shape of any continuous curve in terms of a sum of
sine waves.  (Why we want to do that will become
clear then.)  The process of Fourier analysis involves
finding the area under some very complex curves,
curves often involving experimental data for which
we have no formula, only graphs.  Such curves
cannot be integrated by using a table of integrals,
with the result that Fourier analysis was not widely
used until the advent of the modern digital computer.

The computer made a difference, because we can
find the area under almost any curve by breaking the
curve into short pieces of length   ∆t , calculating the
area   vi∆t  of each narrow rectangle, and adding up
the area of the rectangles to get the total area.  If the
curve is so wild that we have to break it into a million
segments to get an accurate answer, that might be
too hard to do by hand, but it usually a very simple
and rapid job for a computer.  Computers can be
much more efficient than people at integration.

t  
9am ∆t 

v x7

v (t) x

noon

Figure 12
Plot of   vx(t)  for a trip starting at 9:00 AM and
finishing at noon.  The distance traveled is the
area under the curve.
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The Process of Integrating
There is a language for the process of integration
which we will now take you through.  In each case
we will check that the results are what we would
expect from our summation definition, or the idea
that an integral is the area under a curve.

The simplest integral we will encounter is the calcu-
lation of the area under a curve of unit height as
shown in Figure (13).  We have the area of a
rectangle of height 1 and length  (tf – ti)

 
1dt

ti

t f
= dt

ti

t f
= (tf – ti ) (22)

t  
t 

area = 1(t  – t )

i

1 

t f

f i 

Figure 13
Area under a curve of unit height.

We will use some special language to describe this
integration.  We will say that the integral of dt is
simply the time t, and that the integral of dt from ti
to tf  is  equal to t  evaluated from ti  to tf .  In symbols
this is written as

 
dt

ti

t f
= t

ti

t f
= (tf – ti ) (23)

Recall that the vertical line after a variable means to
evaluate that variable at the final position tf  (upper
value), minus that variable evaluated at the initial
position ti  (lower value).  Notice that this prescrip-
tion gives the correct answer.

The next simplest integral is the integral of a constant,
like a constant velocity  vx  over the interval ti  to tf

 
vx dt

ti

t f
= vx(tf – ti ) (24)

t  
t 

area = v (t  – t )

i

v x

x

t f

f i 

Figure 14
Area under the constant  vx  curve.

Since 
 

(tf – t i ) = dtti

t f , we can replace  (tf – t i ) in
Equation (24) by the integral to get

  
vx dt

ti

t f
= vx dt

ti

t f
vx a constant (25)

and we see that a constant like  vx  can be taken
outside the integral sign.

Let us try the simplest case we can think of where  vx
is not constant.  Suppose  vx  starts at zero at time

 ti = 0  and increases linearly according to the formula

 vx = at (26)

t  
0

v x

v  = at 
x

t f

at f

Figure 15

When we get up to the time tf  the velocity will be
 (atf)  as shown in Figure (15).  The area under the

curve  vx = at  is a triangle whose base is of length tf
and height is  atf .  The area of this triangle is one half
the base times the height, thus we get for the distance

 sx  traveled by an object moving with this velocity
  

sx = vx dt
0

t f = 1
2(base) × (height)

= 1
2(tf)(atf) = 1

2 atf
2

(27)

Now let us repeat the same calculation using the
language one would find in a calculus book.  We have

  
sx = vx dt

0

tf
= (at)dt

0

tf
(28)

The constant (a) can come outside, and we know that
the answer is  1/2atf

2 , thus we can write

  
sx = a tdt

0

tf
= 1

2atf
2 (29)

In Equation (29) we can cancel the a's to get the result

 
tdt

0

tx

= 1
2tf

2 (30)
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In a calculus text, you would find the statement that
the integral  tdt  is equal to  t2/2  and that the integral
should be evaluated as follows

 

tdt
0

tf
=

t2

2
0

tf
=

tf
2

2 – 0
2 =

tf
2

2 (31)

Indefinite Integrals
When we want to measure an actual area under a
curve, we have to know where to start and stop.
When we put these limits on the integral sign, like ti
and tf , we have what is called a definite integral.
However there are times where we just want to know
what the form of the integral is, with the idea that we
will put in the limits later.  In this case we have what
is called an indefinite integral, such as

  
tdt = t2

2
indefinite integral (32)

The difference between our definite integral in Equa-
tion (31) and the indefinite one in Equation (32) is
that we have not chosen the limits yet in Equation
(32).  If possible, a table of integrals will give you a
formula for the indefinite integral and let you put in
whatever limits you want.

Integration Formulas
For some sets of curves, there are simple formulas
for the area under them.  One example is the set of
curves of the form  tn .  We have already considered
the cases where n = 0 and n = 1.

  n = 0

t0dt = dt = t        
t 

1 

       (33a)

  n = 1

t1dt = tdt = t2

2      
t 

t 

       (33b)

Some results we will prove later are

  n = 2

t2dt = t3

3
(33c)

  n = 3

t3dt = t4

4
(33d)

Looking at the way these integrals are turning out,
we suspect that the general rule is

 
tndt = tn + 1

n + 1 (34)

It turns out that Equation (34) is a general result for any
value of n except  n = –1.  If   n = –1, then you would
have division by zero, which cannot be the answer.
(We will shortly discuss the special case where n = –1.)

As long as we stay away from the n = –1 case, the
formula works for negative numbers.  For example

 t– 2dt = dt
t2 = t(– 2 +1)

–2 +1 = t–1

(–1)

 
dt
t2 = – 1

t (35)

In our discussion of gravitational and electrical
potential energy, we will encounter integrals of the
form seen in Equation (35).

Exercise 1
Using Equation (34) and the fact that constants can
come outside the integral, evaluate the following inte-
grals:

(a)     xdx it does not matter whether
we call the variable t or x

(b)   
  

x5dx
x = 1

x = 2
also sketchthe area
being evaluated

(c)   
  dt

t2t = 1

t = 2
show that you get
a positive area

(d)      GmM
r2 dr whereG, m, and M

are constants

(e)     a
y3 / 2dy "a" is a constant

t

t 2

t

t 3



Calculus  2000 - Chapter 1      Introduction to Calculus      Cal 1-15

NEW FUNCTIONS
We have seen that when we integrate a curve or
function like  t2 , we get a new function  t3/3 .  The
functions  t2  and  t3  appear to be fairly similar; the
integration did not create something radically differ-
ent.  However, the process of integration can lead to
some curves with entirely different behavior.  This
happens, for example, in that special case n = –1
when we try to do the integral of  t– 1 .

Logarithms
It is certainly not hard to plot  t– 1 , the result is shown
in Figure (16).  Also there is nothing fundamentally
difficult or peculiar about measuring the area under
the  t– 1  curve from some ti  to tf , as long as we stay
away from the origin t = 0 where  t– 1  blows up.  The
formula for this area turns out, however, to be the
new function called the natural logarithm, abbrevi-
ated by the symbol ln.  The area in Figure (16) is
given by the formula

 
1
t dt

ti

t f
= ln(t f) – ln(t i) (36)

Two of the important but peculiar features of the
natural logarithm are

 ln(ab) = ln(a) + ln(b) (37)

 ln(1
a ) = – ln(a) (38)

Thus we get, for example

 ln(t f) – ln(t i) = ln(t f) + ln 1
ti

= ln
tf

t i

(39)

Thus the area under the curve in Figure (16) is
 

dt
tt i

t f
= ln

tf
t i (40)

While the natural logarithm has some rather peculiar
properties it is easy to evaluate because it is available
on all scientific calculators.  For example, if ti = .5
seconds and tf = 4 seconds, then we have

 
ln

tf
ti

= ln 4
.5

= ln (8) (41)

Entering the number 8 on a scientific calculator and
pressing the button labeled ln, gives

 ln (8) = 2.079 (42)

which is the answer.

Exercise 2
Evaluate the integrals

 dx
x.001

1000 dx
x.000001

1

Why are the answers the same?

t  
t  t  

t  
1  

i

t  –1

f

curve

Figure 16
Plot of   t – 1.  The area under this curve
is the natural logarithm ln.
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The Exponential Function
We have just seen that, while the logarithm function
may have some peculiar properties, it is easy to
evaluate using a scientific calculator.  The question
we now want to consider is whether there is some
function that undoes the logarithm.  When we enter
the number 8 into the calculator and press ln, we get
the number 2.079.  Now we are asking if, when we
enter the number 2.079, can we press some key and
get back the number 8?  The answer is, you press the
key labeled  ex .  The  ex  key performs the exponen-
tial function which undoes the logarithm function.
We say that the exponential function  ex  is the
inverse of the logarithm function ln.

Exponents to the Base 10
You are already familiar with exponents to the base
10, as in the following examples

  100 = 1
101 = 10
102 = 100
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
106 = 1,000,000

10– 1 = 1/10 = .1
10– 2 = 1/100 = .01
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
10– 6 = .000001

(43)

The exponent, the number written above the 10, tells
us how many factors of 10 are involved.  A minus
sign means how many factors of 10 we divide by.
From this alone we deduce the following rules for
the exponent to the base 10.

  
10–a = 1

10a (44)

  
10a × 10b = 10a + b (45)

(Example   102 × 103 = 100 × 1000 = 100,000 .)

The inverse of the exponent to the base 10 is the
function called logarithm to the base 10 which is
denoted by the key labeled log on a scientific calcu-
lator.  Formally this means that

  log (10y) = y (46)

Check this out on your scientific calculator.  For
example, enter the number 1,000,000 and press the
log button and see if you get the number 6.  Try
several examples so that you are confident of the
result.

The Exponential Function  yx

Another key on your scientific calculator is labeled
 yx .  This allows you to determine the value of any

number y raised to the power (or exponent) x.  For
example, enter the number  y = 10, and press the  yx

key.  Then enter the number   x = 6  and press the =
key.  You should see the answer

 yx = 106 = 1000000

It is quite clear that all exponents obey the same rules
we saw for powers of 10, namely

  
ya × yb = ya + b (47)

[Example   y2 × y3 = (y × y)(y × y × y) = y5 .]

And as before

  
y– a ≡ 1

ya (48)
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Exercise 3
Use your scientific calculator to evaluate the follow-
ing quantities.  (You should get the answers shown.)

 (a) 106

(b) 23

(c) 230

(d) 10– 1

(1000000)
(8)
(1)
(.1)

(To do this calculation, enter 10, then press  yx .  Then
enter 1, then press the +/– key to change it to –1, then
press = to get the answer .1)

 (e) 2– .5

(f) log (10)
(g) ln (2.7183)

(1/ 2= .707)
(1)
(1) (veryclose to 1)

Try some other examples on your own to become
completely familiar with the  yx  key.  (You should note
that any positive number raised to the 0 power is 1.
Also, some calculators, in particular the one I am
using, cannot handle any negative values of y, not
even  (– 2)2  which is +4)

Euler's  Number e = 2.7183. . .
We have seen that the function log on the scientific
calculator undoes, is the inverse of, powers of 10.
For example, we saw that

 log (10x) = x (46) repeated

 Example: log (106) = 6

Earlier we saw that the exponential function  ex  was
the inverse of the natural logarithm ln.  This means that

 ln(ex) = x (49)

The difference between the logarithm log and the
natural  logarithm  ln, is that log undoes exponents
of the number 10, while ln undoes exponents of the
number  e.  This special number e, one of the
fundamental mathematical constants like π, is known
as Euler's number, and is always denoted by the
letter e.

You can find the numerical value of Euler's number
e on your calculator by evaluating

 e1 = e (50)

To do this, enter 1 into your calculator, press the  ex

key, and you should see the result

 e1 = e = 2.718281828 (51)

We will run into this number throughout the course.
You should remember that e is about 2.7, or you might
even remember 2.718.  (Only remembering e as 2.7 is
as klutzy as remembering π as 3.1)

The terminology in math courses is that the function
log, which undoes exponents of the number 10, is the
logarithm to the base 10.  The function ln, what we
have called the natural logarithm, which undoes
exponents of the number e, is the logarithm to the
base e.  You can have logarithms to any base you
want, but in practice we only use base 10 (because
we have 10 fingers) and the base e.  The base e is
special, in part because that is the logarithm that
naturally arises when we integrate the function 1/x.
We will see shortly that the functions ln and  ex  have
several more, very special features.
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DIFFERENTIATION AND INTEGRATION
The scientific calculator is a good tool for seeing
how the functions like ln and  ex  are inverse of each
other.  Another example of inverse operations is
integration and differentiation.  We have seen that
integration allows us to go the other way from
differentiation [finding x(t) from v(t), rather than
v(t) from x(t)].  However it is not so obvious that
integration and differentiation are inverse opera-
tions when you think of integration as finding the
area under a curve, and differentiation as finding
limits of   ∆x/∆t  as   ∆t  goes to zero.  It is time now to
make this relationship clear.

First, let us review our concept of a derivative.
Going back to our strobe photograph of Figure (3),
replacing  Ri  by  R(t)  and  Ri+1  by   R(t+∆t) , as shown
in Figure (3a), our strobe velocity was then given by

  
v(t) =

R(t+∆t) – R(t)
∆t (52)

The calculus definition of the velocity is obtained by
reducing the strobe time interval   ∆t  until we obtain
the instantaneous velocity v .

  

vcalculus = limit
∆t→0

R(t + ∆t) – R(t)
∆t (53)

While Equation (53) looks like it is applied to the
explicit case of the strobe photograph of projectile
motion, it is easily extended to cover any  process of
differentiation.  Whatever function we have [we had

 R(t), suppose it is now f(t)], evaluate it at two closely
spaced times, subtract the older value from the
newer one, and divide by the time difference   ∆t.
Taking the limit as   ∆t  becomes very small gives us
the derivative

  d f(t)
dt

≡ limit
∆t→0

f(t + ∆t) – f(t)
∆t

(54)

The variable with which we are differentiating does
not have to be time t.  It can be any variable that we
can divide into small segments, such as x

  
d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (55)

Let us see how the operation defined in Equation
(55) is the inverse of finding the area under a curve.

Suppose we have a curve, like our old  vx(t)  graphed
as a function of time, as shown in Figure (17).  To
find out how far we traveled in a time interval from
ti  to some later time T, we would do the integral

 
x(T) = vx(t) dt

ti

T
(56)

The integral in Equation (56) tells us how far we
have gone at any time T during the trip.  The quantity
x(T) is a function of this time T.

Figure 3a
Defining the strobe velocity.

 R(t+∆t)

 R(t+∆t)

R(t)

R(t)

V(t) =

∆R   = –

 R(t+∆t) R(t)∆R   =
–

∆t ∆t

i

i  1+

t  
t  

x(T)

v (t) x

i
T

Figure 17
The distance traveled by the time T is the area under
the velocity curve up to the time T.
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Now let us differentiate the function x(T) with
respect to the variable T.  By our definition of
differentiation we have

  d
dT

x(T) = limit
∆t→0

x(T + ∆t) – x(T)
∆t (57)

Figure (17) shows us the function x(T).  It is the area
under the curve v(t) starting at ti  and going up to
time t = T.  Figure (18) shows us the function

  x(T + ∆t) .  It is the area under the same curve,
starting at ti  but going up to   t = T + ∆t .  When we
subtract these two areas, all we have left is the area
of the slender rectangle shown in Figure (19).

The rectangle has a height approximately  vx(T)  and
a width  ∆t  for an area

  x(T + ∆t) – x(T) = vx(T)∆t (58)

Dividing through by  ∆t  gives

  
vx(T) =

x(T + ∆t) – x(T)
∆t (59)

The only approximation in Equation (59) is at the top
of the rectangle.  If the curve is not flat,   vx(T + ∆t)
will be different from  vx(T)  and the area of the sliver
will have a value somewhere between   vx(T)∆t  and

  vx(T + ∆t)∆t .  But if we take the limit as  ∆t  goes to
zero, the value of   vx(T + ∆t)  must approach  vx(T) ,
and we end up with the exact result

  vx(T) = limit
∆t→0

x(T + ∆t) – x(T)
∆t

(60)

This is just the derivative dx(t)/dt evaluated at t = T.

 
vx(T) =

dx(t)
dt t = T

(61a)

where we started from

 
x(T) = vx(t) dt

ti

T
(61b)

Equations (61a) and (61b) demonstrate explicitly how
differentiation and integration are inverse operations.
The derivative allowed us to go from x(t) to  vx(t)  while
the integral took us from  vx(t)  to x(t).  This inverse is
not as simple as pushing a button on a calculator to go
from ln to  ex .  Here we have to deal with limits on the
integration and a shift of variables from   t to T.  But
these two processes do allow us to go back and forth.

t  
t  

x(T+∆t)

v (t) x

i T T+∆t

t  
t  

x(T)

v (t) x

i
T

t  

v (t) x

v (T) x

x

T T+∆t

v (T)∆t

Figure 17 repeated
The distance x(T) traveled by the time T

Figure 18

The distance       x (T+∆∆ t )  traveled by the time       T+∆∆ t .

Figure 19
The distance       x (T+∆∆ t ) – x(T)
traveled during the time  ∆∆ t .
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A Fast Way to go Back and Forth
We introduced our discussion of integration by
pointing out that equations

 vx(t) =
dx(t)

dt ;           
 

ax(t) =
dvx(t)

dt (62a,b)

went the wrong way in that we were more likely to
know the acceleration  ax(t)  and from that want to
calculate the velocity  vx(t)  and distance traveled
x(t).  After many steps, we found that integration
was what we needed.

We do not want to repeat all those steps.  Instead we
would like a quick and simple way to go the other
way around.  Here is how you do it.  Think of the dt
in (62a) as a small but finite time interval.  That
means you can treat it like any other number and
multiply both sides of Equation (62a) through by it.

 vx(t) =
dx(t)

dt

 dx(t) = vx(t)dt (63)

Now integrate both sides of Equation (63) from some
initial time  ti  to a final time T.  (If you do the same thing
to both sides of an equation, both sides should still be
equal to each other.)

 
dx(t)

t i

T
= vx(t)dt

t i

T

(64)

If dt is to be thought of as a small but finite time step,
then dx(t) is the small but finite distance we moved in
the time dt.  The integral  on the left side of Equation
(64) is just the sum of all these short distances moved,
which is just the total distance moved during the time
from ti  to T.

 
dx(t)

t i

T
= x(t)

t i

T
= x(T) – x (ti) (65)

Thus we end up with the result

 
x(t)

t i

T
= vx(t)dt

t i

T

(66)

Equation (66) is a little more general than (62b) for
it allows for the fact that  x(ti)  might not be zero.  If,

however, we say that we started our trip at  x(ti) = 0 ,
then we get the result

 
x(T) = vx(t)dt

t i

T

(67)

representing the distance traveled since the start of
the trip.

Constant Acceleration Formulas
The constant acceleration formulas, so well known
from high school physics courses, are an excellent
application of the procedures we have just described.

We will begin with motion in one dimension.  Sup-
pose a car is traveling due east, in the x direction, and
for a while has a constant acceleration  ax .  The car
passes us at a time  ti = 0 , traveling at a speed  vx0 .
At some later time T, if the acceleration  ax  remains
constant, how far away from us will the car be?

We start with the equation

 
ax(t) =

dvx(t)
dt

(68)

Multiplying through by dt to get

 dvx(t) = ax(t)dt

then integrating from time  ti = 0  to time  tf = T,  we
get

 
dvx(t)

0

T
= ax(t)dt

0

T
(69)

Since the integral  dvx(t) = vx(t) , we have

 
dvx(t)

0

T
= vx(t)

0

T
= vx(T) – vx(0) (70)

where  vx(0)  is the velocity  vx0  of the car when it
passed us at time t = 0.

While we can always do the left hand integral in
Equation (69), we cannot do the right hand integral
until we know  ax(t) .  For the constant acceleration
problem, however, we know that  ax(t) = ax  is
constant, and we have

 
ax(t)dt

0

T
= axdt

0

T
(71)
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Since constants can come outside the integral sign,
we get

 
axdt

0

T
= ax dt

0

T
= axt

0

T
= axT (72)

where we used  dt = t .  Substituting Equations (70)
and (72) in (69) gives

 vxT – vx0 = axT (73)

Since Equation (73) applies for any time T, we can
replace T by t to get the well known result

   vx(t) = vx0 + axt (a x constant) (74)

Equation (74) tells us the speed of the car at any time
t after it passed us, as long as the acceleration
remains constant.

To find out how far away the car is, we start with the
equation

 
vx(t) =

dx(t)
dt

(62a)

Multiplying through by dt to get

 dx(t) = vx(t) dt

then integrating from time t = 0 to time t = T gives
(as we saw earlier)

 
dx(t)

0

T
= vx(t)dt

0

T
(75)

The left hand side is

 
dx(t)

0

T
= x(t)

0

T
= x(T) – x(0) (76)

If we measure along the x axis, starting from where
we are (where the car was at t = 0) then x(0) = 0.

In order to do the right hand integral in Equation
(75), we have to know what the function  vx(t)  is.  But
for constant acceleration, we have from Equation
(74)  vx(t) = vx0 + axt  , thus

 
vx(t)dt

0

T
= (vx 0 + axt)dt

0

T
(77)

One of the results of integration that you should
prove for yourself (just sketch the areas) is the rule

 
a(x) + b(x) dx

i

f
= a(x)dx

i

f
+ b(x)dx

i

f

(78)

thus we get

 
(vx0 + axt)dt

0

T
= vx0dt

0

T
+ axt dt

0

T
(79)

Since constants can come outside the integrals, this
is equal to

 
(vx0 + axt)dt

0

T
= vx0 dt

0

T
+ ax t dt

0

T
(80)

Earlier we saw that

 
dt

0

T
= t

0

T
= T – 0 = T (23)

 

tdt
0

T
=

t2

2
0

T

=
T2

2
– 0 =

T2

2 (30)

Thus we get

 
(vx0 + axt)dt

0

T
= vx0T +

1
2

axT2
(81)

Using Equations (76) and (81) in (75) gives

 
x(T) – x0 = vx0T +

1
2

axT2

Taking  x0 = 0  and replacing T by t gives the other
constant acceleration formula

   
x(t) = vx0t +

1
2

axt
2 (a x constant) (82)

You can now see that the factor of  t2/2  in the constant
acceleration formulas comes from the integral  tdt .
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Exercise 4
Find the formula for the velocity v(t) and position x(t)
for a car moving with constant acceleration  ax , that
was located at position xi  at some initial time ti .

Start your calculation from the equations

 vx(t) = dx(t)
dt

 ax(t) =
dvx(t)

dt

and go through all the steps that we did to get
Equations (74) and (82).  See if you can do this without
looking at the text.

If you have to look back to see what some steps are,
then finish the derivation looking at the text.  Then a
day or so later, clean off your desk, get out a blank
sheet of paper, write down this problem, put the book
away and do the derivation.  Keep doing this until you
can do the derivation of the constant acceleration
formulas without looking at the text.

Constant Acceleration Formulas
in Three Dimensions
To handle the case of motion with constant  accelera-
tion in three dimensions, you start with the separate
equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt

vy(t) =
dy(t)

dt
ay(t) =

dvy(t)
dt

vz(t) =
dz(t)

dt
az(t) =

dvz(t)
dt

(83)

Then repeat, for each pair of equations, the steps that
led to the constant acceleration formulas for motion
in the x direction.  The results will be

 x(t) = vx0t + 1
2axt2 vx(t) = vx0 + axt

y(t) = vy0t + 1
2ayt2 vy(t) = vy0 + ayt

z(t) = vz0t + 1
2azt

2 vz(t) = vz0 + azt

(84)

The final step is to combine these six equations into
the two vector equations

 
x(t) = v0t + 1

2 at2 ; v(t) = v0 + at (85)

These are the equations we analyzed graphically in
Chapter 3 of the Physics text, in Figure (3-34) and
Exercise (3-9).  (There we wrote s  instead of  x(t) ,
and  vi  rather than  v0 .)

In many introductory physics courses, considerable
emphasis is placed on solving constant acceleration
problems.  You can spend weeks practicing on
solving these problems, and become very good at it.
However, when you have done this, you have not
learned very much physics because most forms of
motion are not with constant acceleration, and thus
the formulas do not apply.  The formulas were
important historically, for they were the first to
allow the accurate prediction of motion (of cannon-
balls).  But if too much emphasis is placed on these
problems, students tend to use them where they do
not apply.  For this reason we have placed the
exercises using the constant acceleration equations
in an appendix at the end of Chapter 4 of the Physics
text.  There are plenty of problems there for all the
practice you will need with these equations.  Doing
these exercises requires only algebra, there is no
practice with calculus.  To get some experience with
calculus, be sure that you can confidently do Exer-
cise 4.
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MORE ON DIFFERENTIATION
In our discussion of integration, we saw that the
basic idea was that the integral of some curve or
function f(t) was equal to the area under that curve.
That is an easy enough concept.  The problems arose
when we actually tried to find the formulas for the
areas under various curves.  The only areas we
actually calculated were the rectangular area under
f(t) = constant and the triangular area under f(t) = at.
It was perhaps a surprise that the area under the
simple curve 1/t should turn out to be a logarithm.

For differentiation, the basic idea of the process is
given by the formula

  df(t)
dt

= limit
∆t→0

f(t + ∆t) – f(t)
∆t

(54) repeated

Equation (54) is short hand notation for a whole
series of steps which we introduced through the use
of strobe photographs.  The basic idea of differentia-
tion is more complex than integration, but, as we will
now see, it is often a lot easier to find the derivative
of a curve than its integral.

Series Expansions
An easy way to find the formula for the derivative of
a curve is to use a series expansion.  We will
illustrate the process by using the binomial expan-
sion to calculate the derivative of the function  xn

where n is any constant.

We used the binomial expansion, or at least the first
two terms, in Chapter 1 of the Physics text. That was
during our discussion of the approximation formu-
las that are useful in relativistic calculations.  As we
mentioned in Exercise (1-5), the binomial expan-
sion is

  (x + α)n = xn + nαxn – 1 +
n(n – 1)

2!
α2xn – 2 ⋅ ⋅ ⋅

(86)

When α  is a number much smaller than 1   (α < < 1) ,
we can neglect   α2   compared to α  (if   α = .01,

  α2 = .0001 ), with the result that we can accurately
approximate   (x + α)n by

  
(x + α)n ≈ xn + nαxn–1 α << 1 (87)

Equation (87) gives us all the approximation formu-
las found in Equations (1-20) through (1-25) on page
1-28 of the Physics text.

As an example of Equation (87), just to see that it
works, let us take x = 5, n = 7 and  α  = .01 to calculate

 (5.01)7 .  From the calculator we get

 (5.01)7 = 79225.3344 (88)

(To do this enter 5.01, press the  yx  button, then enter
7 and press the  =   button.)  Let us now see how this
result compares with

  (x + α)n ≈ xn + nαxn – 1

(5 + .01)7 ≈ 57 + 7(.01)56
(89)

We have

 57 = 78125 (90)

  7 × .01 × 56 = 7 × .01 × 15625 = 1093.75 (91)

Adding the numbers in (90) and (91) together gives

 57 + 7(.01)56 = 79218.75 (92)

Thus we end up with 79218 instead of 79225, which
is not too bad a result.  The smaller α  is compared
to one, the better the approximation.
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Derivative of the Function  xn

We are now ready to use our approximation formula
(87) to calculate the derivative of the function  xn .
From the definition of the derivative we have

  d(xn)
dx

=
limit
∆x→0

(x + ∆x)n – xn

∆x
(93)

Since   ∆x  is to become infinitesimally small, we can
use our approximation formula for   (x + α )n .  We
get

  (x + α )n ≈ xn + n(α)xn–1 (α << 1)

  ( x + ∆x)n ≈ xn + n(∆x)xn–1 (∆x << 1) (94)

Using this in Equation (93) gives

  
d(xn)

dx
= limit

∆x→0
[xn + n(∆x)xn–1] – xn

∆x (95)

We used an equal sign rather than an approximately
equal sign in Equation (95) because our approxima-
tion formula (94) becomes exact when   ∆x  becomes
infinitesimally small.

In Equation (95), the terms  xn  cancel and we are left
with

  d(xn)
dx

=
limit
∆x→0

n(∆x)xn–1

∆x
(96)

At this point, the factors   ∆x  cancel and we have

  d(xn)
dx

= limit
∆x→0 nxn–1 (97)

Since no   ∆x's  remain in our formula, we end up with
the exact result

 d(xn)
dx

= nxn–1 (98)

Equation (98) is the general formula for the deriva-
tive of the function  xn .

In our discussion of integration, we saw that a
constant could come outside the integral.  The same
thing happens with a derivative.  Consider, for
example,

  d
dx

af(x) = limit
∆x→0

a f(x + ∆x) – af(x)
∆x

Since the constant a has nothing to do with the
limiting process, this can be written

  d
dx

af(x) = a limit
∆x→0

f(x + ∆x) – f(x)
∆x

= a
df(x)
dx

(99)

Exercise 5
Calculate the derivative with respect to x (i.e., d/dx)
of the following functions.  (When negative powers of
x are involved, assume x is not equal to zero.)

(a)    x

(b)     x2

(c)     x3

(d)     5x2 – 3x

(Before you do part (d), use the definition of the
derivative to prove that  d

dx f(x) + g(x) = df(x)
dx + dg(x)

dx )

(e)     x– 1

(f)      x– 2

(g)     x

(h)     1/ x

(i)      3x.73

(j)     7x– .2

(k)   1

(In part (k) first show that this should be zero from the
definition of the derivative.  Then write  1 = x0 and
show that Equation (98) also works, as long as x is not
zero.)

(l)    5
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The Chain Rule
There is a simple trick called the chain rule that
makes it easy to differentiate a wide variety of
functions.  The rule is

  
df y(x)

dx
=

df(y)
dy

dy
dx

chain rule (100)

To see how this rule works, consider the function

 f(x) = ( x2 )n (101)

We know that this is just  f(x) = x2n , and the deriva-
tive is

 df(x)
dx

= d
dx

(x2n) = 2nx2n– 1 (102)

But suppose that we did not know this trick, and
therefore did not know how to differentiate  (x2)n .
We do, however, know how to differentiate powers
like  x2 and  yn. The chain rule allows us to use this
knowledge in order to figure out how to differentiate
the more complex function  (x2)n .

We begin by defining y(x) as

 y(x) = x2 (103)

Then our function  f(x) = (x2)ncan be written in
terms of y as follows

 f(x) = (x2)n = [ y(x) ]n = (y)n = f(y)

 f(y) = (y)n (104)

Differentiating (103) and (104) gives

 dy(x)
dx

= d
dx

(x2) = 2x (105)

 df(y)
dy

= d
dy

(yn) = nyn–1 (106)

Using (104) and (105) in the chain rule (100) gives

  df(y)
dx

= df
dy

× dy
dx

= (nyn–1 ) × ( 2x)

= 2nyn–1x

= 2n(x2 )n–1x

= 2n(x2[n–1])x

= 2n(x[2n–2])x

= 2n(x[2n– 2] + 1)

= 2nx2n– 1

(107)

which is the answer we expect.

In our example, using the chain rule was more
difficult than differentiating directly because we
already knew how to differentiate  x2n .  But we will
shortly encounter examples of new functions that
we do not know how to differentiate directly, but
which can be written in the form f[y(x)], where we
know df/dy and dy/dx.  We can then use the chain
rule to evaluate the derivative df/dx.  We will give
you practice with the chain rule when we encounter
these functions.

Remembering the Chain Rule
The chain rule can be remembered by thinking of the
dy's as cancelling as shown.

  
df(y)
dy

dy
dx

=
df(y)
dx

remembering
the chain rule

(108)
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Partial Proof of the Chain Rule (optional)
The proof of the chain rule is closely related to
cancellation  we showed in Equation (108).  A
partial proof of the rule proceeds as follows.

Suppose we have some function f(y) where y is a
function of the variable x.  As a result f[y(x)] is itself
a function of x and can be differentiated with respect
to x.

  
d
dx

f y(x) = limit
∆x→0

f y(x + ∆x) – f y(x)

∆x
(123)

Now define the quantity   ∆y  by

  ∆y ≡ y(x + ∆x) – y(x) (124)

so that

  y(x + ∆x) = y(x) + ∆y

  f[y(x + ∆x)] = f(y + ∆y)

and Equation (123) becomes

  d
dx

f y(x) = limit
∆x→0

f(y + ∆y) – f(y)
∆x

(125)

Now multiply (125) through by

  1 =
∆y
∆y

=
y(x + ∆x) – y(x)

∆y
(126)

to get

  d
dx

f y(x)

=
limit
∆x→0

f(y + ∆y) – f(y)
∆x

×
y(x + ∆x) – y(x)

∆y

=
limit
∆x→0

f(y + ∆y) – f(y)
∆y

×
y(x + ∆x) – y(x)

∆x

(127)
where we interchanged   ∆x  and   ∆y in the denomina-
tor.

(We call this a partial proof for the following reason.
For some functions y(x), the quantity

  ∆y = y(x + ∆x) – y(x)  may be identically zero for
a small range of   ∆x .  In that case we would be
dividing by zero (the   1/∆y ) even before we took the
limit as   ∆x  goes to zero.  A more complete proof
handles the special cases separately.  The resulting
chain rule still works however, even for these special
cases.)

Since   ∆y = y(x + ∆x) – y(x)  goes to zero as   ∆x
goes to zero, we can write Equation (127) as

  d
dx

f y(x)

= limit
∆y→0

f(y + ∆y) – f(y)
∆y

× limit
∆x→0

y(x + ∆x) – y(x)
∆x

       
 

=
df(y)

dy
dy
dx (100) repeated

This rule works as long as the derivatives df/dy and
dy/dx are meaningful, i.e., we stay away from kinks
or discontinuities in f and y.
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INTEGRATION FORMULAS
Knowing the formula for the derivative of the func-
tion  xn , and knowing that integration undoes differ-
entiation, we can now use Equation (98)

 dxn

dx
= nxn – 1 (98) repeated

to find the integral of the function  xn .  We will see
that this trick works for all cases except the special
case where n = –1, i.e., the special case where the
integral is a natural logarithm.

To integrate  xn,  let us go back to our calculation of
the distance  sx  or x(t) traveled by an object moving
in the x direction at a velocity  vx .  This was given by
Equations (19) or (56) as

 
x(t)

ti

T
= vx(t) dt

ti

T
(128)

where the instantaneous velocity  vx(t)  is defined as

 vx(t) =
dx(t)

dt
(129)

Suppose x(t) had the special form

  x(t) = tn + 1 (a special case) (130)

then we know from our derivative formulas that

 v(t) =
dx(t)

dt
= dt(n+1)

dt
= (n+1)tn (131)

Substituting  x(t) = tn + 1  and  v(t) = (n+1)tn  into
Equation (128) gives

  
 

x(t)
t i

T
= vx(t) dt

ti

T
(128)

 
tn + 1

ti

T
= (n+1)tndt

ti

T

= (n+1) tndt
ti

T (132)

Dividing through by (n+1) gives

 
tndt

ti

T
= 1

n+1 tn+1

ti

T
(133)

If we choose  ti = 0 , we get the simpler result

 
tndt

0

T
= Tn+1

n+1 (134)

and the indefinite integral can be written

 
tn dt = tn+1

n+1 (135) (also 34)

This is the general rule we stated without proof back
in Equation (34).  Note that this formula says noth-
ing about the case  n = –1, i.e., when we integrate

 t– 1 = 1/t , because  n +1 = –1 +1 = 0 and we end up
with division by zero.  But for all other values of n,
we now have derived a general formula for finding
the area under any curve of the form  xn  (or  tn ).  This
is a rather powerful result considering the problems
one encounters actually finding areas under curves.
(If you did not do Exercise 1, the integration exer-
cises on page 14, or had difficulty with them, go back
and do them now.)
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Derivative of the Exponential Function
The previous work shows us that if we have a series
expansion for a function, it is easy to obtain a
formula for the derivative of the function.  We will
now apply this technique to calculate the derivative
and integral of the exponential function  ex .

There is a series expansion for the function   ex  that
works for any value of x is but is most useful for
small values of x = α  << 1, is

  eα ≈ 1 + α + α2

2!
+ α3

3!
+ ⋅ ⋅ ⋅ (136)

where   2! = 2 ×1 ,   3! = 3×2×1 = 6 , etc. (The quan-
tities 2!, 3! are called  factorials. For example 3! is
called three factorial.)

To see how well the series (136) works, consider the
case α = .01 .  From the series we have, up to the   α3

term
  α = .01

α2 = .0001 ; α2/2 = .00005

α3 = .000001 ; α3/ 6 = .000000167
Giving us the approximate value

  1 + α + α2

2!
+ α3

3!
= 1.010050167 (137)

When we enter .01 into a scientific calculator and
press the  ex  button, we get exactly the same result.
Thus the calculator is no more accurate than includ-
ing the   α3  term in the series, for values of α  equal
to .01 or less.

Let us now see how to use the series (136) for
calculating the derivative of  ex .  We have, from the
definition of a derivative,

  d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (56) repeat

If  f(x) = ex , we get

  d(ex)
dx

= limit
∆x→0

ex + ∆x – ex

∆x (138)

To do this calculation, we have to evaluate the
quantity   ex + ∆x .  First, we use the fact that for
exponentials

 ea + b = eaeb

(Remember that   102 + 3 = 102 × 103 = 105 .)  Thus

  ex +∆x = ex e∆x (139)

Now use the approximation formula (136), setting
  α = ∆x  and throwing out the   α2  and   α3  and higher

terms because we are going to let   ∆x  go to zero

  e∆x ≈ 1 + ∆x (140)

Substituting (140) in (139) gives

  ex+∆x ≈ ex(1 + ∆x)

= ex + ex∆x (141)

Next use (141) in (138) to get

  d(ex)
dx

= limit
∆x→0

(ex + ex ∆x) – ex

∆x (142)

The  ex  terms cancel and we are left with

  d(ex)
dx

= limit
∆x→0

ex∆x
∆x

= limit
∆x→0ex (143)

Since the   ∆x′s  cancelled, we are left with the exact
result

 d(ex)
dx

= ex (144)

We see that the exponential function  ex  has the special
property that it is its own derivative.
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We will often want to know the derivative, not just
of the function  ex  but of the slightly more general
result  eax  where a is a constant.  That is, we want to
find

  d
dx

eax (a = constant) (145)

Solving this problem provides us with our first
meaningful application of the chain rule

 df(y)
dx

=
df(y)

dy
dy
dx (100) repeated

If we set

y = ax  (146)

then we have

 deax

dx
= dey

dy
dy
dx

(147)

Now

 dey

dy
= ey (148)

  dy
dx

=
d
dx

(ax) = a
dx
dx

= a × 1 = a (149)

Using (148) and (149) in (147) gives

 deax

dx
= (ey)(a) = (eax)(a) = aeax

Thus we have

 d
dx

eax = aeax (150)

This result will be used so often it is worth memoriz-
ing.

Exercise 6
For further practice with the chain rule, show that

  deax2

dx
= 2axeax2

Do this by choosing  y = ax2 , and then do it again by
choosing  y = x2 .

Integral of the Exponential Function
To calculate the integral of  eax , we will use the same
trick as we used for the integral of  xn , but we will be
a bit more formal this time.  Let us start with
Equation (128) relating position x(t) and velocity
v(t) = dx(t)/dt go get

 
x(t)

ti

t f
= vx(t) dt

ti

t f
=

dx(t)
dt

dt
ti

t f

(128)

Since Equation (128) holds for any function x(t) [we
did not put any restrictions on x(t)], we can write
Equation (128) in a more abstract way relating any
function f(x) to its derivative df(x)/dx

 

f(x)
xi

xf
=

df(x)
dx

dx
xi

xf
(151)

To calculate the integral of  eax , we set  f(x) = eax

and  df(x)/dx = aeax  to get

 
eax

xi

xf
= aeaxdx

xi

xf
(152)

Dividing (157) through by (a) gives us the definite
integral

  
eaxdx

xi

xf
= 1

a eax
xi

xf
(a = constant) (153)

The corresponding indefinite integral is

  
eaxdx =

eax

a (a = constant) (154)

Exercise 7
The natural logarithm is defined by the equation

 ln (x) = 1
x dx (see Equations 33-40)

Use Equation (151) to show that

 d
dx(ln x) = 1

x (155)

(Hint—integrate both sides of Equation (155) with
respect to x.)
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DERIVATIVE AS THE SLOPE OF A CURVE

Up to now, we have emphasized the idea that the
derivative of a function f(x) is given by the limiting
process

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x (55) repeat

We saw that this form was convenient when we had
an explicit way of calculating   f(x + ∆x) , as we did
by using a series expansion.  However, a lot of words
are required to explain the steps involved in doing
the limiting process indicated in Equation (55).  In
contrast, the idea of an integral as being the area
under a curve is much easier to state and visualize.
Now we will provide an easy way to state and
interpret the derivative of a curve.

Consider the function f(x) graphed in Figure (20).
At a distance x down the x  axis, the curve had a
height f(x) as shown.  Slightly farther down the x
axis, at   x + ∆x , the curve has risen to a height

  f(x + ∆x) .

Figure (20a) is a blowup of the curve in the region
between x and   x + ∆x .  If the distance   ∆x  is suffi-
ciently small, the curve between x and   x + ∆x
should be approximately a straight line and that part
of the curve should be approximately the hypot-
enuse of the right triangle abc seen in Figure (20a).
Since the side opposite to the angle   θ* is

  f(x + ∆x) – f(x) , and the adjacent side is   ∆x , we
have the result that the tangent of the angle   θ* is

  tan(θ*) =
f(x + ∆x) – f(x)

∆x (156)

When we make   ∆x  smaller and smaller, take the
limit as   ∆x → 0 , we see that the angle   θ*  becomes
more nearly equal to the angle θ  shown in Figure
(21), the angle of the curve when it passes through
the point x.  Thus

  tanθ = limit
∆x→0

f(x + ∆x) – f(x)
∆x

(157)

The tangent of the angle at which the curve passes
through the point x is called the slope of the curve at
the point x.  Thus from Equation (157) we see that
the slope of the curve is equal to the derivative of the
curve at that point.  We now have the interpretation
that the derivative of a curve at some point is equal
to the slope of the curve at that point, while the
integral of a curve is equal to the area under the curve
up to that point.

x 

f(x) 

f(x) 

f(x+∆x) 

x+∆xx

∆x

Figure 20

Two points on a curve, a distance   ∆∆ x  apart.

f(x) 

f(x+∆x) 
f(x+∆x) 
– f(x)

∆x

}θ*a

c

b

Figure 20a
At this point, the curve is tilted
by approximately an angle θθ *.

f(x) 

x

θ

Figure 21
The tangent of the angle θθ  at which the curve
passes through the point x is called the slope
of the curve at that point.
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Negative Slope
In Figure (22) we compare the slopes of a rising and
a falling curve.  In (22a), where the curve is rising,
the quantity   f(x + ∆x)  is greater than f(x) and the
derivative or slope

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x

is a positive number.

In contrast, for the downward curve of Figure (22b),
  f(x + ∆x)  is less than  f(x) and the slope is negative.

For a curve headed downward, we have

   df(x)
dx

= – tan(θ) downward heading
curve (158)

(For this case you can think of θ  as a negative angle,
so that   tan(θ)  would automatically come out nega-
tive.  However it is easier simply to remember that
the slope of an upward directed curve is positive and
that of a downward directed curve is negative.)

Exercise 8

Estimate the numerical value of the slope of the curve
shown in Figure (23) at points (a), (b), (c), (d) and (e).
In each case do a sketch of   f(x + ∆x) – f(x)  for a small

  ∆x , and let the slope be the ratio of   f(x + ∆x) – f(x) to
  ∆x .  Your answers should be roughly 1, 0, –1, + ∞ ,

– ∞ .

po
sit

ive
slope

f(x) 
f(x+∆x) 

f(x+∆x) – f(x) 

x+∆xx

θ

is positive
∆x

Figure 22 a,b
Going uphill is a positive slope,
downhill is a negative slope.

negative slope

f(x) 

f(x+∆x) 

x+∆xx

θ

f(x+∆x) – f(x) is negative
∆x

x  

f(x) 

a

b

c d
e

Figure 23
Estimate the slope at the
various points indicated.
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THE EXPONENTIAL DECAY
A curve that we will encounter several times during
the course is the function  e– ax  shown in Figure (24),
which we call an exponential decay.  Since expo-
nents always have to be dimensionless numbers, we
are writing the constant (a) in the form  1/x0  so that
the exponent  x/x0  is more obviously dimensionless.

The function  e– x/x0  has several very special proper-
ties.  At x = 0, it has the numerical value 1  (e0 = 1) .
When we get up to  x = x0 , the curve has dropped to
a value

   e– x/x0 = e– 1 = 1
e (at x = x0)

≈ 1
2.7

(159)

When we go out to  x = 2x0 , the curve has dropped
to

 e– 2x0/x0 = e– 2 = 1
e2 (160)

Out at  x = 3x0 , the curve has dropped by another
factor of e to (1/e)(1/e)(1/e).  This decrease contin-
ues indefinitely.  It is the characteristic feature of an
exponential decay.

Muon Lifetime
In the muon lifetime experiment, we saw that the
number of muons surviving decreased with time.  At
the end of two microseconds, more than half of the
original 648 muons were still present.  By 6 micro-

seconds, only 27 remained.  The decay of these
muons is an example of an exponential decay of the
form

  number of
surviving
muons

=
number of
muons at
time t = 0

× e– t/t0 (161)

where t0  is the time it takes for the number of muons
remaining to drop by a factor of 1/e = 1/2.7.  That
time is called the muon lifetime.

We can use Equation (161) to estimate the muon
lifetime  t0 .  In the movie, the number of muons at the
top of the graph, reproduced in Figure (25), is 648.  That
is at time t = 0.  Down at time t = 6 microseconds, the
number surviving is 27.  Putting these numbers into
Equation (161) gives

  
27 surviving

muons = 648 initial
muons × e– 6/t0

 e– 6/t0 = 27
648 = .042 (162)

Take the natural logarithm ln of both sides of Equa-
tion (162), [remembering that   ln ex = x ] gives

  ln e– 6/t0 = – 6
t0

= ln .042 = – 3.17

where we entered .042 on a scientific calculator and
pressed the ln key.  Solving for  t0  we get

 t0 = 6 microsec
3.17 = 1.9 microseconds (163)

This is close to the accepted value of  t0 = 2.2 0
microseconds which has been determined from the
study of many thousands of muon decays.

Figure 24
As we go out an additional distance

 x0 , the exponential curve drops by
another factor of 1/e.

x
x0 

1/e  

1/e  

0

2x00 3x0

e  

2

–x/x

1

Figure 25
The lifetime of each detected muon is represented
by the length of a vertical line. We can see that
many muons live as long as 2 microseconds (2µs),
but few live as long as 6 microseconds.



Calculus  2000 - Chapter 1      Introduction to Calculus      Cal 1-33

Half Life
The exponential decay curve  e– t/t0  decays to
1/e = 1/2.7 of its value at time  t0 .  While  1/e  is a very
convenient number from a mathematical point of
view, it is easier to think of the time  t1/2  it takes for
half of the muons to decay.  This time  t1/2  is called
the half life of the particle.

From Figure (26) we can see that the half life  t1/2  is
slightly shorter than the lifetime  t0 .  To calculate the
half life from  t0 , we have

 e– t/t0
t = t1/2

= e– t1/2/t0 = 1
2 (164)

Again taking the natural logarithm of both sides of
Equation (164) gives

  ln e– t1/2/t0 =
– t1/2

t0
= ln 1

2 = – .693

 t1/2 = .693 t0 (165)

From Equation (165) you can see that a half life  t1/2
is about .7 of the lifetime  t0 .  If the muon lifetime is
2.2   µsec  (we will abbreviate microseconds as   µsec ),
and you start with a large number of muons, you
would expect about half to decay in a time of

  (t1/2)muon = .693 × 2.2µsec = 1.5 µsec

The basic feature of the exponential decay curve
 e– t/t0  is that for every  time  t0  that passes, the curve

decreases by another factor of 1/e.  The same applies
to the half life  t1/2 .  After one half life,  e– t/t0  has
decreased to half its value.  After a second half life,
the curve is down to   1/4 = 1/2 × 1/2 .  After 3 half
lives it is down to   1/8 = 1/2 × 1/2 × 1/2  as shown in
Figure (27).

To help illustrate the nature of exponential decays,
suppose that you started with a million muons. How
long would you expect to wait before there was, on
the average, only one left?

To solve this problem, you would want the number
 e– t/t0  to be down by a factor of 1 million

  e– t/t0 = 1 × 10– 6

Taking the natural logarithm of both sides gives

   ln e– t/t0 = –t
t0

= ln 1×10– 6 = –13.8 (166)

(To calculate    ln 1×10– 6 , enter 1, then press the
exp key and enter 6, then press the +/– key to change
it to –6.  Finally press = to get the answer –13.8.)

Solving Equation (166) for t gives

  t = 13.8 t0 = 13.8 × 2.2 µsec

 t = 30 microseconds (167)

That is the nature of an exponential decay.  While
you have nearly half a million left after around 2
microseconds, they are essentially all gone by 30
microseconds.

Exercise 9

How many factors of 1/2 do you have to multiply
together to get approximately 1/1,000,000? Multiply
this number by the muon half-life to see if you get
about 30 microseconds.

t
t

0 

1/e  
1/2  

0

0
t1/2

e  –t /t

1

0 

1

1/2  

1/4  
1/8  

0

t1/2 2t1/2 3t1/2

e  –t /t

Figure 26
Comparison of the lifetime t0  and the half-life   t1 /2 .

Figure 27
After each half-life, the curve
decreases by another factor of 1/2.
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Measuring the Time
Constant from a Graph
The idea that the derivative of a curve is the slope of
the curve, leads to an easy way to estimate a lifetime

 t0  from an exponential decay curve   e– t/t0 .

The formula for the derivative of an exponential
curve is

 deat

dt
= aeat (150) repeated

Setting  a = – 1/t0  gives

 d
dt

e– t/t0 = – 1
t0

e– t/t0 (168)

Since the derivative of a curve is the slope of the
curve, we set the derivative equal to the tangent of
the angle the curve makes with the horizontal axis.

  d
dt

e– t/t0 = – 1
t0

e– t/t0 = tanθ (168a)

The minus sign tells us that the curve is headed
down.

In Figure (28), we have drawn a line tangent to the
curve at the point  t = T.  This line intersects the (t)
axis (the axis where  e– t/t0  goes to zero) at a distance
(x) down the  t  axis.

 The height  (y) of the point where we drew the
tangent curve is just the value of the function  e– T/t0 .
The tangent of the angle θ  is the opposite side  (y)
divided by the adjacent side  (x)

  
tanθ =

y
x =

e– T/t0

x (169)

Equating the two magnitudes of tanθ  in Equations
(169) in (168a) gives us

 1
t0

e– T/t0 = 1
xe– T/t0

which requires that

 x = t0 (170)

Equation (170) tells us that the distance (x), the
distance down the axis where the tangent lines
intersect the axis, is simply the time constant  t0 .

The result gives us a very quick way of determining
the time constant  t0  of an exponential decay curve.
As illustrated in Figure (29), choose any point on the
curve, draw a tangent to the curve at that point and
measure the distance down the axis where the tan-
gent line intersects the axis.  That distance will be the
time constant  t0 .  We will use this technique in
several laboratory exercises later in the course.

T
t

0e  –T/t

0e  –t /t

x      

x      

y

θ

0e  –t/t

0t

t

Figure 28
A line, drawn tangent to the exponential decay
curve at some point T, intersects the axis a
distance x down the axis. We show that this
distance x is equal to the time constant t0 . This
is true no matter what point T we start with.

Figure 29
A quick way to estimate the time constant t0
for an exponential decay curve is to draw the
tangent line as shown.
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THE SINE AND COSINE FUNCTIONS
The final topic in our introduction to calculus will be
the functions   sinθ and   cosθ  and their derivatives
and integrals.  We will need these functions when we
come to rotational motion and wave motion.

The definition of   sinθ and   cosθ , which should be
familiar from trigonometry, are

   
sinθ = a

c
opposite
hypotenuse (171a)

   
cosθ = b

c
adjacent
hypotenuse (171b)

          θ
b

a
c

      Figure 30

where θ  is an angle of a right triangle as shown in
Figure (30), (a) is the length of the side opposite to
θ , (b) the side adjacent to θ  and (c) the hypotenuse.

The formulas are simplified if we consider a right
triangle whose hypotenuse is of length  c = 1 as in
Figure (31). Then we have

  sinθ = a (172a)

  cosθ = b (172b)

          θ
b

a
1

      Figure 31

We can then fit our right triangle inside a circle of
radius 1 as shown in Figure (32).

Radian Measure
We are brought up to measure angles in degrees, but
physicists and mathematicians usually measure
angles in radians.  The angle θ  measured in radians
is defined as the arc length  subtended by the angle
θ  on a circle of unit radius, as shown in Figure (32).

   
θradians = arc length subtended

by θ on a unit circle (173)

(If we had a circle of radius c, then we would define
  θradians = /c , a dimensionless ratio.  In the special

case c = 1, this reduces to   θradians = .)

Since the circumference of a unit circle is   2π, we see
that θ  for a complete circle is   2π radians, which is
the same as 360 degrees.  This tells us how to convert
from degrees to radians.  We have the conversion
factor

  360 degrees
2πradians

= 57.3
degrees
radian

(174)

As an example of using this conversion factor,
suppose we want to convert 30 degrees to radians.
We would have

 30 degrees
57.3 degrees/radian

= .52 radians (175)

To decide whether to divide by or multiply by a
conversion factor, use the dimensions of the conver-
sion factor.  For example, if we had multiplied 30
degrees by our conversion factor, we would have
gotten

  
30 degrees × 57.3

degrees
radian

= 1719
degrees2

radian
This answer may be correct, but it is useless.

The numbers to remember in using radians are the
following:

  90° = π/2 radians
180° = πradians
270° = 3π/2 radians
360° = 2πradians

(176)

The other values you can work out as you need them.

θ
b

a
1

Figure 32
Fitting our right triangle inside a unit radius circle.
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The Sine Function
In Figure (33) we have started with a circle of radius
1 and, in a somewhat random way, labeled 10 points
around the circle.  The arc length up to each of these
points is equal to the angle, in radian measure,
subtended by that point.  The special values are:

  θ0 = 0 radians
θ4 = π/2 radians (90°)
θ6 = πradians (180°)
θ8 = 3π/2 radians (270°)
θ10 = 2πradians (360°)

In each case the   sinθ is equal to the height (a) at that
point.  For example

  sinθ1 = a1

sinθ2 = a2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
sinθ10 = a10

We see that the height (a) starts out at  a0 = 0  for   θ0 ,
increases up to  a4 = 1  at the top of the circle, drops
back down to  a6 = 0  at   θ6 = π , goes negative, down
to  a8 = – 1  at   θ8 = 3π/2 , and returns to  a10 = 0  at

  θ10 = 2π.

Our next step is to construct a graph in which θ  is
shown along the horizontal axis, and we plot the
value of   sinθ = (a)  on the vertical axis.  The result
is shown in Figure (34).  The eleven points, repre-
senting the heights  a0  to  a10  at   θ0  to   θ10  are shown
as large dots in Figure (34).  We have also sketched
in a smooth curve through these points, it is the curve
we would get if we had plotted the value of (a) for
every value of θ  from   θ = 0  to   θ = 2π .  The smooth
curve is a graph of the function       sinθθ .

Exercise 10
Using the fact that the cosine function is defined as

  cos θ = b (b is defined in Figures 31, 32)

plot the values of    b0, b1, ⋅ ⋅ ⋅ , b10 on a graph similar to
Figure (34), and show that the cosine function   cos θ
looks like the curve shown in Figure (35).

Figure 33
The heights ai  at various points around a unit circle.

Figure 34
Graph of the function       sin(θθ ) .
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There is nothing that says we have to stop measuring
the angle θ  after we have gone around once.  On the
second trip around, θ  increases from   2π up to   4π,
and the curve   sinθ repeats itself.  If we go around
several times, we get a result like that shown in
Figure (36). We often call that a sine wave.

Several cycles of the curve   cosθ  are shown in
Figure (37).  You can see that the only difference
between a sine and a cosine curve is where you set

  θ = 0 .  If you move the origin of the cosine axis back
(to the left) 90°   (π/2) , you get a sine wave.

Amplitude of a Sine Wave
A graph of the function    y(θ) = c sinθ  looks just like
the curve in Figure (36), except the curve goes up to
a height c and down to –c as shown in Figure (38).
We would get the curve of Figure (38) by plotting
points around a circle as in Figure (33), but using a
circle of radius c.  We call this factor c the amplitude
of the sine wave.  The function   sinθ has an ampli-
tude 1, while the sine wave in Figure (38) has an
amplitude c (its values range from +c to –c).

Figure 35
The cosine function.

θπ π

1

2

0

–1

3π 2π
2

θπ
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0

–1

3π 4π 5π 6π2π

θ
π

1

0

–1

3π 4π 5π 6π2π

c

c sin θ

0

– c

Figure 37
Several cycles of the curve       cos (θθ ) .

Figure 36
Several cycles of the curve       sin(θθ ) .

Figure 38
A sine wave of amplitude c.
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Derivative of the Sine Function
Since the sine and cosine functions are smooth
curves, we should be able to calculate the derivatives
and integrals of them.  We will do this by first
calculating the derivative, and then turning the pro-
cess around to find the integral, just as we did for the
functions  xn  and  ex .

The derivative of the function   sinθ is defined as
usual by

  d(sinθ)
dθ = limit

∆θ→0
sin(θ +∆θ) – sinθ

∆θ (177)

where  ∆θ  is a small change in the angle θ .

The easiest way to evaluate this limit is to go back to
the unit circle of Figure (25) and construct both   sinθ
and sin   (θ +∆θ)  as shown in Figure (39).  We see
that   sinθ is the height of the triangle with an angle

 θ,  while sin   (θ +∆θ)  is the height of the triangle
whose center angle is   (θ +∆θ).  What we have to do
is calculate the difference in heights of these two
triangles.

In Figure (40) we start by focusing our attention on
the slender triangle abc with an angle  ∆θ  at (a) and
long sides of length 1 (since we have a unit circle).
Since the angle  ∆θ  is small, the short side of this
triangle is essentially equal to the arc length along
the circle from point (b) to point (c).  And since we
are using radian measure, this arc length is equal to
the angle  ∆θ .

Now draw a line vertically down from point (c) and
horizontally over from point (b) to form the triangle
bcd shown in Figure (40).  The important point is
that the angle at point (c) in this tiny triangle is the
same as the angle θ  at point (a).  To prove this,
consider the sketch in Figure (41).  A line bf is drawn
tangent to the circle at point (b), so that the angle abf
is a right angle.  That means the other two angles in
the triangle add up to 90°, the total angle in any
triangle being 180°

  θ + ϕ = 90° (178)

Since the angle at (e) in triangle bef is also a right
angle, the other two angles in the triangle bef, must
also add up to 90°.

  α + ϕ = 90° (179)

For both Equations (178) and (179) to be true, we must
have   α = θ .

sin(θ)
sin(θ+∆θ)

∆θ

θ

r=1

Figure 39
Triangles for the      sinθθ  and the       sin (θθ + ∆θ∆θ) .

∆θ

∆θ

∆θ

θ

θ

θ

a

b

b c

c

d

d

r=1

θ
  θ + φ  =  90°
  α + φ  =  90°
    ∴ α  =  θ

α

φ
a

b

e f

Figure 40
The difference between      sinθθ  and

      sin (θθ + ∆θ∆θ)  is equal to the height
of the side cd of the triangle cdb.

Figure 41
Demonstration that the angle αα  equals the angle θθ .
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The final step is to note that when  ∆θ  in Figure (40)
is very small, the side cb of the very small triangle is
essentially tangent to the circle, and thus parallel to
the side bf in Figure (41).  As a result the angle
between cb and the vertical is also the same angle θ .

Because the tiny triangle, shown again in Figure (42)
has a hypotenuse  ∆θ  and a top angle θ , the vertical
side, which is equal to the difference between   sinθ
and sin   (θ +∆θ)  has a height   (cos θ)∆θ .  Thus we
have

  sin(θ +∆θ) – sinθ = (cosθ)∆θ (180)

Equation (180) becomes exact when  ∆θ  becomes
an infinitesimal

 
angle.

We can now evaluate the derivative

  d(sinθ)
dθ = limit

∆θ→0
sin(θ +∆θ) – sinθ

∆θ

= limit
∆θ→0

(cosθ)∆θ
∆θ

= limit
∆θ→0 cosθ

Thus we get the exact result

  d
dθ (sinθ) = cosθ (181)

Exercise 11
Using a similar derivation, show that

   d
dθ (cosθ) = – sinθ (182)

Exercise 12
Using the chain rule for differentiation, show that

   d
dθ (sinaθ) = a cosaθ

d
dθ (cosaθ) = – a sinaθ

(a = constant) (183)

(Hint—if you need to, look at Equation (145) through
(150).

Exercise 13
Using the fact that integration reverses differentia-
tion, as we did in integrating the function  ex  (Equa-
tions (151) through (154), show that

   
(cosaθ)

θi

θf
dθ = 1

asinaθ
θi

θf

(sinaθ)
θi

θf
dθ = – 1

acosaθ
θi

θf

Use sketches of the integrals from    θi = 0  to    θf = π/2  to
show that Equations (184a) and (184b) have the
correct numerical sign.  (Explicitly explain the minus
sign in (184b).

∆θ

∆θ
cosθ

∆θ

∆θ

θ

θ

a
r=1

sin(θ)
sin(θ+∆θ)

Figure 42
The difference between      sinθθ  and       sin (θθ + ∆θ∆θ)  is
equal to       ∆θ∆θcos θθ . Check that this result is
reasonable by considering the special cases

      θθ = 0  and         θθ = 90° (ππ /2) .

(184a)

(184b)

(a = constant)
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Calculus 2000-Chapter 2
Second Derivatives and the One
Dimensional Wave Equation

CHAPTER 2 SECOND DERIVATIVES
AND THE ONE DIMENSIONAL WAVE
EQUATION

In our discussion of a wave pulse on a rope, in
Chapter 15 of Physics 2000, we used a combination
of physical observation and a somewhat tricky argu-
ment to show that the speed of the wave pulse was
given by the formula   v = T/ρ .  The physical obser-
vation was noting that a pulse travels down the rope
at an apparently uniform speed.  The trick was to
analyze the behavior of the rope from the point of
view of someone moving along with the pulse (as on
pages 15-4, 5).

Another way to handle the problem is to directly
apply Newton's second law to a section of the rope.
When we use this direct approach, we end up with an
equation that involves second derivatives not only
with respect in time, but also with respect to space.
The resulting equation with its second derivatives is
what is known as the wave equation.  The aim of this
chapter is to learn how to handle the wave equation,
at least for waves moving in one dimension.  (Han-
dling three dimensional wave equations comes later.)

To use the wave equation with any  real understand-
ing, not just manipulating formulas, requires more
familiarity with the properties of a second derivative
than we have needed so far.  Thus we will begin this
chapter with a discussion of the second derivative,
and then go on to the one dimensional wave equa-
tion.
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THE SECOND DERIVATIVE
We have already encountered the idea of a second
derivative in our discussion of velocity and accel-
eration.  Consider a particle moving down the x axis,
whose position is described by the function x(t).  The
particle's velocity  vx(t)  is given by

  vx(t) =
dx(t)

dt
first
derivative (1)

which is the first derivative, with respect to time, of
x(t).  The particle's acceleration a(t) is given by

 
ax(t) =

dvx(t)
dt

(2)

When we use (1) for v(t) in Equation (2) we get

  
ax(t) = d

dt
dx(t)

dt
second
derivative (3)

In Equation (3), we see that  ax(t)  is obtained from
x(t) by differentiating twice with respect to time.
We say that  ax(t)  is the second derivative of x(t) and
use the simplified notation

   
d
dt

dx(t)
dt

≡ d2x(t)
dt2

simplified
notation for
second derivative

(4)

With this notation, the position  x(t), velocity  vx(t) ,
and acceleration  ax(t)  are related by

x(t)

 vx(t) =
dx(t)

dt

 
ax(t) =

d2x(t)
dt2 (5)

There is nothing particularly difficult about carrying
out a second derivative, just do the derivative opera-
tion twice as illustrated in the following example.

Example 1
Calculate the second derivative, with respect to θ ,
of   sin(aθ)

  d2sin(aθ)

dθ2 = ? (6)

Solution
Begin by taking the first derivative

  d sin(aθ)
dθ = a cos(aθ) (7)

Now differentiate again

  
d
dθ

d sin(aθ)
dθ = d

dθ a cos(aθ)

= ad
dθ cos(aθ)

= a – a sin(aθ) (8)

Thus we get

  d2sin(aθ)

dθ2 = – a2 sin(aθ) (9)

We see that the second derivative of a sine curve is
itself a sine curve, with a minus sign.

Exercise 1
Calculate the following second derivatives

(a) 
   d2

dθ2 cos (aθ)

(b) 
 d2

dx2 e– ax

(c) 
 d2

dx2 ln(x)

(d) 
 d2

dx2 ln (ax)

(e) 
 d2

dx2 xn

(f) 
 d2

dx2 (ax)n

(g) 
 d2

dx2
1

(x)n

(h) 
 d2

dx2
1

(ax)n
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Geometrical Interpretation
of the Second Derivative
We have seen that the various calculus operations
have a geometrical interpretation.  Integration was
equivalent to finding the area under a curve, while
the first derivative represented the slope of a curve.
We now want to obtain the geometrical interpreta-
tion of the second derivative.  We will see that the
second derivative is equal to what we will call the
curvature of the curve.  To see exactly what that is,
consider the following derivation.

Let y(x) be the section of a circle as shown in Figure (1).
Let us use notation found in a number of calculus
texts, and denote the derivative of y(x) by   y′(x)

   y′(x) ≡ dy(x)
dx

simplified
notation (10)

In terms of   y′(x) , the second derivative is

  d2y(x)
dx2 = limit

∆x → 0
y′(x + ∆x) – y′(x)

∆x (11)

Remember that   y′(x)  = dy/dx is the slope of the
curve at position x as shown in Figure (2) (For
example, see Figure 21 of Chapter 1).  Thus Equa-
tion (11) tells us that to find the second derivative of
y(x) we have to find the change in slope as we move
from x to   x + ∆x .

We will evaluate the second derivative at the bottom
of the circle, where the curve is horizontal and the
slope is zero.

   y′[x = 0] = 0 curve horizontal
at x = 0 (12)

Now move down the x axis a distance   ∆x  as shown
in Figure (1).  If   ∆x  is small, then   ∆x  is essentially
equal to the arc length   ∆  along the circle, and the
angle  ∆θ  in radian measure is the arc length divided
by the radius R of the circle

  ∆θ = ∆
R

≈ ∆x
R

(13)

If we draw a line tangent to the circle at position
  x = ∆x , this tangent line will make an angle  ∆θ  to the

horizontal as shown in Figure (1).  (The two angles
labeled  ∆θ  in Figure 1 are equal no matter how big  ∆θ
is.)  Thus the slope of the tangent line at   x = ∆x  is

  slope of circle
at x = ∆x

= tan(∆θ) (14)

Now if  ∆θ  is a small angle, which it will be if we take
the limit as   ∆x → 0 , we can use the approximation

  tan (∆θ) ≈ ∆θ (15)

You can see why this approximation is good for
small angles from Figure (2a).

Thus the slope of the tangent line at   x = ∆x  is given by

  slope of
tangent line
at x = ∆x

= y′[x = ∆x] = ∆θ = ∆x
R

(16)

where we used Equation (13) for  ∆θ .

Now we have values of y′ at x = 0 (Equation 12) and
at   x = ∆x  (Equation 16), we can use these values in
Equation (10) to get the value of  d2y/dx2  at x = 0,
i.e., at the bottom of the circle.

∆

tangent 

line

∆θ

∆θ

∆x
x

y(x)

R

y

θ

x

y
Figure 2
The slope is the
tangent of the angle.

      slope
at x ≡≡ dy(x)

dx = tanθθ

Figure 1
Calculating the change in the slope of the
circle, as we go from x = 0 to x =  ∆∆x.

∆θ
x

R
yFigure 2a

For small angles,
the angle and the
tangent of the angle
are essentially
equal.

  tan (∆θ) =
y
x

∆θ =
R

≈ y
x
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Introducing the notation

  
d2y(x)

dx2
x = 0

means d2y(x)/dx2

evaluated at the
point x = 0

We have from Equation (10)

  d2y(x)
dx2

x = 0
= limit

∆x → 0
y′[x=∆x] – y′[x = 0]

∆x

(17)
With   y′[x=∆x] = ∆x/R  (Equation 16) and

  y′[x=0]  = 0, we get

  d2y(x)
dx2

x = 0
= limit

∆x → 0
∆x/R – 0

∆x

= limit
∆x → 0

1

R

Since the   ∆x's  canceled, we see that 1/R is the
limiting value and we get

 d2y(x)
dx2

x = 0
= 1

R
(18)

With a slightly messier derivation we could calcu-
late  d2y/dx2  anywhere around the circle, not just at
the bottom, and we get the same answer 1/R.  Thus
we have the more general result

  
d2y(x)

dx2 = 1
R

anywhere around
the circle (19)

CURVATURE
Consider the curve shown in Figure (3) representing
some function y(x).  At point  x0  we have drawn a
circle that just fits against the curve.  The radius of
the circle is adjusted to give the closest match
possible between the curve  y(x0)  and the circle.
When we get this closest fit, both the first and the
second derivatives of the circle and y(x) are equal at

 x = x0 .  In other words

 
d2y(x)

dx2
x = x0

= 1
R (20)

In Figure (3) the quantity R is called the radius of
curvature of the curve y(x) at the point  x0 , and 1/R
is called the curvature

   1
R

≡ curvature of the curve (21)

You can see intuitively why 1/R is called curvature.
If R is very large, the curve is almost flat and we
would say it has little curvature.  As R becomes
smaller, the curve bends in a tighter circle, and the
curvature 1/R becomes greater.

This is the geometrical picture of the second deriva-
tive.  While the first derivative was equal to the slope
of the curve at some point, the second derivative is
equal to the curvature of the curve at that point.  The
curvature is explicitly the reciprocal of the radius of
curvature of the curve where the radius of curvature
is found by fitting a circle to the curve as in Figure
(3). [Exercise: under what circumstances would the
second derivative or curvature be negative?]

xx

R

y

0
Figure 3
 At any point along a curve, the curvature is
1/R or –1/R, where R is the radius of the
circle that just fits the curve as shown.
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Curve Fitting and Boat Lofting
The problem of working with curves has a number
of practical applications, one of the more interesting
of which, at least to a sailor, is the lofting of boats.

It turns out that the eye is extremely good at judging
the smoothness of a curve.  We can, for example,
easily spot the slightest wrinkle in what is supposed
to be the smooth side of a boat.  (It is an interesting
question as to how the eye and brain can do this so
well.)

Through the 16th century, boats were rather crude
looking.  Starting in the 17th century, better looking
boats were built using the following steps.  The first
was to carve a model of the hull that was to be built.
Then conceptually slice the model as you would
slice a loaf of bread.  Each of these cuts was called
a station.  Typically one used about 15 stations, each
representing a cross section of the hull at different
distances along the length of the boat.  Then points
were taken from the model to represent the shape of
the hull at each station.  Figure (4) is a typical
example of a hull cross section at a middle station.

Since the points showing the shape of the hull were
taken from a small model, any errors in measure-
ment would be greatly magnified when the hull was
laid out full scale.  An error of a fraction of a
millimeter in measuring the model would lead to a
very obvious bump in the final hull shape.

To avoid these bumps, the plans were taken up into
the loft of the boat shed (hence the name lofting), and
drawn full scale.  Wooden splines, typically thin
strips of spruce, were bent along the points of the
curve.  Since the splines bent along smooth curves,
any points that were out of place would not be fitted
by the spline and the points would be moved to fit the
smooth curve.  This process is called spline fitting.
Once all the full scale curves were smoothed by
spline fitting, then the boat hull was constructed
using these smoothed plans and the result, if done
correctly, was a smooth, good looking hull.

In the early 1970's, shortly after we had started using
the computer in teaching introductory physics, we
had lunch with a boat builder who described the
rather tedious process of lofting a boat.  He won-
dered if lofting could be done more easily on the
computer.  This was before the availability of inex-
pensive line plotters, so that the work would all have
to be done numerically.  We agreed to try, the
incentive being a reduced price on a diesel engine for
our boat if we successfully lofted the boat builder's
new lobster boat design.

The most successful part of the project was finding
an easy and very effective way to spot a smooth
curve.  Just print out a list of the third derivatives of
the curve.  Since the second derivative is the curva-
ture of the curve, the third derivative is the rate at
which the curvature is changing as you go along the
curve.  If the curvature changes slowly, then the
curve looks smooth.  A bump represents a sudden
change in curvature and therefore has a large third
derivative.  What a spruce spline essentially does is
to minimize the third derivative.

About the same time that we wrote the lofting
program, a physicist, Peter Karos in Germany, also
wrote a boat lofting program.  As one does not make
much of a living from a lofting program, Karos
turned to the problem of using the computer to create
letter forms.  The letters of the alphabet are con-
structed from different curves that depend upon
which font you are using.  And just as in boat design,
the eye is very sensitive to the smoothness of the
curves, even for relatively small letters.

points, taken from 
model, used to 
draw plans

Figure 4
 Typical cross section. (Since boats are supposed
to be symmetric, only one side is usually drawn.)
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Karos based his boat lofting and letter design pro-
grams on what are called Besier curves.  To construct
a Besier curve through a series of points, at each point
you specify the location y(x) of the point, the first
derivative   y′(x)  = dy/dx, and the second derivative

  y′′ (x) = d2y/dx2 = 1/R.  The section of curve be-
tween two adjacent points is then constructed to
match the first and second derivative at the end points
and minimize the third derivative in the region in
between.  This uniquely determines the line.

Karos's techniques using Besier curves was built into
the Postscript™  language used for letter design.  A
way of graphically handling the construction of Besier
curves was developed and became the basis of the
Adobe Illustrator™  program.

Those of you who have used Adobe Illustrator, or any
of the similar drawing programs, will be familiar
with the constructing of Besier curves.  You  place the
pen tool at a point and press the mouse button.  That
establishes the point y(x).  Then you drag the pen tool
in some direction.  That direction establishes the
slope of the curve   y′(x)  at that point.  How far out you
drag the pen tool before you let up on the mouse
button determines the radius of curvature R  at that
point, and thus establishes the second derivative

  y′′ (x) = d2y/dx2 = 1/R there (see Figure 5).  When
you move the mouse to another point, press the
mouse button and drag, you determine y(x),   y′(x)
and   y′′ (x) at the new point, and then the computer
draws the smooth Besier curve between the two
points.

When you are using Adobe Illustrator, or other draw-
ing programs, think of the fact that you are control-
ling the position, the first derivative, and the second
derivative every time you place and drag the mouse.

THE BINOMIAL EXPANSION
We have seen, starting in Chapter 1 of the Physics
text, the usefulness of the binomial expansion

  (1 + α)n = 1 + nα +
n(n – 1)

2!
α2 + ⋅ ⋅ ⋅ (22)

which is valid for any value of α  less than one, but
which gets better as α  becomes smaller.  For very
small α , we could neglect all terms involving   α2  or
higher powers of  α , giving us the approximation
formula

  (1 + α)n ≈ 1 + nα (α < < 1) (23)

which is good for any value of n.

With calculus, we can easily derive the formula for
the various terms in the binomial expansion.  We
begin with the assumption that the quantity   (1 + α)n

can be expanded in some kind of a series involving
powers of α .  We will write the series in the form

  (1 + α)n = A0α0 + A1α1 +A2α2 +A3α3 + ⋅ ⋅ ⋅
(24)

where the  A0 ,  A1 ,  A2 , etc. are unknown coeffi-
cients that we have to determine.

Equation (24) is supposed to be correct for small
values of α  including α = 0 .  Setting α = 0  gives

  (1 + 0)n = A000 + A101 +A202 +A303 + ⋅ ⋅ ⋅
(25)

Here is a peculiar convention we use.  We assume
that any number  x0 = 1  no matter what x is, includ-
ing  00 .  Thus  A000 = A0 , all the other terms on the
right side of Equation (25) are zero, and we get

 1n = 1 = A0 (26)

which determines  A0 .

(Writing   A0α0  instead of just  A0  for the first term
in the series is formalism that makes the series look
more consistent, but is unnecessary if you do not like
the idea of  00 = 1 .)

Figure 5
Constructing Besier
curves with Adobe
Illustrator®. In that
program, the radius
of curvature is set to
about 60% of the
distance that the
cursor is pulled out
from the point.

po i n t
y(x)

slope
   y ′(x)

cursor

Distance from point to
cursor is proportional to
the radius of curvature.
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To determine the value of  A1 , differentiate Equa-
tion (24) with respect to α .  We get, using the chain
rule

  d
dα (1 + α)n = d

d(1 + α)
(1 + α)n d(1 + α)

dα

= n(1 + α)n – 1 1

= n(1 + α)n – 1 (27)

Differentiating the right hand side of Equation (24)
gives

  d
dα A0α0 + A1α1 + A2α2 + A3α3 + ⋅ ⋅ ⋅

= 0 + A1 + 2A2α + 3A3α2 + ⋅ ⋅ ⋅ (28)

Thus the first derivative of Equation (24), with
respect to α , is

  n(1 + α)n – 1 = A1 + 2A2α + 3A3α2 + ⋅ ⋅ ⋅ (29)

Now set   α = 0  and we get

  n(1+0)n – 1 = A1 +2A2×0+3A3×02+⋅ ⋅ ⋅ (30)

which gives us

 n = A1 (31)

and determines the coefficient  A1 .

To determine  A2 , differentiate Equation (29) with
respect to α .  With

  d
dα (1 + α)n – 1 = (n – 1)(1 + α)n – 2

we get

  n (n – 1)(1 + α)n – 2 = 2A2 + 3(2α) + ⋅ ⋅ ⋅ (32)

Setting   α = 0  gives

 A2 =
n(n – 1)

2
(33)

Exercise 2
Differentiate Equation (32) with respect to α , set

  α = 0 , and show that  A3 is given by

   A3 =
n(n – 1)(n – 2)

3 × 2 × 1 (34)

From Equation (34) you can see the general formula
emerging

  
An =

n(n – 1)(n – 2)(n – 3)⋅ ⋅ ⋅
n! (35)

Thus by successive differentiation we can rather
easily determine all the terms in the binomial expan-
sion.

(One thing we have not worried about, but which is
of major concern in calculus texts, is the range of
values of α  for which the series is valid.  Such
questions are important from a purely mathematical
point of view, but are seldom of practical impor-
tance.  From a practical point of view, you can
usually evaluate a few terms, and if the last ones are
negligibly small, the series is probably good enough.)

The Taylor Series Expansion
The binomial expansion we have just discussed is a
special case of the more general expansion called the
Taylor series expansion.  In Figure (6) we have
sketched a curve representing some function

 y = f(x) (36)

Suppose we know everything about the function at
the point  x0  and would like to figure out where the
curve is going as we move away from that point.  By
knowing everything about f(x) at the point  x0 , we
mean that we know  f(x0)  as well as all the deriva-
tives of f(x) evaluated at  x = x0.

xx x

(x - x )

y

y

=
f(x)

0

0

Figure 6
If we know everything about the curve   y = f (x )
at the point  x0, can we predict where the curve
will be a short distance farther down the x axis?
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The derivation of the Taylor series expansion begins
with the assumption that the function f(x) can be
expanded, in the vicinity of the point  x0  by the so
called power series

  f(x) = A0(x – x0)0 + A1(x – x0)1

+ A2(x – x0)2 + ⋅ ⋅ ⋅
(37)

If you think of   (x – x0)  as being some small distance
α , then the expansion in Equation (37) is the same
form as the expansion of the function   (1 + α)n back
in Equation (24).  The difference is that for different
functions f(x) we get different coefficients  An.

To calculate the  An, we do the same thing that we
did in deriving the binomial expansion.  We dif-
ferentiate both sides of the equation and then set

  x = x0  (which corresponds to setting   α = (x – x0)
equal to zero).

First we set   x = x0  in Equation (37) to get

  f(x0) = A0(x – x0)0 + A1(x – x0)1+ ⋅ ⋅ ⋅

= A0(0)0 + A1(0)1 + ⋅ ⋅ ⋅

= A0

(38)

which determines the first coefficient  A0 .

Differentiating both sides of Equation (37) with
respect to x and then setting   x = x0  gives

  f ′(x) ≡ df(x)
dx

= A1 + 2A2(x – x0)

+ 3A3(x – x0)3 + ⋅ ⋅ ⋅
(39)

where we used the chain rule to show that

  d
dx

(x – x0)n = n(x – x0)n – 1 (40)

Setting   x = x0  in Equation (39) gives

  f ′(x0) ≡ df(x)
dx x = x0

= A1 (41)

all the other terms being zero.

Exercise 3
Show that

  
A2 = 1

2
d2f(x)
dx2

x = x0

=
f″(x0)

2 (42)

   
A3 = 1

3 × 2 × 1
d3f(x)
dx3

x = x0

=
f′′′ (x0)

3! (43)

From Exercise 3 you can see that the general form of
the Taylor series expansion is

  f(x – x0) = f(x0) + f ′ x0 (x – x0)1

+ 1
2!

f″(x0)(x – x0)2

+ 1
3!

f ′′′ (x0)(x – x0)3+ ⋅ ⋅ ⋅

This can be written in the compact form

   
f(x – x0) =

fn(x0)
n!Σ

n = 0

∞
(x – x0)n

Taylor
series
expansion

(44)

where we used the notation

  
fn(x0) ≡ dnf(x)

dxn
x = x0

(45)

The tricky part of the mathematics of the Taylor
series expansion is how far you can go, how far x can
be away from  x0 , and still have a valid expansion.
Perhaps more important to the physicist is how far
you can go before you have to include too many
terms and the expansion is not useful.

Exercise 4
Apply the Taylor series expansion, Equation (44) to
the function

 f(x) = (x – x0)n

evaluated at  x0 = 1 , and show that you get the bino-
mial expansion.  (Hint—set    α = x – x0 , i.e., substitute

  x = x0 + α  at the end.)
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The Constant Acceleration Formulas
While the Taylor series expansion, Equation (44),
looks like a very new topic, we have been using a
Taylor series expansion since the very beginning of
our discussion of calculus.  The constant accelera-
tion formulas are a simple example of this expan-
sion.

Figure (7) is a reproduction of our instantaneous
velocity drawing, Figure (3-32d) from Chapter 3 of
the Physics text and Figure (Cal 1-1d) of the Calcu-
lus text.  At some instant of time, the ball is located
at some position  (x0, y0) at time  t0 , and we wish to
predict the position of the ball at some later time t.

The location of the ball is described by two functions
x(t) and y(t). We know  x(t0),  y(t0) and all the
derivatives of these functions at time  t0 , they are
simply the velocity and acceleration

  x′(t) =
dx(t)

dt
= vx(t) (46)

  
x″(t) =

d2x(t)
dt2 = ax(t) (47)

  y′(t) =
dy(t)

dt
= vy(t) (48)

  
y′′ (t) =

d2y(t)
dt2 = ay(t) (49)

If the particle is moving with constant acceleration,
then all higher derivatives are zero. For example

   
y′′′ (t) ≡ d3y(t)

dt3 =
day(t)

dt
= 0

for
constant
acceleration

(50)
The Taylor series expansion for y directed motion
y(t) is

  
y(t – t0) = yn(t0)

(t – t0)n

n!Σ
n = 0

∞

= y0(t0) +
dy(t)

dt t0

(t – t0)
1!

+
d2y(t)

dt2
t0

(t – t0)2

2!
+ ⋅ ⋅ ⋅

With  dy/dt = vy  and  d2y/dt2 = ay , we get

  y(t – t0) = y0(t0) + vy(t0)(t – t0)

+ 1
2 ay(t0)(t – t0)2

(51)

with all higher powers of   (t – t0)  having zero coef-
ficients.

If we set  t0 = 0  Equation (51), we get the very
familiar result

 y(t) = y0 + vy0t + 1
2 ayt2 (52)

Here is an example of a Taylor series expansion that
is valid for any range of values   (t – t0)  . It is good for
all times t because all derivatives of y(t) above the
second derivative are zero.)

Exercise 5
Suppose a particle is moving in the y direction with a
constantly increasing acceleration.  I.e., assume that

   
a′y(t) ≡

day(t)
dt = constant

Find the formula for y(t) for all future times t.  (This is
one step above the constant acceleration formulas.)

Figure 7
Instantaneous velocity at time (t).

Vi~
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THE WAVE EQUATION
In the Physics text, we calculated the speed of a wave
pulse on a rope in Chapter 15, pages 15-4 and 5 .  As
we mentioned in the introduction, the calculation
was relatively simple because of two tricks we were
able to pull.  One was to walk along with the pulse,
so that it looked as if the pulse were standing still and
the rope were passing through it.  The second was to
picture the top of the pulse as an arc of a circle, so that
we would know the acceleration of the rope as it
went around the arc.  We got the right answer, but the
process did not generate much confidence that we
could handle more general cases, like calculating the
speed of a sound wave pulse, or even of a compres-
sional pulse on a Slinky.  (Remember that we used
dimensional analysis, an important but approximate
tool, to estimate the wave speeds in these cases.)

What we will do now is the more direct approach of
applying Newton's laws to a section of the wave
pulse, get a differential equation, which happens to
involve second derivatives in both space and time,
and then solve the differential equation in the usual
way.  That is, we guess a solution, plug it into the
equation, and see if we made the correct guess.  We
will use as much physical insight as we can to guide
us in making the guess.  The differential equation we
will be working with is called the wave equation.

Here we will be working with the wave equation for
waves moving in one dimension.  The three dimen-
sional wave equation will be discussed later.

Waves on a Rope
Our analysis of a wave pulse on a rope begins much
as it did in Chapter 15.  Figures (8) and (9) are similar
to Figures (15-3c) and (15-3d), except that we are
now standing still relative to the rope, and we are
assuming the pulse is passing by us.

In our current analysis of the wave pulse, we will be
somewhat more formal than we were in Chapter 15.
We will say that the rope, at the present time, lies
along a curve y(x) as shown in Figure (8).  The
quantity x is the distance down the rope (say from
one end) and y(x) is the height of the pulse there, i.e.,
the distance the rope is displaced from its equilib-
rium position.  From our various discussions of
derivatives, we know that dy(x)/dx is the slope of the
rope at position x, and  d2y(x)/dx2 = 1/R(x) is the
curvature, which is equal to the reciprocal of the
radius of curvature R(x) at that point.  In Figure (8)
we have sketched in circles to show the radius of
curvature at the two points  x1  and  x2  along the
curve.  The curvature is positive at  x1  and negative
at  x2 .

Let us consider a short section of rope of length   ∆
located at position x as shown in Figure (9).  For now
assume that this section begins at the top of the pulse
where the rope is horizontal.  Shortly we will see that
our results apply at any position along the rope.

The two ends of the section of rope are being pulled
along the rope by the tension T.  If the rope were
straight, if there were no curvature at this point, the
tension forces would cancel each other and there
would be no net force on   ∆ .  Only because there is
curvature is there a net force which we have labeled

 Ty in Figure (9).

x x x
1

1

x2

R(x )
y(x)

y

2R(x )

2

2R(x)
1

dx
d  y(x)

=

Figure 8
Wave pulse on a rope. The curvature is positive
(points up) at  x1, and negative at  x2.

Figure 9
Due to the tension pulling on both
sides, this section of rope feels a
net downward force    Ty ≈ T∆θ∆θ .

∆θ
∆θ

∆θ
∆θ

∆

T  = Tsiny

 T
T

T

R
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As long as   ∆  is short enough, this section of rope
will lie along the circle we have drawn to show the
radius of curvature, and the two tension forces  T
will be tangent to the circle at the two ends.  The
result, from geometry we have now seen several
times, is that the two angles labeled  ∆θ  will be equal
and the right hand tension force will have a down-
ward pointing component  Ty  given by

  Ty = T sin (∆θ) ≈ T∆θ (53)

where for small angles we can replace the sine of an
angle by the angle itself.

From Figure (9) we see that the angle  ∆θ  is given by

  ∆θ = ∆
R

(54)

so that

  Ty = T∆θ = T∆ 1
R

(55)

Since 1/R is the curvature  d2y(x)/dx2  at   ∆ , we get

  
Ty(x) = T∆ d2y(x)

dx2 (56)

While Equation (56) was derived starting from the
top of the pulse, we can see that as long as the sides
of the pulse are not steep, as long as we are dealing
with a shallow wave pulse, Equation (56) should
apply all along the wave.

To see this, we have in Figure (10) analyzed the net
force  Ty  acting slightly to the left side of the top of
the pulse (at point  x2  in Figure (8)).  Actually Figure
(10) is the same as Figure (9), rotated by an angle

  ϕ = dy(x)/dx  which is the slope of the rope at point
 x2 .  Here is where the shallow wave approximation

comes in.  As long as the wave is shallow and the

sides of the pulse do not become steep, the angle  ϕ
will be small, there will be very little rotation of
Figure (9), and the net force   Ty′  will point nearly
straight down and have a magnitude close to that
given by Equation (56).

On the other hand, if the pulse becomes steep, the net
force is no longer y directed and our current analysis
will no longer apply.  Whoever has watched ocean
waves break as they approach the beach and become
steeper and steeper, will recognize that steep waves
behave very differently from shallow ones.  Here we
are working only with the theory of shallow waves.

Returning to Equation (56), which we have written
here again

  
Ty(x) = T∆ d2y(x)

dx2 (56) repeated

we want to point out that this equation gives us not
only the magnitude but also the direction of the net
force  Ty.  Where the curvature  d2y(x)/dx2  is posi-
tive, as it is at point  x1  in Figure (8), the net force  Ty
is directed upwards.  Where the curvature is negative
as at point  x2 , the net force  Ty points down.  Thus
Equation (56) for  Ty(x)  correctly changes sign
when the direction of the net force changes.

Now that we have a reasonably general formula for
the net force  Ty on a section   ∆  of the rope (the only
approximation being the shallow wave approxima-
tion), we are ready to apply Newton's second law,
relating this net force to the mass   ∆m  and the
acceleration  a(t) of this section.

If the rope has a mass density µ  kg/meter, then the
mass of a section of length   ∆  is simply

   ∆m = µ∆ mass of
section ∆ (57)

We need to think a bit more about the situation to
describe the acceleration of   ∆m .  So far we have
described the rope by the curve y(x), which is
essentially a single snapshot of the rope at some
special time t.

∆θ

∆θ
∆

T  y'

T

T

Rϕ

Figure 10
If the section of rope slopes at an angle ϕϕ , then the net
force   Ty ′  slopes at the same angle. That has little effect
as long as the waves are shallow and ϕϕ  remains small.
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Another way to look at a wave pulse is to look at one
point on the rope, and watch the point move up and
down as the pulse comes by.  We can describe this
changing height by the function y(t).  The accelera-
tion  ay(t) is then given by

 
ay(t) =

d2y(t)
dt2 (58)

Equation (58) is limited in that it describes the
motion of only one point of the rope.  We can
describe the motion of the whole rope for all times
with a function y(x,t) that is a function of both space
and time.  If we look at the rope at some instant of
time  t0 , then the shape of the rope is given by

 y(x) = y(x,t)
t = t0

(59)

while if we stand at one point  x0 , the motion of the
rope is given by

 y(t) = y(x,t)
x = x0 (60)

An explicit example of such a function y(x,t) was
our traveling wave formula of Equation (15-26) of
the Physics text

  y(x,t) = A sin (kx – ωt) (61) (also 15-26)

which as we saw represented a sinusoidal wave
traveling to the right at a speed

  vwave = ω
k (62) (also 15-30)

where the special frequency k is related to the
wavelength λ  by    k = 2π/λ ,  and the angular fre-
quency ω  is related to period T by   ω = 2π/T .  (As
a quick exercise, show that   ω/k  has the dimensions
of a velocity).

With Equation (61) for y(x,t), you can easily see that
if you look at the wave at one time, say t = 0, then

 y(x,t)
t = 0

= y(x) = sin (kx) (63)

is a pure spacial sine wave.  If you look at one
particular point, for instance, x = 0, you get

  y(x,t)
x = 0

= y(t) = sin (– ωt) (64)

which is a pure sinusoidal oscillation.

Partial Derivatives
When dealing with a function of two or more variables,
like y(x,t), we have to be somewhat careful when we
talk about derivatives.  For now, we will always assume
that if we are differentiating with respect to space, we
will hold the time variable constant, i.e., consider the
curve at one instant of time.  Conversely, if we are
differentiating with respect to time, we will consider
only one point in space, i.e., hold x constant.  There is
a special notation for these so called partial derivatives,
where we differentiate with respect to one variable
holding the other constant.  In this notation we replace
the d's, as in dx or dt by the symbol ∂ .  Thus

  dy(x,t)
dx holding t constant

≡ ∂y(x,t)
∂x (65)

  dy(x,t)
dx holding x constant

≡ ∂y(x,t)
∂t (66)

With this notation we get, for

  y(x,t) = sin (kx – ωt) (67a)

  ∂y(x,t)
∂x

= k cos (kx – ωt) (67b)

  ∂y(x,t)
∂t

= – ω cos kx – ωt (67c)

Using this new notation for partial derivatives, our
Equations (56) for the net force  Ty  on   ∆ , and (58)
for the acceleration   ay  of   ∆  becomes

  
Ty(x,t) = T∆ ∂2y(x,t)

∂x2 (56a)

  
ay(x,t) =

∂2y(x,t)
∂t2 (58a)

To apply Newton's second law, we equate the net
force  Ty(x,t)  to the mass   ∆m = µ∆  times the accel-
eration  ay(x,t) to get

  Ty(x,t) = ∆m ay(x,t)

  
T∆ ∂2y(x,t)

∂x2 = (µ∆ )
∂2y(x,t)

∂t2 (68)
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The factors of   ∆  cancel, and after dividing through
by µ  we get

  
T
µ

∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (69)

as our final differential equation for the motion of
the wave pulse on the rope.

How do you solve such a differential equation?  As
we have mentioned several times, we guess an
answer for y(x,t), and plug the guess into the differ-
ential equation to see if we have made the correct
guess.  Also, we use whatever physics we have
available to help us make a good guess.

Right now we do not have a formula for a single
pulse that we can use as a guess for a solution to
Equation (69).  However we do have the formula in
Equation (61) for a sine wave traveling to the right
at a speed   v = ω/k

  y(x,t) = A sin(kx – ωt) (61) repeated

To see if this traveling wave is a solution to our
differential Equation (69), we have to take a number
of partial derivatives.  They are

  ∂y(x,t)
∂x = ∂

∂x A sin(kx – ωt)

= A k cos(kx – ωt) (70a)

  ∂2y(x,t)
∂x2 = ∂

∂x Ak cos(kx – ωt)

= – A k2 sin(kx – ωt) (70b)

  ∂y(x,t)
∂t = ∂

∂t Asin(kx – ωt)

= – ω Acos(kx – ωt) (70c)

  ∂2y(x,t)
∂t2 = ∂

∂t (– ω A)cos(kx – ωt)

= – (– ω A)(– ω) sin(kx – ωt) (70d)

Using Equations (70b) and (70d) in Equation (69)
gives

   T
µ (– Ak2) sin(kx – ωt) = – Aω2sin(kx – ωt)

(71)
The question mark in Equation (71) means that this
is a guess, and we still have to see if the guess works.

First we notice that the functions   sin(kx – ωt)  can-
cel.  We had to have this cancellation or there was no
chance of making the two sides equal for all times t
and all positions x.  We also note that the amplitudes
A cancel, which means that the solution does not
depend upon the amplitude A.  After these cancella-
tions we get

  T
µ (–k2) = – ω2

  T
µ = ω2

k2 = vwave
2 (72)

where we noted that   vwave = ω/k .  Taking the square
root of Equation (72) gives

  
vwave = T

µ (73)

which is the answer we got in the Physics text,
Equation (15-5), for the speed of a pulse on a rope.

?
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The One Dimensional Wave Equation
If we go back to Equation (69), and replace   T/µ  by

 vwave
2 , we get

   
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2

one
dimensional
wave equation

(74)
This is a general form of what is called the one
dimensional wave equation.  As we have just seen, a
traveling sine wave, moving to the right at a speed

 vwave  is a solution to this equation.  The following
exercises demonstrate that waves traveling to the left,
and standing waves, are also solutions to this equation.

Exercise 6
(a) The formula for a sine wave moving to the left at a
speed   vwave = ω/k  was given in Equation (15-33) of the
Physics text as

  y(x,t)wave movingleft = A sin (kx + ωt) (15-33)

Show that this wave also obeys the wave Equation (73).

(b) Later in Chapter 15 we saw that a standing wave,
which is the sum of a left moving and a right moving
traveling wave, was given by the formula

  y = A sin kx cos ωt (15-35)

Show that this wave is also a solution to the wave
Equation.

Exercise 7
Suppose you have two solutions  y1(x,t)  and  y2(x,t) , both
of which are a solution to the wave equation with the
same speed  vwave .  Show that the sum wave

 y(x,t) = y1(x,t) + y2(x,t) (75)

is also a solution of the same wave equation.

Exercise 7 gives us an important result.  For our
wave equation, which we got by considering wave
pulses that were not too steep, the sum of two or
more waves, each of which is a solution of the wave
equation, is itself a solution.

In our discussion of Fourier analysis, introduced on
page 16-6 of the Physics text, we saw that any
continuous curve can be constructed from a sum of
sine wave shapes.  This suggests that we could
construct a single wave pulse, moving to the left at
a speed  vwave , by adding up a bunch of traveling sine
waves of different wavelengths   λ i = 2π/k i, but all
with the same speed   vwave = ωi/ki.  The construc-
tion in Figure (11) suggests how we could add the
sine (actually cosine) waves to get a pulse.  Since
each wave is a solution to the same wave Equation
(73), the sum, i.e., the single pulse, is also a solution.

From Figure (11), it should be clear that we can
construct a solution to the wave equation represent-
ing a pulse with very steep sides.  However, in our
analysis of the motion of the rope, we had to restrict
ourselves to shallow waves in order to derive the
wave equation for pulses on the rope.  What this
means is that the wave equation has solutions that we
will not see on the rope.  The shallow pulses on the
rope will obey the wave equation, but we should
expect that a steep pulse on the rope will behave
differently.  Not as differently as a breaking ocean
wave, but differently.

Figure 11
How to add cosine waves to get a pulse.  At x = 0, all
the waves add to give a big amplitude y.  As we go out
from x = 0, there is more and more cancellation until
the sum wave adds to zero.  If all these are traveling
waves moving to the right at the same speed

      vwave = ωωi ki,  then the whole pulse must move at the
same speed, maintaining its shape.
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Compressional Waves on a Spring
When we came to the discussion of compressional
waves on a spring, in particular the compressional
Slinky wave we saw in Figure (Phys1-6) reproduced
here, we resorted to dimensional analysis in Chapter
15 of the Physics text because there are no obvious
tricks to calculate the speed of the pulse.  Now we are
in a position to set up a differential equation describ-
ing the motion of a short segment   ∆  of the spring.
We will get the wave equation, and from that we can
immediately tell the speed of the pulse.

Suppose we have a stretched spring of length L as
shown in Figure (12).  The force required to stretch
the spring, which is equal to the tension T in the
spring, is given by Hook's law as

 T = k(L – L0) (76)

where  L0  is the unstretched length of the spring.

Now suppose that we stretch the spring an additional
amount   ∆L.  The tension will increase by an amount

  ∆T  given by

   T + ∆T = k(L + ∆L – L0)

= k(L – L0) + k∆L

Using Equation (76) to cancel the T and  k(L – L0)
terms, we are left with

  
∆T = k∆L = kL

∆L
L (77)

There are two reasons why we have written   ∆T  as
  kL(∆L /L) rather than just   k∆L .  The first is that
  ∆L /L is the amount of stretch per unit length, a

quantity engineers call strain.  It is a more inherent
property of the spring than the total stretch   ∆L .

The second reason is that the product  kL  is also an
inherent property of the spring.  In Chapter 15, page
15-7 of the Physics text, we saw that if you had two
identical springs of spring constant k, and attached
them together, you got a spring twice as long but
with half the spring constant.  It is the product kL that
does not change when you connect identical springs
or cut a spring in half.  Engineers would call this
inherent property kL of the spring a spring modulus.

To describe the stretched spring, we will introduce
a function y(x) that represents the displacement of a
point on the spring from its equilibrium (or initial)
position.  When we stretch a spring from a length L
to a length   L + ∆L , as shown in Figure (13), every
point on the spring moves to the right a distance y(x)
given by the formula

   
y(x)

displacement
of a point
on the spring

= x
L

∆L (78)

where x is the distance down the spring, starting at
the left end.  You can see where we got Equation
(78).  If we are at the left end where x = 0, y(x) = 0
and there is no displacement. At the right end, where
x = L, we get the full displacement

  y(L) = (L/L)∆L = ∆L.  In Equation (78) we are
assuming that the displacement increases uniformly
as we go down the spring.

T
L0 

L

Figure 1-6 (Physics 2000)
Compressional wave on a Slinky.

Figure 12
A tension T
stretches the
spring from
a length  L0
to a length L.

Figure 13
The displacement y(x) increases as we
go down the spring. With the formula

      y (x) = (x/L)∆∆L, we are assuming that
the displacement is increasing
uniformly.

T

L0 

L

∆L displacement
y(x)
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If we differentiate y(x) with respect to x we get

  dy(x)
dx

= d
dx

x∆L
L

= ∆L
L

(79)

Thus for a uniformly stretched spring,
  y′(x) = dy(x)/dx is the amount of stretch per unit

length, which we have called the strain of the spring.

If the strain is not uniform, if for example, we have
a compressional wave on the spring, the strain is still
given by

  
strain =

local stretch
per unit
length

=
dy(x)

dx (80)

To help see that    y′(x)  = dy(x)/dx  is the local amount
of stretching per unit length, note that when we
integrate the local stretching per unit length over the
total length of the spring, we get the total stretch   ∆L .

  
dy(x)

dx0

L

dx = dy(x)
0

L
= y(x)

0

L

= y(L) – y(0)

= ∆L – 0 = ∆L

(81)

where   y(L) = ∆L  the total displacement at the end.

Now go back to Equation (77)

  ∆T = kL ∆L
L

(77) repeated

which said that the change in tension in the spring is
proportional to the strain   ∆L/L .  We proved this was
true for a uniform strain   ∆L/L .  The obvious gener-
alization when the strain is not uniform is to replace
the average strain   ∆L/L  by the local strain

  y′(x) = dy(x)/dx  to get

  ∆T(x) = kL
dy(x)

dx
= kLy′(x) (82)

where   ∆T(x)  is the increase in the tension in a point x
due to the local strain   y′(x) .

This gives us as the formula for the tension T(x) at
point x

  T(x) = T0 + ∆T(x)

  T(x) = T0 + kLy′(x) (82a)

where  T0  is the equilibrium tension, and   kLy′(x) is
the change in tension caused by the displacement of
parts of the spring from their equilibrium position.

Let us now apply Equation (82a) to a short section of
spring of length   ∆x , as shown in Figure (14).  If the
tension were uniform, the tension forces would
cancel and there would be no net force on this section
of the spring.  A net force arises only if there is a
change in tension as we go from x to   x + ∆x .  This
net force will be

   net
force
on ∆x

= T(x +∆x) – T(x)

= T0 +kLy′(x +∆x) – T0 +kLy′(x)

= kL y′(x +∆x) – y′(x)

= kL∆x
y′(x +∆x) – y′(x)

∆x
(83)

We immediately see that the last quantity in the square
brackets is going to become, in the limit as   ∆x → 0 ,
the second derivative of y(x) with respect to x. Thus our
formula for the net force on a section of length   ∆x is

   net
force
on ∆x

= kL∆x
d2y(x)

dx2 (84)

If the spring has a mass per unit length of   µ kg/meter ,
the mass   ∆m  of a length   ∆x is

  ∆m = µ∆x (85)

T(x+∆x)T(x)
∆x

x+∆xx
Figure 14
There will be a net force on this short section of spring
if the tension changes as we go from x to x+∆∆∆∆∆x.
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If we allow waves on the spring, the displacement
y(x) from equilibrium depends not only on the
position x down the spring, but also on the time (t) .
Thus the displacement is described by the function
y(x,t). The acceleration  ay(x,t)  at position x on the
spring is

  
ay(x,t) =

∂2y(x,t)
∂t2 (86)

We are using the partial derivative symbol ∂  be-
cause we want to measure the change in y(x,t) with
time at a fixed position x.

In terms of partial derivatives, Equation (84) for the
net force on   ∆x  is

   net
force
on ∆x

= kL∆x
∂2y(x,t)

∂x2 (84a)

With Equations (84a), (85) and (86), Newton's sec-
ond law applied to   ∆m  gives

   net
force
on ∆m

= (∆m) ay(x,t) Newton's law
F = ma

  
kL∆x

∂2y(x,t)
∂x2 = (µ∆x)

∂2y(x,t)

∂t2 (87)

The factors of   ∆x  cancel and we are left with

  
kL
µ

∂2y(x,t)
∂x2 =

∂2y(x,t)

∂t2
(88)

We recognize Equation (88) as the wave equation

  
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2

where we can identify the wave speed as

   
v compressional

Slinky wave = kL
µ (89)

We got this same answer on page (15-8) of the
Physics text using dimensional analysis.  However,
with dimensional analysis we were not sure whether
a factor of 2 or π might be missing.  Having derived
the wave equation, we know that   kL /µ  is the
correct answer with no missing constant factors.

The Speed of Sound
The analysis of compressional sound waves in air
can be carried out along lines very similar to our
analysis of a compressional wave on a spring.  How-
ever to do this, we need to build on our discussion of
the behavior of an ideal gas in Chapters 17 and 18 of
the Physics text.  Thus we will assume that the reader
is familiar with this material, including the discus-
sion on adiabatic expansion in the Chapter 18 appen-
dix.

Consider a column of gas with a cross sectional area
A and length L as shown in Figure (15).  We can
think of the gas as being in a cylinder with friction-
less walls, but it could be a hypothetical column in
a large volume of gas.  Let the variable x measure the
distance down the column, starting at the left end,
and imagine that we have a frictionless piston at the
right end.

If we pull the piston out a small distance   ∆L , we
change the volume of the gas by an amount

  ∆V = A∆L (90)

and in so doing, decrease the pressure p.

How much the pressure changes depends upon the
way the gas is expanded.  If we expand it very slowly
so that heat has time to flow into the gas and the
temperature remains constant (this is called an isother-
mal expansion) then we have, from the ideal gas law

  pV = NRT = constant isothermal
expansion (91)

where N is the number of moles of gas in the cylinder,
R is the gas constant, and T the temperature in kelvins.

However in a sound wave, expansions and compres-
sions happen so rapidly that there is not  enough time
for heat to flow in or out, and the temperature changes.

L

x ∆x ∆Larea 
A

Figure 15
Column of gas of cross-sectional area A and length L.
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When we expand a gas with no heat flow, we call this
an adiabatic expansion. As we saw in the appendix
to Chapter 18, in an adiabatic expansion the gas
obeys the equation

   pVγ = constant adiabatic
expansion (92)

where

  γ =
cp
cv

(93)

is the ratio of the specific heat  cp  at constant
pressure to the specific heat  cv  at constant volume.
It is Equation (92) for an adiabatic expansion rather
than Equation (91) for an isothermal expansion that
we need to use to describe the relationship between
pressure and volume for a sound wave.

The quantity   γ = cp/cv  depends, as we saw at the
beginning of Chapter 18, on the number of effective
degrees  of freedom of the gas molecules.  As you
found if you did Exercise 2 of Chapter 18, for a
monatomic gas like helium or argon with no rota-
tional degrees of freedom,   γ = 1.66 (5 35 3).  For di-
atomic gases like oxygen, nitrogen, and of course
air, that have two rotational degrees of freedom,

  γ = 1.40 .  When we get to more complex structures
like  CO2  and  NH4 , then  γ  drops to 1.28.

We will now use Equation (92) for an adiabatic
expansion to calculate the change   ∆p  in pressure
when we change the volume of the gas in the
cylinder by an amount   ∆V .  Before we compress we
have

  pVγ = p0V0
γ (94)

where  p0  and  V0  are our original pressure and
volume.  After the expansion, V goes to   V0 + ∆V
and p goes to   p0 + ∆p , where we know that   ∆p  is
negative for an expansion.  Thus after the expansion
we have

  pVγ = (p0 + ∆p)(V0 + ∆V)γ (95a)

With   pVγ = p0V0
γ  = constant, we get

  p0V0
γ = (p0 + ∆p)(V0 + ∆V)γ (95b)

We can use the fact that   ∆V  is very small compared
to  V0  to get

  
(V0 + ∆V)γ = V0 1 + ∆V

V0

γ
= V0

γ 1 + ∆V
V0

γ

Using the approximation   (1 + α)γ ≈ 1 + γα  for a
small α , we have

  1 + ∆V
V0

γ
≈ 1 + γ ∆V

V0
(96)

Using (96) in (95b), with   p0 + ∆p = p0(1 + ∆p/p0),
gives

  p0V0
γ = (p0 + ∆p)(V0 + ∆V)γ

= p0 1 +
∆p
p0

V0
γ 1 +γ ∆V

V0

(97)

Multiplying this out gives

  
p0V0

γ = p0V0
γ 1 +

∆p
p0

+
γ∆V
V0

+
γ

p0V0
∆p∆V

(98)
The factors   p0V0

γ  cancel, and we can neglect the
second order term   ∆p∆V , giving

  1 = 1 +
∆p
p0

+
γ∆V
V0

After canceling the 1's and multiplying through by
 p0  we get for the pressure change   ∆p

  ∆p = – γp0
∆V
V0

(99)

If you look at the appendix to Chapter 18 in our
discussion of the adiabatic expansion, you see that
we started with the equation

  γp0∆V + ∆pV0 = 0 (18-A8)

[which is Equation (99) if we solve for   ∆p] and went
through a number of calculus steps to derive

  pVγ = constant .  What we have done in going from
  pVγ = constant  to Equation (99) is to undo the

calculus steps in that appendix.  However one typi-
cally remembers the equation   pVγ = constant  for
adiabatic expansions rather than Equation (18-A8),
and it seemed worthwhile to show how to get from

  pVγ = constant  to our formula for   ∆p .
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Now that we have Equation (99) for   ∆p , we can
follow essentially the same steps that we did earlier
to calculate the speed of a compressional wave pulse
on a spring.

If the cylinder in Figure (15) has a cross sectional
area A, length L, and we move the piston out a
distance   ∆L , we have

 V0 = AL

  ∆V = A∆L (100)

thus from Equation (99) we have

  ∆p = – γp0
∆V
V = – γp0

A∆L
AL

= – γp0
∆L
L (101)

In moving the piston out, the average displacement
of a molecule y(x) at position x will be

  y(x) = x
L

∆L (102)

which is the same as our Equation (78) for the
average displacement of a piece of spring at position
x.  Differentiating Equation (102) with respect to x
gives

  y′(x) =
dy(x)

dx
= ∆L

L
(103)

Thus we see that for a uniform displacement of the gas
molecules, the strain, the displacement per unit length,
is   y′(x) = dy(x)/dx.  We will now assume that even for
non uniform displacements such as the kind we would
have in a pressure pulse,   y′(x) represents the local
strain or displacement per unit length.  In terms of this
local strain, our formula (101) for   ∆p(x)  becomes

   
∆p(x) = – γp0y′(x)

local
pressure
change

(104)

As in our discussion of springs, we can write this
equation in the form

  p(x) = p0 + ∆p(x)

p(x) = p0 – γp0 y′( x)
(105)

where we see that variations from the static pressure
 p0  are caused by local strains   y′(x) .

Now consider a section of the cylinder of length   ∆x
located at x as shown in Figure (16). The gas external
to   ∆x  on the left, where the pressure is p(x), exerts
a right directed force of magnitude

 F(x) = Ap(x) (106)

while the gas on the right exerts a left directed force
of magnitude

  F(x + ∆x) = Ap(x + ∆x) (107)

where we have used the fact that the force is the
pressure times the area.  The net force on   ∆x  is thus

  Fnet on ∆x = F(x) – F(x + ∆x)

= A p(x) – p(x + ∆x)
(108)

Using Equation (105) for p(x) we get

  
Fnet = A p0 – γp0y′(x) – p0 – γp0y′(x + ∆x)

The  p0  terms cancel and we are left with

  Fnet = Aγp0 y′(x + ∆x) – y′(x)

We can multiply by   ∆x/∆x  to get

  
Fnet = Aγp0∆x

y′(x + ∆x) – y′(x)
∆x

(109)

As in the case of the spring, we will end up taking the
limit as   ∆x  goes to zero, so that the term in the
square brackets in Equation (109) becomes the sec-
ond derivative  d2y(x)/dx2 .

x

p(x) p(x+∆x)

∆x

area 
A

Figure 16
Pressure forces acting on a small section
of gas in our hypothetical cylinder.
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We will also let y(x) become a function of time
y(x,t), so that second derivative becomes a partial
derivative with respect to x only, and we get

  
Fnet = γp0(A∆x)

d2y(x,t)
dx2 (110)

as our final formula for the net force on the gas in   ∆x.

The next step is to calculate the mass   ∆m  of the gas in
the region   ∆x .  If the density of the gas is   ρ kg/meter3

and the volume inside   ∆x  is   (A∆x) meters3, we have

  ∆m = ρA∆x (111)

The acceleration of the gas in   ∆x  is

  
ax(t) =

∂2y(x,t)

∂t2 (112)

Using Equations (110), (111), and (112) in Newton's
second law gives

  Fnet on ∆x = ∆m ax(t)

  
γp0(A∆x)

∂2y(x,t)
∂x2 = ρ(A∆x)

∂2y(x,t)
∂t2 (113)

The factor   A∆x  cancels and we are left with

  γp0
ρ

∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (114)

and we get the wave equation

  
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (74) repeated

where we immediately see that the speed of the
sound wave is given by

  
vsound =

γp0
ρ (115)

In our discussion of sound waves in Chapter 15 of
the Physics text, where we used dimensional analy-
sis to predict the speed of sound, we came up with the
formula

  vsound = B
ρ (116)

where

  B ≡ ∆p
∆V/V

was called the bulk modulus of the gas.  Going back
to Equation (101), we have

  ∆p = = – γp0
∆L
L (101)

= – γp0
∆V
V

(117)

for an adiabatic expansion, and the same with a +
sign for compression.  Thus

   ∆p
∆V/V

= γp0 = B for adiabatic
compression (118)

and our old formula for the speed of sound can be
written as

  
vsound = B

ρ =
γp0
ρ (119)

which is the same result we got from the wave
equation.

Using the ideal gas law, we can re-express the
quantity   p0/ρ  in our formula for the speed of sound
in terms of the temperature T of the gas and some
other constants.  First we will write the density ρ  as

  ρ kg

meter3 =
M kg/mole × N moles

V meters3 (120)

where M is the mass of one mole of the gas (an
Avogadro's number of the gas molecules), N is the
number of moles in our cylinder, and V the volume
of the cylinder.

Next write the ideal gas law pV = NRT as

  N
V

=
p

RT
(121)

where R is the gas constant and T the temperature in
kelvins.  Combining Equations (120) and (121) gives

  ρ = MN
V

=
Mp
RT

or we have

  p
ρ = RT

M (122)

and our formula for the speed of sound becomes

  
vsound =

γp
ρ = γRT

M
(123)
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To interpret the physics of Equation (123), it is
perhaps clearer to express the answer in terms of
mass of the gas molecules involved.  We have

 
mmolecule = M

NA

kilograms/mole
molecules/mole

= M
NA

kilograms
molecule

where  NA  is Avogadro's number, and

 k = R
NA

joules /mole kelvin
molecules/mole

= R
NA

joules
kelvin

is Boltzman's constant.  Thus

 R
M =

NAk
NAmmolecule

= k
mmolecule

(124)

and in terms of the molecular mass  mmolecule we get

  
vsound =

γkT
mmolecule (125)

From Equation (125), we immediately see that for a
gas like hydrogen consisting of light molecules, the
speed of sound is considerably greater than in a gas
with heavy molecules.

Exercise 8

Calculate the speed of sound at a temperature of 300
kelvin, in hydrogen, helium, nitrogen and  CO2 .  Use
the fact that a hydrogen molecule has the mass of 2
protons, a helium atom the mass of 4 protons (with a
nucleus of 2 protons and 2 neutrons), a nitrogen
molecule the mass of 28 protons (each nucleus has
7 protons and usually 7 neutrons) and a  CO2  mol-
ecule has a mass of around 44 protons (carbon
nucleus has 6 protons and 6 or 7 neutrons, oxygen
has 8 protons and 8 neutrons, for a total of 12 + 16 +
16 = 44 nuclear particles).

Aside from its dependence on the mass of the gas
molecules, the other important feature is that the
speed of sound is proportional to the square root of
temperature.  Thus the warmer the gas the greater the
speed.  This dependence of the speed of sound on the
square root of temperature leads to a close connec-
tion between the speed of sound and the average
speed of the air molecules due to their thermal
motion.

In our discussion of the ideal gas law, we used the
fact that the temperature was a measure of the
average thermal kinetic energy of the gas, the pre-
cise relationship being

 1
2

mmoleculev
2 = 3

2
kT (126)

where  v2  is the average of the square of the speed of
the gas molecules  (v2 = vx

2 + vy
2 + vz

2) .  Writing
Equation (126) in the form

 kT
mmolecule

=
v2

3
(127)

and using this in Equation (125) gives

  
vsound =

γkT
mmolecule

=
γv2

3

  
vsound = v

γ
3

(128)

Several times we mentioned that the speed of sound
is closely related to the speed of the air molecules
due to their thermal motion.  Equation (128) gives us
the precise relationship.  For air, for example, where

  γ = 1.28  we get

 
vsound = v

1.28

3
= .65 v (129)

Sound travels over half as fast as the average speed
v  of the air molecules.
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Calculus 2000-Chapter 3
The Gradient

CHAPTER 3 THE GRADIENT

The gradient operation represents the fundamental
way that we go from a scalar field like the electric
voltage V to a vector field like the electric field E .

In this chapter, we present two distinct ways to
introduce the gradient operation. One is to use the
fact that electric fields are related to electric voltage
the same way that forces are related to potential
energy. The second, more geometrical way, is to
picture the electric voltage as being described by a
contour map, and that the electric field is described
by the lines of steepest decent in the map. We present
these two points of view as separate sections, View
1 and View 2, that can be read in either order.

We end the chapter with View 3, an application to
fluids, where we see that the pressure force   fp  acting
on fluid particles is the gradient of the pressure field
p. This represents a straightforward example of
obtaining a vector field   fp  from a scalar field p.
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A

Figure 25-12
To sketch the field lines, draw smooth lines, always
perpendicular to the equipotential lines, and maintain
any symmetry that should be there.

TWO VIEWS OF THE GRADIENT
In the Physics text, our first laboratory exercise on
electric phenomena was the potential plotting ex-
periment illustrated in Figure (25-10) reproduced
here.  Two small brass cylinders connected to a
battery were placed in a shallow tray of slightly
conducting water.  In order to measure the distribu-
tion of voltages V(x,y) at various points (x,y) in the
water, we had two probes of bent, stiff, wire attached
to blocks of wood, adjusted so that the tips of the
wire stuck down in the water.  The other end of the
wire probes were attached to a voltmeter as shown.

By leaving one probe fixed, and moving the other in
a  way that the reading on the voltmeter remained
constant, we could map out lines of constant voltage
in the water.  The results from a student lab notebook
are shown slightly cleaned up in Figure (25-11).
These lines of constant voltage are also known by
the name equipotential lines or lines of equal elec-
tric potential.  We also pointed out that these lines
were analogous to lines of equal height, the contour
lines in a contour map of the countryside.

While mapping the voltage V(x,y) at various points
in the water was a straightforward process, our
construction of the electric field lines  E(x,y)  was not
so obvious.  Our procedure was to map  E(x,y)  by
drawing a set of lines perpendicular to the equipoten-
tial lines as shown in Figure (25-12).  With this
technique we were just barely able to tell whether the
resulting field  E(x,y)  more closely resembled the
field of line charges or point charges.  Our technique
was conceptually correct, but a very crude way to
determine the electric field  E(x,y)  from a map of the
voltage V(x,y).

brass
cylinders

tap water pyrex dish

battery

V
A

B

probes

volt
meter

Figure 25-10 (from Physics text)
Simple setup for plotting fields.  You plot equipotentials
by placing one probe (A) at a given position and moving
the other (B) around.  Whenever the voltage V on the
voltmeter reads zero, the probes are at points of equal
potential.

Figure 25-11
Plot of the equipotential lines from a student project by
B. J. Grattan. Instead of a tray of water, Grattan used a
sheet of conductive paper, painting two circles with
aluminum paint to replace the brass cylinders. We used
the Adobe Illustrator® program to draw the lines
through Grattan's data points.
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After this initial experiment, we resorted to com-
puter plots, like the one shown in Figure (25-15), to
see the relationship between the electric field and a
voltage map.

The computer plots, and the models we constructed
from them, nicely illustrate the geometrical relation-
ship between a voltage map and the electric field
lines, but did not provide a convenient technique for
actually calculating the field.  The missing tech-
nique, which is the subject of this chapter, is the
mathematical procedure called the gradient, a pro-
cedure involving the partial derivatives of the volt-
age function V(x,y).

As Figure (25-15) illustrates, there is a complete
analogy between the contour map of a hilly terrain
and electric field plots from a voltage map.  We can

build our discussion of the gradient operation either
upon our knowledge of the mathematics of the
electric field, or by developing the ideas from a
discussion of the nature of a hilly terrain.  While both
approaches are equivalent, we see the subject from
two rather different points of view.  The electric field
approach is more efficient, while the hilly terrain
approach develops some concepts that we will need
later on.

As we mentioned in the introduction, we will begin
this chapter with the electric field approach, and
later discuss the hilly terrain viewpoint separately in
View 2.  You should study both approaches to see
this important topic from two points of view.  It does
not really matter which one you study first.

V = .1

V = .2

V = .3

V = .4

V = .5

V = .1

V
=

–.

1

V
=

.0

–1 +3  

Figure 25-15
Computer plot of the field lines and equipotentials for a charge distribution
consisting of a positive charge + 3 and a negative charge – 1.  These lines
were then used to construct the plywood model.
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CALCULATING THE ELECTRIC FIELD
Figure (1) shows a small section of the voltage map
of Figure (25-15) on the previous page.  The solid
lines are equipotential lines, lines of constant volt-
age spaced .1 volts apart.  We want to imagine that
we actually have a detailed map of the voltage
V(x,y) at every point (x,y), and want to mathemati-
cally determine, from that map, the electric field

 E(x,y)  at every point.

In the Physics text, we emphasized the idea that the
electric voltage V(x,y) was the electric potential
energy of a unit test charge, while the electric field

 E(x,y)  was the electric force on a unit test charge.
Thus the connection between  E  and V is the rela-
tionship between force and potential energy.

To review this relationship, imagine that I place a
unit test particle at point A in Figure (1), where the
voltage is  VA = .3 volts.  Since the voltage is the
potential energy, in joules, of a unit test charge, our test
particle at point A has a potential energy of .3 joules.

Now imagine that I move the test particle along the
dashed line from point A at .3 volts over to point B
at .4 volts.  The potential energy of the particle has
increased from .3 joules to .4 joules.  Thus to move
the particle, I must supply (.1) joules of energy to the
particle.

Imagine that I move the test particle slowly, so that
the force  Fme(x,y)  that I exert on the particle is just
enough to oppose the force  E(x,y) that the electric
field is exerting on the particle.  Thus for the entire
trip from A to B we have

 Fme(x,y) = – E(x,y) (1)

The amount of work I do in moving the particle is
given by the formula first discussed in Chapter 10 of
the Physics text (see page 10-15, Equation (10-25)).

  work I do in
moving the
test particle

= Fme⋅d
A

B
(2)

Because I am moving the particle slowly so that all
the work I do is stored as electric potential energy,
and because the increase of potential energy of the
unit test charge is  VB – VA , we have

  
Fme⋅d

A

B
= VB – VA (3)

We can get  me out of the equation by using Equation
(1) to give

  
– E ⋅d = VB – VA

A

B
(4)

Equation (4) is the integral equation that relates the
voltage V(x,y) to the electric field  E(x,y).  It is a
relationship we used extensively in the Physics text.
In the Calculus text, we will often translate from
integral to differential equations, and this chapter on
the gradient will be our first example of how this is
done.

V = .2

V = .3

V = .4

V = .5A
B

Figure 1
A small section of the voltage map, showing
equipotential lines spaced .1 volts apart. We will
calculate the amount of work required to move a
unit test charge from point A to point B.

View 1
The Gradient from a
Force – Energy Perspective
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The first step in going to a differential equation is to
focus in on a very small region of Figure (1), a region
shown in Figure (2), centered at the point  (xi,yi)  on
the path from A to B.  We have zoomed in so closely
to the point  (xi,yi)  in Figure (2), we have so greatly
magnified the plot, that the equipotential lines and
the field lines in this region are simply straight lines
at right angles to each other.

Now suppose we move our test particle from point
(1) at  (xi,yi)  over a distance   ∆  along the path to
point (2) as shown.  Equation (4) applied to this short
displacement is

  
V2 – V1 = – E(x,y) ⋅d

1

2

(5)

For this short path, we can assume that  E(x,y) is
essentially constant and replace the integral by the
product   E(xi,yi) ⋅ ∆ , giving us

  V2 – V1 = – E(xi,yi) ⋅ ∆ (6)

[You can see that in going from Equation (5) to (6)
we are essentially undoing the step we took in
Chapter (10) to derive the integral Equation (4).]

We are discussing the electric field of point charges.
This is a conservative field, which is a fancy way of
saying that the change in potential energy when we
move a particle between two points does not depend
upon the path we take.  Thus if we first go a distance

  ∆x  along the x axis to point (3), then up the y axis
a distance   ∆y  to point (2), we should get the same
change in voltage  V2 – V1  that we got by going
directly from point (1) to point (2) along   ∆ .

In going along the x axis, we have

  V3 – V1 = – E(xi,yi) ⋅ ∆x

= – Ex(xi,yi)∆x
(7)

where the dot product of  E  with the x directed
displacement   ∆x  leaves us with the x component

 Ex.  Writing out  V1  and  V3  in the form

 V1 = V(xi,yi)

  V3 = V(xi+∆x, yi)
Equation (7) becomes

  V(xi+∆x, yi) – V(xi,yi) = – Ex(xi,yi)∆x (8)

Dividing through by   –∆x gives

  
Ex(xi,yi) = –

V(xi+∆x, yi) – V(xi,yi)

∆x

When we take the limit that   ∆  goes to zero, both   ∆x
and   ∆y  will go to zero, giving

  
Ex(xi,yi) = – limit

∆x→0

V(xi+∆x, yi) – V(xi,yi)

∆x

(9)
By now you should recognize that the limit in
Equation (9) is the partial x derivative of the function
V(x,y)  evaluated at the point  (xi,yi).  Since this is
true for any point (x,y), we get

  
Ex(x,y) = –

∂V(x,y)
∂x (10)

where the symbol ∂  is used for partial derivatives.

Exercise 1
Use the above line of reasoning to show that

 Ey(x,y) = – ∂V(x,y)
∂y

(11)

Introducing the unit vectors x and y, we can combine
Equations (10) and (11) into the single vector equation

 E(x,y) = x Ex(x,y) + y Ey(x,y)

  

E(x,y) = – x
∂V(x,y)

∂x + y
∂V(x,y)

∂y (12)

Equation (12) is the differential equation we can use
to calculate the electric field  E(x,y)  at every point
from a knowledge of the voltage V(x,y).

y

y
(1)

(2)

(3)

to B

to A x

∆x

∆ i
∆y

x

E(x ,y )

i

i

i i

Figure 2
If we zoom in far enough, we reach a point where the
equipotential lines and contour lines are straight lines
perpendicular to each other.



Cal 3-6      Calculus  2000 - Chapter 3      The Gradient

Interpretation

  
E(x,y) = – x

∂V(x,y)
∂x + y

∂V(x,y)
∂y (12)

To help interpret Equation (12) repeated above, let us go
back to Figure (25-15) where we started with a plot of the
equipotential lines of the voltage V(x,y) and constructed
a three dimensional plywood model of the voltage.  The
equipotential lines became the contour lines of this
model, and the perpendicular electric field lines are the
lines of steepest slope.  If you were standing on terrain
represented by this model, and the slope became slip-
pery, the field line is the direction you would start to
slide.  Ski instructors call this direction of steepest slope
the fall line.

To simplify the job of interpreting Equation (12), imagine
that we are standing at the point  A = (xA,yA)  shown in
Figure (3), where the contour line happens to be running in
the y direction.  If we move along a contour line there is no
change in height, thus the partial derivative of V(x,y) with
respect to y—the rate of change of V(x,y) in the y direc-
tion—is zero at point A.

  ∂V(x,y)
∂y x = xA

y = yA

= 0
(13)

The formula for  E(x,y)  at point A becomes

  E(x,y) x = xA
y = yA

= – x
∂V(x,y)

∂x x = xA
y = yA

(14)

To interpret Equation (14), imagine that we smooth out our
plywood model of the voltage surface, then saw the model
in two, cutting through the point A with the saw blade
oriented along the x axis, along the dotted line in Figure (3).
A side view of the upper piece is shown at the bottom of
Figure (4).  You can see that the voltage at the beginning of
the cut, point C, is somewhat greater than .1 volts, and rises
to just over .4 volts at the end, point D.  The mathematical
formula for the curve we see in Figure (4) is  V(x,yA) , and
the partial derivative with respect to x at point A  is the slope
of the curve  V(x,yA)  at  x = xA .  This is just the tangent
of the angle θ  in Figure (4).

  slope at point
A going in
x direction

=
∂V(x,yA)

∂x
x = xA

= tanθ (15)

This is the maximum slope at point A.  If we sawed through
point A, orienting the saw blade in any other direction, the
slop at point A would be less.  In particular the slope would
be zero if we oriented the saw in the y direction.

From this discussion we see that the vector  E(x,y)  points
in the direction of the maximum slope and has a magnitude
equal to that slope.  The minus sign results from the fact that
the force  E  is in the downward direction toward lower
energy, while the positive slope, or gradient as we will call
it, is in the upward direction.

Figure 3
The V = .2 volt contour line passes straight up through
the point labeled A. Imagine that the surface is
smoothed out and you walk along the dotted line.

Figure 4
The top view shows the point A and the horizontal path
through that point. The side view shows the path we
would have to climb if the surface were smooth. The
steepest slope at the point A is in the +x direction and is
the tangent of the angle labeled θθθθθ.

V
= .2

V(x,y )

.1
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A

DxC

V = .1

V
=
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1
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=
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.4
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THE GRADIENT OPERATOR
The extension of Equation (12) to the case where the
voltage varies in three dimensions, where V = V(x,y,z)
is fairly obvious.  It is

  
E(x,y,z) = – x

∂V(x,y,z)
∂x + y

∂V(x,y,z)
∂y + z

∂V(x,y,z)
∂z

(16)
Until the beginning of the 20th century, research
papers and textbooks dealing with partial deriva-
tives used notation similar to Equation (16), and the
formulas could become cumbersome and difficult to
read.  It was Willard Gibbs who introduced the
gradient operation  ∇  defined by the equation

  
∇ ≡ x

∂
∂x + y

∂
∂y + z

∂
∂z

≡ x ∇ x + y ∇ y + z ∇ z (17)

where   ∇ x = ∂/∂x , etc.

We call  ∇  an operator because it does not have an
explicit meaning until it operates on something like
the voltage function V(x,y,z).

  
∇ V(x,y,z) = x

∂V
∂x + y

∂V
∂y + z

∂V
∂z

= x ∇ xV + y ∇ yV + z ∇ zV
(18)

With this notation, the formula for the electric field
 E(x,y,z)  in terms of the voltage V(x,y,z) is

  
E(x,y,z) = – ∇ V(x,y,z)

(19)

We say that the electric field  E  is minus the
gradient of the voltage V.

In the Physics text, we defined a vector field as a
quantity with a vector value at every point in space.
We began our discussion of vector fields in Chapter
23 with the velocity field rather than the electric field
because the velocity field is easier to visualize.  At
any point in space the vector is simply the velocity
vector of the fluid particle located there.  For the
electric field we first have to invent the concept of a
tiny unit test charge before we can visualize the force
vector at each point in space.

Another mathematical concept, which we did not
bother naming in the Physics text, is the scalar field.
It is a quantity that has a scalar or numerical value at
every point in space.  An example of a scalar field is
voltage, the potential energy of a unit test charge.  At
every point in space that we place the unit test
charge, we get a voltage reading.  Since energy has
a magnitude but does not point anywhere, this read-
ing has a scalar or numerical value only.

From Equation (19), we see that the gradient opera-
tor  ∇ , operating on a scalar field V creates the vector
field   E = – ∇ V .  The vector   ∇ V  has a numerical
value equal to the maximum slope of V(x,y,z), and
points opposite to the direction where the slope is
greatest.

In the remainder of this part of the chapter, we will
give examples of using the gradient operation to
calculate the electric field from the voltage.  In only
a few cases, like the example of the parallel plate
capacitor, is a Cartesian coordinate system (x,y,z)
the most convenient coordinate system to use.  In our
study of electric and magnetic phenomena, we often
dealt with point charges where there is spherical
symmetry or line charges with cylindrical symme-
try.  We will see that to handle problems with
spherical or cylindrical symmetry, it is much easier
to work with the gradient   ∇ V  expressed in spherical
or cylindrical coordinate systems.  Much of the
detailed work for the remainder of the chapter will
be to work out the formulas for the gradient in these
coordinate systems.  (You do these derivations once,
and then use the results for the remainder of your
scientific career.)

As we mentioned, we have View 2 later in the
chapter, where we look at the gradient from a more
geometrical and mathematical point of view.  We
end up with Equation (16) as the formula for the
gradient, but explicitly demonstrate that the compo-
nents   ∇ xV  and   ∇ yV  of the gradient transform
(change) the same way the components of a dis-
placement vector change when we go to a rotated
coordinate system.  Such discussions will become
very useful later on.
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THE PARALLEL PLATE CAPACITOR
We introduced the parallel plate capacitor in Chap-
ter 26, page 26-14 of the Physics text.  We dealt with
an idealized situation where we assumed that the
plate diameters were much greater than the separa-
tion. Then we could neglect edge effects and assume
that the electric field was uniform between the
plates, as shown in Figure (26-27) reproduced here.

Since  E  is the force on a unit test charge, and the
voltage V is its potential energy, we can calculate the
voltage V between the plates by calculating the amount
of work required to lift the unit charge a distance y
above the bottom plate.  Since the force  E  we have to
work against is constant, the work we do is simply the
force of magnitude E times the height y.  If we say that
the bottom plate is grounded, i.e., define the potential
energy or voltage as being zero at the bottom plate, then
the formula for the voltage between the plates is simply

V(x,y,z)  =  E y (20)

To evaluate E, we note that when we get  to the top
plate where y = d, the voltage is up to  V0 , the voltage
to which we charged the capacitor

 V0 = Ed (21)

Thus  E = V0/d , and the voltage between the plates is
given by

  
V(x,y,z) =

V0
d

y (22)

Let us now turn the problem around and use the
gradient formula   E = – ∇ V  to calculate the electric
field  E  from our voltage formula Equation (22).
Writing out all the components of   – ∇ V  as partial
derivatives, we have from Equation (16)

  
E(x,y,z) = – x ∂V

∂x + y ∂V
∂y + z ∂V

∂z (16)

The x partial derivative is

  ∂V(x,y,z)
∂x = ∂

∂x
V0 y

d
= 0 (23)

This is zero because there is no x dependence in our
formula for V.  When we take the partial derivative
with respect to x, we hold y and z constant.  Thus
nothing in the formula  V0y/d  changes when we
change x, and this partial derivative is zero.

The other partial derivatives are

  ∂V(x,y,z)
∂y = ∂

∂y
V0 y

d
=

V0
d

(24)

  ∂V(x,y,z)
∂z = ∂

∂z
V0 y

d
= 0 (25)

Using Equations (23), (24), and (25) in (22) gives us

  
E = – y

V0
d (26)

which says that  E  points down in the  –y direction,
and has a magnitude  V0/d  which we already know
from Equation (21).  We see that the calculation of

 E  from V using   E = – ∇ V  is a fairly straightfor-
ward process.
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Figure 26-26
The electric field between and around
the edge of the capacitor plates.

Figure 26-25
The parallel plate capacitor.  The capacitor is charged
up by connecting a battery across the plates as shown.

Figure 26-27
In our idealized parallel plate capacitor the field
lines go straight from the positive to the negative
plate, and the field is uniform between the plates.
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Voltage Inside a Conductor
The main idea of Chapter 26 of the Physics text was
that you cannot have a static electric field inside a
conductor if there is no flow of charge.  The equiva-
lent statement in terms of electric voltage is that the
voltage is constant inside a conductor

 V(x,y,z) inside a conductor = constant (27)

To see that this gives a zero electric field, we have

  E = –∇ Vinside a conductor = 0 (28)

All the components are zero because the partial
derivative of a constant is zero.

To provide an explicit example, suppose we turn our
parallel plate capacitor on its side and assume that it
is constructed from thick metal plates as shown in
Figure (5).  The voltage as a function of distance is
shown below the drawing of the plates.  Inside the
left plate the voltage has the constant value  V0 ,
which gives zero field inside.  Between the plates the
voltage drops uniformly. It has a constant gradient,
which gives us a constant electric field   E = – ∇ V
pointing in the direction of the downward slope.  The
voltage is again constant (V = 0) in the left hand
plate.

E

0

0

dV0

V0

Figure 5
Voltage in a parallel plate capacitor. The voltage is
constant inside the plates and, for the assumed uniform
field structure, drops uniformly between the plates.
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ELECTRIC FIELD OF A POINT CHARGE
Our first example of an electric field in the Physics
text was the field of a point charge.  If we have a
charge Q located at the origin of our coordinate
system, then the electric field at a position  r = (x,y,z)
as shown in Figure (6) is given by

  E(r) = r
Q

4πε0r2 = r
kQ
r2 (29)

where r  is a unit vector in the r  direction and
  k = 1/4πε0 .

 In the Physics text, we mentioned, but never accu-
rately derived, that the voltage V(r) of a point charge
was

  V(r) =
Q

4πε0r
=

kQ
r (30)

when we chose the zero of potential energy at
r = infinity.  What we want to do now is to show that
the formula for  E(r)  follows directly from Equation
(30) for V(r) when we use the relationship

  E = – ∇ V (14) repeated

The work is a bit messy, because we will be using a
Cartesian coordinate system to solve a problem with
spherical symmetry.  Later we will find the formula
for the gradient in spherical coordinates, and then
see that it is very easy to evaluate   E = – ∇ V  for a
point charge.

Our first step will be to write out the vector equation
  E = – ∇ V  as three component equations

  Ex = – ∂V
∂x ; Ey = – ∂V

∂y ; Ez = – ∂V
∂z

(31)
Focusing on the x component equation we have

  
Ex = – ∂V

∂x = – ∂
∂x

kQ
r

Taking the constant kQ outside the derivative we have

  Ex = – kQ ∂
∂x

1
r (32)

To go any farther, we have to express the distance r
as a function of the coordinate x.  This is done by the
three dimensional Pythagorean theorem

 r = x2 + y2 + z2

To calculate the derivative of (1/r) with respect to  x
now becomes an exercise in the use of the chain rule
for differentiation.  Let us start with

 r2 = x2 + y2 + z2

which is easy to differentiate.  We get

   ∂r2

∂x = ∂
∂x x2 + y2 + z2 = 2x (33)

Next look at

  ∂r
∂x = ∂

∂x r2 =
∂ r2

∂r2
∂r2

∂x (34)

To evaluate   ∂ r2 /∂r2 , set  y = r2  so that we have,
using   ∂yn/∂y = nyn – 1

  ∂ r2

∂r2 =
∂ y
∂y = ∂

∂y y.5 = 1
2y– .5 = 1

2r (35)

Thus using Equation (33) and (35) in (34) gives

  ∂r
∂x =

∂ r2

∂r2
∂r2

∂x2 = 1
2r

2x

  ∂r
∂x = x

r
(36)

which is a fairly simple result considering what we
went through.

x

y

z

r

r

Q

Figure 6
Out at a point given by the coordinate
vector r , we have the unit vector r .
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Finally we have

  ∂
∂x

1
r = ∂r–1

∂x = ∂r–1

∂r
∂r
∂x

= –r–2 ∂r
∂x = – 1

r2
x
r

  ∂
∂x

1
r = – x

r3 (37)

and our formula for  Ex  becomes

  Ex = – kQ ∂
∂x

1
r = – kQ – x

r3

 
Ex = kQ x

r3 (38a)

Clearly the  y and z components are
 

Ey = kQ
y
r3 (38b)

 
Ez = kQ z

r3
(38c)

To check that we got the right answer, we can go
back to Equation (29)

 E(r) = r
kQ
r2 (29) repeated

and replace the unit vector r  with its definition  r /r
giving

 r = (rx,ry,rz) = (x,y,z)

 r = r
r = 1

r (x,y,z)

 rx = x
r ; ry =

y
r ; rz = z

r (39)

Equation (39) says, for example, that the x compo-
nent of the unit vector r  has a length x/r. Thus the x
component of  E  in Equation (29) is

 Ex = rx
kQ
r2 = x

r
kQ
r2 = kQ x

r3
(40)

with similar equations for  Ey and  Ez.  Since Equations
(38) and (40) are the same, we have verified that

  E = – ∇ V  gives the correct result for V = kQ/r.

The messiness we encountered calculating the field
of a point charge from V = kQ/r resulted from our
calculating x, y, and z components of  E  when we
knew that  E  pointed in the radial direction.  If we use
what is called a spherical coordinate system, we
will find that the formula for the radial component of
the electric field is simply

  Er =
– ∂V(r)

∂r
(41)

With V(r) = kQ/r we get

  Er = – kQ ∂
∂r

1
r = – kQ – 1

r2 =
kQ
r2 (42)

and we get the final answer in a one line calculation.

To get this simple result requires, however, a fair
amount of work deriving the formula for the gradi-
ent in spherical coordinates.  First we have to define
precisely what a spherical coordinate system is,
show what the unit vectors are, and then calculate
the components of the gradient when we move in the
directions defined by the unit vectors.  When this is
all done, when we have the formula for the gradient
in spherical coordinates, we can use the formula
without ever going through the derivation again.

In the Physics text we encountered problems with
plane symmetry, like the parallel plate capacitor,
cylindrical symmetry, like the field of a line charge,
and spherical symmetry like the field of a point
charge we have just discussed.  The plane symmetry
problems are most easily handled in a Cartesian
coordinate system, the cylindrical problems in what
is called a cylindrical coordinate system, and spheri-
cal problems in a spherical coordinate system.  We
will now discuss these three coordinate systems and
develop the formulas for the components of the
gradient vector in each coordinate system.  Since we
have already done this for the Cartesian coordinate
system, that discussion will serve as a review of the
procedure we will use.
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Figure 7

The unit vectors x, y , z  out at the point   r.

GRADIENT IN THE CARTESIAN
COORDINATE SYSTEM
An example of a right handed Cartesian coordinate
system is shown in Figure (7).  Out at some
point  r = (x,y,z)  the unit vectors x, y, and z  are
parallel to the x, y, and z axis as shown.  It is called
a right handed coordinate system because the unit
vectors obey the relationship

  x × y = z (43)

when we use the right hand rule for the cross prod-
uct.  (If we used a left hand rule, the z axis would
point the other way.)

Exercise 1

Show that   y × z = x  and   z × x = y .

We will use the force/potential energy relationship
to define the gradient vector.  If I move a unit test
charge a short distance   ∆ , exerting a force  Fme = – E
to just overcome the electric field  E , the work   ∆W
I do is

  ∆W = Fme ⋅ ∆ = – E ⋅ ∆ (44)

Since this work is the change   ∆V  in the potential
energy of the unit test charge, we have

  ∆V = – E ⋅ ∆ (45)

But the voltage V is related to the field  E  by the
gradient

  E = – ∇ V (14) repeated

Using Equation (14) in (45), we can eliminate  E  and
get the relationship between the small change in
voltage   ∆V  and the voltage gradient   ∇ V

  
∆V = (∇ V) ⋅ ∆ (46)

Equation (46) will allow us to find the formula for
the gradient in the various coordinate systems.

To see how we are going to use Equation (46), we
will start with the Cartesian coordinate system and
choose   ∆  to be a short step   ∆x  in the x direction.
Explicitly we will start at a point (x,y,z) and move to
the point   (x + ∆x, y, z)  so that   ∆V ,   ∆  and

  (∇ V) ⋅ ∆  become

  ∆V = V(x + ∆x, y, z) – V(x, y, z) (47)

  ∆ = x∆x (48)

  (∇ V) ⋅ ∆ = (∇ V)x ∆x (49)

Using (47) and (49) in (46) gives

  V(x + ∆x, y, z) – V(x, y, z) = (∇ V)x ∆x (50)

Dividing through by   ∆x  and taking the limit as   ∆x
goes to zero gives

  
(∇ V)x = limit

∆x → 0

V(x + ∆x, y, z) – V(x, y, z)

∆x

(51)
which is the definition of the partial derivative.  Thus

  
(∇ V)x =

∂V(x, y, z)
∂x (52)

which is our earlier result.  This procedure does not
give us anything new for a Cartesian coordinate
system, but will give us new results for other coor-
dinate systems.

(On the next page you will find two pictures of our
model of the electric field of two point charges. We
put the pictures there so that the discussion of the
gradient in cylindrical and spherical coordinates
would each be completed on facing pages.)
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Figure 25-14 (from Physics text)
Different views of the model of the electric field of two
point charges  Q+  = +3 and  Q–  = –1.
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GRADIENT IN CYLINDRICAL COORDINATES

In a cylindrical coordinate system, we define the
location of a point p by giving the distance r  out
from the z axis, the angle θ  over from the x axis, and
the height z above the xy plane as shown in Figure
(8).  The unit vectors are r which points radially out
from the z axis, z  which points in the z direction, and
θ  which is perpendicular to the  r z  plane.  The
direction of θ  is the direction we move when in-
creasing the angle θ .  This gives us a right handed
coordinate system where the unit vectors are related
by

  r × θ = z (53)

You should check for yourself that Equation (53)
works for the unit vectors shown in Figure (8), and
that   θ × z = r  and   z × r = θ .

We will assume that in cylindrical coordinates, the
gradient vector at point p is given by the equation

  ∇ V = r (∇ V)r + θ(∇ V)θ + z (∇ V)z (54)

where   (∇ V)r,   (∇ V)θ  and   (∇ V)z are the compo-
nents of the gradient vector that we want to deter-
mine.

To calculate the first component   (∇ V)r, we will start
at the point  p  at   (r, θ, z)  and move a short distance

  ∆r  in the r  direction, to the point   (r +∆r, θ, z) .  Our
change in voltage   ∆V , displacement  ∆  and the dot
product   (∇ V) ⋅ ∆  are for this move

  ∆V = V(r + ∆r, θ, z) – V(r, θ, z) (55)

  ∆ = r ∆r (56)

  
(∇ V)⋅∆ = r (∇ V)r + θ(∇ V)θ + z(∇ V)z ⋅ r∆r

(57)

Since the unit vectors are all at right angles to each
other,   r ⋅ r = 1,   θ ⋅ r = 0 and   z ⋅ r = 0, giving us

  ∆V = (∇ V) ⋅ ∆ = (∇ V)r∆r (58)

Dividing (58) through by   ∆r , using (55) for   ∆V  and
taking the limit as   ∆r  goes to zero gives

  
(∇ V)r = limit

∆r → 0
V(r + ∆r, θ, z) – V(r, θ, z)

∆r

(59)
The right side of Equation (59) is what we will define
to be the partial derivative of   V(r, θ, z)  with respect
to r in cylindrical coordinates

  ∂V(r, θ, z)
∂r ≡ limit

∆r → 0
V(r + ∆r, θ, z) – V(r, θ, z)

∆r

(60)
This is the rate of change of the function   V(r, θ, z)
as we change the r coordinate.  With this definition,
we get

  
(∇ V)r =

∂V(r, θ, z)
∂r

(61)x
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Figure 8
The unit vectors       r , θθ , z  in cylindrical coordinates.



Calculus  2000 - Chapter 3      The Gradient      Cal 3-15

x

y

r

p 

z

∆θ

∆θ

∆

∆

Figure 9
The displacement  ∆∆  when we
increase the angle θθ by     ∇∇ θθ .

So far, our results  look very much like what we had
for Cartesian coordinates.  However, we get some-
thing new when our step  ∆  is in the θ  direction.
Suppose we are at the position   (r, θ, z) , and move to
the new point   (r, θ+∆θ, z)  where we increased the
θ coordinate angle by  ∆θ  as shown in Figure (9).
Since the angle   θ+∆θ  is measured in radians, the
arc length  ∆  that we move when going from θ  to

  θ+∆θ  is

  ∆ = r∆θ

You will notice that the vector displacement  ∆  is in
the same direction as the θ  unit vector, thus

  ∆ = θr∆θ (62)

The change in voltage   ∆V  and the dot product
  (∇ V) ⋅ ∆  are thus

  ∆V = V(r, θ+∆θ, z) – V(r, θ, z) (63)

  ∇ V⋅∆ = r(∇ V)r + θ(∇ V)θ + z(∇ V)z ⋅θr∆θ

= (∇ V)θr∆θ (64)

where we used   θ⋅θ = 1,   r ⋅ θ = z ⋅ θ = 0 .

Using (63) and (64) in our equation   ∆V = ∇ V ⋅ ∆ ,
we get

  V(r, θ+∆θ, z) – V(r, θ, z) = (∇ V)θr∆θ (65)

Dividing Equation (65) through by   r∆θ  and then
taking the limit as   ∆θ  goes to zero gives

  

(∇ V)θ = 1
r

limit
∆θ → 0

V(r, θ+∆θ, z) – V(r, θ, z)
∆θ

(66)
We define the quantity in curly brackets to be the
partial derivative of   V(r, θ, z)  with respect to the
variable θ

  ∂V(r, θ, z)
∂θ ≡ limit

∆θ → 0
V(r, θ+∆θ, z) – V(r, θ, z)

∆θ

(67)
Thus we end up with the equation

  
(∇ V)θ = 1

r
∂V(r, θ, z)

∂θ (68)

and we get a factor of 1/r in our formula for the
θ component of the gradient in cylindrical coordi-
nates.  The factor of 1/r appears because the partial
derivative with respect to θ  measures the rate of
change of V for a given change  ∆θ  in angle, while
the gradient measures the rate of change of V with
respect to a given step in distance.  When we make
a change  ∆θ  in angle, the distance we move is   r∆θ
which increases with r.  The factor of r has to be
divided out to get the rate of change of V with
distance.

Exercise 2
Following the above steps, show that

   
(∇ V)z =

∂V(r, θ, z)
∂z (69)

This should look the same as our derivation for the
Cartesian coordinate system.



Cal 3-16      Calculus  2000 - Chapter 3      The Gradient

GRADIENT IN SPHERICAL COORDINATES

While the steps are fresh, let us derive the formulas
for the components of the gradient vector in spheri-
cal coordinates.  We will then return to various
applications of the new gradient formulas.

In the spherical coordinate system shown in Figure
(10), a point  p  is located by the displacement r  from
the origin, the angle θ  that the coordinate vector r
makes with the  z axis, and the angle φ  that the
projection of r  on the x,y plane makes with the x
axis.  The unit vectors are r  pointing out in the r
direction, θ  which lies in the  r z  plane pointing in
the direction of increasing θ , and φ which is per-
pendicular to the  r z  plane, in the direction of
increasing φ .  This gives us a right handed coordi-
nate system where

  r × θ = φ (70)

(Again, show for yourself that   θ × φ= r  and   φ× r = θ.)

Exercise 3
Start at the point    (r, θ, φ) and move a distance  ∆  to the
point    V(r + ∆r, θ, φ) and show that the  r  component of the
gradient in spherical coordinates is

   
( ∇ V)r =

∂V(r, θ, φ)
∂r (71)

where

   ∂V(r, θ, φ)
∂r = limit

∆r → 0
V(r + ∆r, θ, φ) – V(r, θ, φ)

∆r
(72)

It was Equation (71) that we used to show in one line that
the voltage V = kQ/r leads to the field   E = r kQ/r2.

In spherical coordinates, the radial component of the
gradient is simply the partial derivative, as we asked
you to show in Exercise 3.  We get new results when
we look at the θ  and φ  components, where the
change in distance   ∆  is not equal to  ∆θ  or  ∆φ alone.

First let   ∆  be in the θ  direction, so that we go from
the point   (r, θ, φ) to   (r, θ+∆θ, φ) .  The distance   ∆
is shown in Figure (11) where we are looking squarely
at the  rz plane.  You can see that   ∆  is in the θ
direction and has a magnitude   ∆ = r∆θ  so that

  ∆ = θr∆θ (73)

The change in voltage   ∆V  and the dot product
  ∇ V ⋅ ∆  are

  ∆V = V(r, θ+∆θ, φ) – V(r, θ, φ) (74)

  ∇ V⋅∆ = r (∇ V)r + θ(∇ V)θ +φ(∇ V)φ ⋅θr∆θ

= (∇ V)θ r∆θ (75)

where   θ⋅θ = 1,    r ⋅ θ = φ⋅ θ = 0 .

Equating   ∆V  from (74) with   ∇ V ⋅ ∆  in (75), then
dividing through by   r∆θ  and taking the limit as  ∆θ
goes to zero, gives

  
(∇ V)θ = 1

r
limit
∆θ → 0

V(r, θ+∆θ, φ) – V(r, θ, φ)
∆θ

(76)
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Figure 10
The unit vectors       r , θθ , φφ  for a
spherical coordinate system.
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p 

Figure 11
The step   ∆∆  when we increase θθ by ∆θ∆θ.
We are directly facing the rz plane.
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Figure 12
The step  ∆∆  when we increase φφ by     ∆φ∆φ.
Note that we are out a distance       r sinθθ
from the z axis.

We define the partial derivative of   V r, θ, φ  with
respect to θ  in spherical coordinates as

  ∂V(r, θ, φ)
∂θ ≡ limit

∆θ → 0
V(r, θ+∆θ, φ) – V(r, θ, φ)

∆θ

(77)
so that we get

  
(∇ V)θ = 1

r
∂V(r, θ, φ)

∂θ (78)

as the formula for the θ  component of the gradient
vector in spherical coordinates.

Finally we will derive the φ  component of   ∇ V  by
taking a step   ∆  in the φ  direction.  The geometry
is shown in Figure (12).  The first thing to note is that
the projection of the coordinate vector r  down on
the xy plane has a length  (   r sinθ).  This is the
distance the point p is out from the z axis.  When we
rotate an angle  ∆φ  about the z axis, the arc length   ∆
out a distance (   r sinθ) is   (r sinθ)∆φ.  This distance
is in the direction of the unit vector φ, thus

  ∆ = φ(r sinθ)∆φ (79)

The change in voltage, going from   (r, θ, φ) to
  (r, θ, φ+∆φ) is

  ∆V = V(r, θ, φ+∆φ) – V(r, θ, φ) (80)

The quantity   ∇ V ⋅ ∆  is

  ∇ V ⋅ ∆ = r (∇ V)r + θ(∇ V)θ +φ(∇ V)φ ⋅ φ (r sin θ)∆φ

= (∇ V)φ (r sin θ)∆φ

(81)
because   φ ⋅ φ= 1 and   r ⋅ φ= θ ⋅ φ= 0 .

Equating   ∇ V ⋅ ∆  in Equation (81) to   ∆V  in (80)
gives

  V(r, θ, φ+∆φ) – V(r, θ, φ) = (∇ V)φ (r sin θ)∆φ

(82)
Dividing (82) through by   (r sin θ)∆φ and taking the
limit at   ∆φ  goes to zero gives

  
( ∇ V)φ = 1

r sinθ
limit
∆φ→0

V(r,θ,φ+∆φ) –V(r,θ,φ)
∆φ

(83)
We define the partial derivative with respect to φ
in spherical coordinates as

  ∂V(r, θ, φ)
∂φ = limit

∆φ →0
V(r, θ, φ+∆φ) – V(r, θ, φ)

∆φ

(84)
to get the result

  
( ∇ V)φ = 1

r sin θ
∂V(r, θ, φ)

∂φ (85)
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SUMMARY OF GRADIENT FORMULAS
We collect in one place the formulas for the gradient
in Cartesian, cylindrical and spherical coordinates.

Cartesian Coordinates

  
∇ V(x,y,z) = x∂V

∂x + y∂V
∂y + z∂V

∂z (86)

              

x

y

z
z

y

x

Cylindrical Coordinates

  
∇ V(r,φ,z) = r∂V

∂r + θ
r

∂V
∂θ + z∂V

∂z

(87)

            

x

y

z

r

r

z

θ

θ

Spherical Coordinates

  
∇ V(r,θ,φ) = r∂V

∂r + θ
r

∂V
∂θ +

φ
r sin θ

∂V
∂φ

(88)

EXAMPLES

Electric Field of a Point Charge
Let us now see explicitly how the formula for the
gradient in spherical coordinates, Equation (88),
makes it easy to calculate the electric field of a point
charge, starting from the voltage formula

 V(r) =
kQ
r (27) repeated

The formula for the gradient in spherical coordi-
nates is

  
∇ V = r ∂V

∂r
+ θ

r
∂V
∂θ +

φ
r sin θ

∂V
∂φ (88) repeat

While Equation (88) looks somewhat messy, the
thing to note is that V(r) has no dependence on the
variables θ  and φ , thus the partial derivatives with
respect to these variables are zero

  ∂V(r)
∂θ = 0 ;

∂V(r)
∂φ = 0 (89)

and all we are left with is

  ∇ V = r
∂V(r)

∂r
(90)

We have for   ∂V(r)/∂r

  ∂
∂r

kQ
r = kQ ∂

∂r (r– 1) = – 1
kQ
r2 (91)

thus we get

  
E = – ∇ V = – – r

kQ
r2 = r

kQ
r2 (92)

which is the correct answer.

The advantage of using spherical coordinates to
calculate the field of a point charge was that, two out
of three of the components of the gradient were zero,
and we had only a simple derivative for the remain-
ing component.  This is the kind of simplification
you get when you use a coordinate system that
matches the symmetry of the problem at hand.  Our
next example will be the calculation of the electric
field of a line charge.  That problem has cylindrical
symmetry, and is most easily handled using a cylin-
drical coordinate system.

x

y

θ

z

r

r

θ

φ
φ
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Figure 24-27 (repeated)
Using Gauss' law to calculate the electric field of a line
charge.  Draw the Gaussian surface around a section
of the rod.  The flux all flows out through the
cylindrical surface.

Electric Field of a Line Charge
In the Physics text, our first calculation of the elec-
tric field of an extended object was to show that the
radially directed electric field of a charged wire,
shown in Figure (24-27) repeated here, had a mag-
nitude

  E(r) = λ
2πε0r

(24-43) repeated

where λ  is the amount of charge per meter on the
wire and r is the radial distance out from the wire.  To
simplify the constants, we will set   k = 1/2πε0  so
that the vector formula for  E  is

  E(r) = r kλ
r ; k = 1

2πε0
(93)

In the Physics text we never did say what the voltage
was in the vicinity of a charged wire.  You will see why
shortly.

We can assume, because of the cylindrical symme-
try of the problem, that the voltage V depends only
on the radial distance r out from the wire.  That is,
that V = V(r).  Thus the partial derivatives with
respect to the variables θ  and z (using cylindrical
coordinates) should be zero and we should be left
with

  
E = – ∇ V = – r

∂V(r)
∂r

+
θ
r

∂V(r)
∂θ + z

∂V(r)
∂z

= – r
∂V(r)

∂r
(94)

where we used Equation (87) for the gradient in
cylindrical coordinates.

Comparing Equations (93) and (94) for  E  we get

  
E = r kλ

r = r –
∂V(r)

∂r
(95)

As a result, the voltage V(r) should obey the equa-
tion

  ∂V(r)
∂r

= – kλ 1
r (96)

The question we have now is, what function of r,
when differentiated with respect to r, gives 1/r?  The
answer, you may recall from Chapter 1 of the Calcu-
lus text, is the natural logarithm.  Explicitly

 d
dr

(ln r) = 1
r (97)

Thus the appropriate voltage V(r) is

  V(r) = – kλ ln r (98)

Going back from this V(r) to  E  we have

  ∇ V(r) = r ∂
∂r (– k λ ln r)

= r – k λ ∂ ln r
∂r = r – k λ

r
(99)

and

  E(r) = –∇ V(r) = r kλ
r (100)

This explicitly checks that the voltage   –(kλ ln r)  leads
to the electric field of a line charge.
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The logarithm ln(r) that appears in Equation (100) is
an interesting function in that it is zero at r = 1, goes
to   – ∞  at r = 0 and   + ∞  at   r = ∞   as shown in Figure
(13).  Thus, for example, at r = 0 we get

  V(r)
r = 0

= – kr ln(0) = –kr – ∞ = +∞ (101)

and the voltage becomes infinite.  This tells us that
it is not physically reasonable to put a finite charge
density λ  on an infinitely thin wire.  We had the
same problem with a point charge.  The formula  V
= kQ/r  also goes to infinity at r = 0 which tells us we
have a problem with the potential energy of a point
charge of zero radius.  (The modern theory of quan-
tum electrodynamics treats the electron as a point
charge of zero radius.  The tricky part of the theory
is to get around the infinities that result from this.)

At large distances, there is no problem with the
formula for the voltage of a point charge.  At   r = ∞ ,
the voltage V = kQ/r goes to zero, which is what we
wanted for the potential energy of a test charge
infinitely far away.  But for a line charge, Equation
(94) gives

  V(r)
r = + ∞

= – k λ ln(+ ∞) (102)

This predicts a voltage or potential energy of minus
infinity when we are infinitely far away from a line
charge!  How did this happen?

Either the mathematics is wrong, or our physical
interpretation is wrong.  The answer lies with the
physical interpretation.  What is wrong is that you
cannot get infinitely far away from a line charge.
Any real physical piece of wire must have a finite
length.  The wire may look infinitely long when you
are close to it, but as you move away, you will
eventually be able to see both ends.  The farther
away you move, the shorter the wire looks.  Move
infinitely far from the wire and the wire looks like a
point charge and the voltage it produces goes to zero.
Thus physically we will not encounter the infinity
that appears at large distances in the formula for the
voltage of a line charge.

As we have often mentioned, in any formula for
potential energy, we can arbitrarily choose the zero
of potential energy (the floor) wherever we want.
For point charges, we usually choose the zero of
potential energy out at   r = ∞ .  We have seen that we
cannot make the same choice for a line charge.  What
we have to do is write the formula for the potential
energy in the more general form

  V(r) = – k λ ln(r) + constant (98a)

and adjust the constant so that V(r) is zero at some
convenient place.  We can see how this works in the
following discussion of a coaxial cable.

0 x

0 1 2 3 4 5

–1

–2

–3

1

ln(x)

Figure 13
The function ln(x) starts out at minus infinity at x = 0,
goes through zero at x = 1, and slowly goes to plus
infinity at x = infinity.
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The Coaxial Cable
A physical example where our voltage formula
(98a) makes sense is the coaxial cable.  Suppose we
have a cable whose inner conductor has a radius ri
and the outer shield has an inside radius  r0  as shown
in Figure (14).  Assume that the inner conductor has
a charge density λ  coulombs per meter, and the
outer conductor is grounded (i.e., we say that the
voltage V(r) is zero at  r = r0 .)  What is the voltage
throughout the cable?

First of all, we know that the voltage inside a
conductor must be constant so that the field

  E = – ∇ V  inside is zero.  Since the outer conductor
is grounded, the voltage throughout the shield (for

 r > r0 ) will be zero as shown in Figure (15).  The
voltage on the inner conductor will have some
constant value  Vi (for  r < r0 ).

Between the conductors, in the region between ri
and  r0 , the voltage must have the logarithmic de-
pendence given by Equation (98a)

  V(r) = – k λ lnr + constant (103)
We can evaluate the constant by setting the voltage
equal to zero out at the grounded shield, at  r = r0 .
This gives

  V(r0) = – k λ lnr0 + constant = 0

  constant = k λ lnr0 (104)
and V(r) becomes

  V(r) = – k λ lnr + k λ lnr0 (105)

Logarithms have the peculiar property

 lna – lnb = ln a
b (106)

Thus V(r) in Equation (99) can be more compactly
written

  V(r) = k λ ln
r0
r (107)

With the constant k written out as   1/2π ε0  (see
Equation 93), we get

  
V(r) = λ

2π ε0
ln

r0
r

(108)

At the outer shield, at  r = r0, we have

 ln(r0/r) = ln(1) = 0

and the voltage goes to zero. This is what we wanted
for a  grounded shield.

As demonstrated in Exercise 4 below, Equation
(108) allows us to calculate the charge density λ  on
the inner conductor of a coaxial cable when the outer
conductor is grounded and the inner conductor is
raised to some voltage  Vi.

Exercise 4
(a) For the coaxial cable of Figure (14), find the formula
for the charge density λ  when the inner conductor is at
a voltageVi volts.

(b) Suppose  Vi = 100 volts,  ri = .5 mm,  r0 = 2 mm and
recall that    ε0 ≈ 9 × 10– 12 .  Then what is λ  in coulombs
per meter?

(c) What is the general formula for the capacitance per
meter of the coaxial cable in Figure (14)?

ri

r0

voltage constant 
inside conductor

rr0

V(r)          

Vi

i r0Figure 14
A coaxial cable, where the inner wire has a radius ri
and the outer grounded shield an inner radius r0.

Figure 15
Voltage in the coaxial cable.
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View 2
The Gradient from a
Geometrical Perspective

In the first part of this chapter, we used the relation-
ship between force and potential energy to define
what we meant by the gradient vector.  We then used
that relationship to derive the formulas for the
gradient in cylindrical and spherical coordinates.

What we want to do now is to approach the gradient
from a geometrical point of view.  This is the point of
view we began to develop when we constructed the
physical models of electric voltage like the one
shown in Figure (25-15) reproduced again here.
Once we have developed a geometrical definition of
the gradient we will check that the gradient behaves
like a vector.  To do that, we show that the compo-
nents of the gradient change or transform the same
way that the components of a displacement vector
when we rotate the coordinate system.  This idea of
testing the vector nature of a new quantity will
become particularly important when we get to a
mathematically advanced discussion of special rela-
tivity.

This discussion of the gradient is designed to be
independent of the first part of the chapter, so that
you can start from either approach.  This leads to
some repetition of definitions, but the points of view
are sufficiently different that some duplication should
not be a problem.  We, of course, end up with the
same definition of the gradient vector from the two
points of view.

CH 3 VIEW 2 THE GRADIENT FROM A GEOMETRICAL PERSPECTIVE

V = .1

V = .2

V = .3

V = .4

V = .5

V = .1

V
=

–.
1

V
=

.0

–1 +3  

Figure 25-15 (repeated)
Computer plot of the field lines and equipotentials for a
charge distribution consisting of a positive charge + 3
and a negative charge – 1.  These lines were then used
to construct the plywood model.
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SLOPE IN TWO DIMENSIONS
Imagine that you are planning a trip in a desert with
hills and valleys.  One possibility is to follow a path
that heads due east through the desert.  If you draw
the path on a contour map, and note where the path
crosses different contours, you can create a plot of
the height (h) of the path as a function of the distance
(x) of the path.  The result might look like a plot of
h(x)  shown in Figure (1).  This should at least
represent a smoothed version of the terrain you will
encounter.

Your curve  h(x)  tells you roughly how steep the
path should be at any point  x0 .  Mathematically, you
can define the steepness as the slope of the tangent
line at the point  x0 , which is equal to the first
derivative of  h(x).

  slope at x0 = h′(x0)

=
dh(x)

dx x = x0

= tan θ (1)

As long as you stay on the path, the slope at any point
is uniquely determined by Equation (1).

However the interesting part about going out in the
desert is that you do not have to follow any particular
path.  If you do not want to climb very much, you can
walk along a contour line.  If you are anxious to get
to the top of a hill and want the steepest climb
possible, you walk at right angles to a contour line,
along what we have called a field line, or what ski
instructors call the fall line.  At any point you can
choose a path whose slope ranges from zero along a
contour line to the maximum along the field line.  To
define the slope at some point, you have to state the
direction you are traveling.

To handle this new feature mathematically, we first
introduce a coordinate system (x,y), where the x
direction, for example, could be east-west and the y
direction north-south.  The terrain is then described
by a function h(x,y) giving the height of the land at
any point (x,y).

To describe the slope of a one dimensional curve
h(x) at some point  x0 , we drew a tangent line at  x0
as shown in Figure (1).  To describe slopes for a two
dimensional function h(x,y), at some point  (x0, y0)
we look at the tangent plane at that point.  This
assumes that the function h(x,y) is smooth enough
that, as we get closer and closer to the point  (x0, y0)
the landscape looks smoother and smoother.  It
assumes that when we get very close, the landscape
looks flat and we are looking at the tangent plane.

Not all functions h(x,y) are necessarily that smooth.
Curves describing real landscapes, like the shape of
a coastline, look just as rough no matter how close
we look.  Such curves are described by what is called
fractal geometry.  What we will be discussing are
curves, or surfaces that become smooth when we
look close enough.  A sufficient mathematical crite-
ria for such smoothness is that all derivatives with
respect to any variable are finite.

If the terrain h(x,y) is smooth enough to have a
unique tangent plane at every point, then our discus-
sion of the nature of slopes on a curved surface can
begin with a study of how slopes behave in a tangent
plane.  What we learn from the study of one tangent
plane can then be applied to all tangent planes in the
terrain.

Figure 1
Imagine that you are walking due east (x direction) in
the desert. We will call h(x) the height of your path. At
some point  x0, the slope of your path is dh(x)/dx
evaluated at  x0, which is the tangent of the angle θθ.

h(x)

0

θ

xx
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To visualize a tangent plane at some point  (x0, y0),
start by imagining that the point is on the surface of
a table, and construct a coordinate axis (x,y,z) whose
origin is at  (x0, y0) as shown in Figure (2).  The xy
plane is the table surface and the z axis points
straight up.  Let us assume that the x axis faces east
and the y axis north.

To represent a tangent plane, take a thin flat object
like a piece of cardboard, and place it on the table
surface, tilted at an angle θ  as shown in Figure (3).
Orient the cardboard so that the line of contact with
the table is the x axis.

It is easy to see that in our flat tilted surface, all lines
parallel to the x axis are contour lines, and that all
lines parallel to the y axis headed north are field lines
with a maximum slope.  It is also clear that the field
lines are perpendicular to the contour lines.

These features carry over to a smooth curved surface
h(x,y).  At any point  (x0, y0) construct a tangent

plane.  Unless this tangent plane happens to be
horizontal, there will be a unique horizontal line in
the plane that passes through the point  (x0, y0).  This
horizontal line corresponds to the x axis in Figure
(3).  In a region very close to the point  (x0, y0) this
horizontal line will coincide with the contour line of
h(x,y) that passes through that point.

Perpendicular to the x axis in the tangent plane will
be a line of maximum slope heading in the y direc-
tion of Figure (3).  The field line of our curved
surface h(x,y) that passes through the point  (x0, y0)
will be y oriented for a small region around  (x0, y0).
As a result, in this small region the contour lines and
the field lines of the curved surface have the same
properties as the contour and field lines in the
tangent plane.  In particular, even for curved sur-
faces, contour lines and field lines will always be
perpendicular to each other where the contour lines
are in the direction of zero slope and the field lines
in the direction of maximum slope.

Figure 2
Our coordinate system.

      y
north

x
east

z up

y

(x  , y )θ

north x
east

tangent plane 
through (x ,y )

0 0

0 0

Figure 3
The tangent plane. All lines in the tangent plane that
are parallel to the x axis are lines of equal height, or
contour lines. Lines in the perpendicular y direction
are lines of maximum slope, or field lines.
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THE GRADIENT
When you have a mathematical function h(x,y) that
describes a surface, the slope of that surface in some
direction is given by the partial derivative in that
direction.  Explicitly the slope in the x direction at
the point  (x0, y0) is given by

  slope in x
direction at
(x0, y0)

=
∂h(x,y)

∂x x = x0, y = y0

(2a)

and the slope in the y direction is

  slope in y
direction at
(x0, y0)

=
∂h(x,y)

∂y x = x0, y = y0

(2b)

What we will do now is to define a quantity we will
call the gradient, and represent it by the symbol

  ∇ h(x,y) .  Explicitly we define   ∇ h(x,y)  by the
equation

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3)

where x and y are unit vectors in the x and y
directions respectively.

The gradient   ∇ h(x,y)  looks like a vector with x and
y components equal to the slope of h(x,y) in the x and
y directions.  However a vector is more than a
quantity with some components.  We saw in Chapter
2 of the Physics text that a vector has a basic physical
significance that does not depend upon the coordi-
nate system used to define the vector.  What we need
to do for our gradient is to find the basic significance
of the quantity   ∇ h(x,y)  and then show that the
physical picture does not change when the gradient
is evaluated in a different coordinate system.

To see the physical significance of the gradient, we
will evaluate   ∇ h(x,y)  at some point  (x0, y0), using
a coordinate system where the x axis is parallel to the
contour line passing through that point.  That is the
same coordinate system we used in our discussion of
the tangent plane in Figure (3).  Since the x axis lies
along a contour line at the point of interest, there is
no change in height as we move a short distance in
the x direction, and thus the partial derivative in the
x direction is zero.

  ∂h(x,y)
∂x x = x0

y = y0

= 0
for an x axis
lying along
a contour line

(4)

What remains of the gradient is

  
∇ h(x,y) x = x0

y = y0

= y
∂h(x,y)

∂y x = x0
y = y0

for an x axis
lying along
a contour line

(5)
For this coordinate system, the gradient is purely y
oriented, which is the direction of the field line
through  (x0, y0).  Also the magnitude of the gradient
is equal to the magnitude of the steepest slope at

 (x0, y0).  As a result, physical significance of the
gradient, at least in this special coordinate system, is
that it describes both the direction and magnitude
of the steepest slope.

Thus the gradient has both a magnitude and a direc-
tion like the displacement vectors we discussed in
Chapter 2 of the Physics text.  If the components of
the gradient change (transform) in the same way as
the components of a displacement vector, then the
magnitude and direction will be preserved when we
go to a new (rotated) coordinate system.  The
components will look different, but the magnitude
and direction will be unchanged.
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To see whether the components of the gradient
transform (change) like the components of a dis-
placement vector, let us first review what happens to
a purely y oriented displacement vector  B  when we
go to a new coordinate system   (x′,y′)  that is rotated
by an angle φ  about the z axis as shown in Figure (4).
You can easily see that in the   x′,y′ coordinate
system, the components of  B  are

  Bx′ = B sin φ
By′ = B cos φ (6)

Exercise 1
(a) Show that for a purely x oriented vector A  the
components of A  in the rotated    (x′, y′) coordinate
system are

   Ax′ = A cos φ
Ay′ = –A sin φ

(7)

(b) Now show that if you start with a vector

   C = xA + yB ≡ xCx + yCy

which has components  Cx= A in the x direction and
 Cy = B  in the  y  direction, then in the rotated coordinate

system, the components of C  are

   
Cx′ = + Cx cos φ+ Cy sin φ

Cy ′ = – Cx sin φ+ Cy cos φ
(8)

(Equations (8) are the general formula for the trans-
formation of the x and y components of a vector when
we rotate the coordinate system by an angle φ  about
the z axis.)

When we go from the coordinate system (x,y) to the
rotated coordinate system   (x′,y′) , the gradient

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3) repeat

becomes

  
∇ h(x′,y′) = x ′

∂h(x′,y′)
∂x′ + y ′

∂h(x′,y′)
∂y′ (9)

To calculate the new components   ∂h(x′,y′)/∂x′  and
  ∂h(x′,y′)/∂y′  at some arbitrary point (x,y) we will

use our familiar tangent plane of Figure (3) repro-
duced here as Figure (5).  We have also drawn in the
rotated coordinate system   (x′,y′)  seen in the top
view of Figure (5).  The coordinate axes   x, y  and

  x′,y′ all lie in the table top surface, what we can call
the z = 0 plane.

The partial derivative, for example   ∂h(x,y)/∂y , rep-
resents the rate of change of the height h as we go out
along the y axis.  For the rotated coordinate system,
the partial derivative   ∂h(x′,y′)/∂x′  represents the
rate of change of the height h as we go out along the
x′ axis.  We will use these ideas to calculate the
height   ∆h  of the point A shown in Figure (5), a point
that is a distance   ∆x′  down the x′ axis.

yy'

B

x'Bsinφ

B
cosφ 

φ

φ

x

z axis up out of paper
Figure 4
When we rotate the coordinate system about the
z axis, the y directed vector B  gets components
in both thex′′ and     y ′′ directions.

Figure 5
Our tangent plane of Figure (3) showing the
rotated coordinate system x',y', and the point
A, a distance      ∆∆x′  down the x' axis.
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There are two distinct ways to get to the point A.  One
is to go down the x′ axis directly, a distance   ∆x′ .  For
this route we get as the formula for   ∆h

  
∆h =

slope in
the x′
direction

×
distance we
go in the
x′ direction

  
∆h =

∂h(x′,y′)
∂x′ × ∆x′ (10)

The other way to get to point A is to go down the x
axis a distance   ∆x , gaining a height   ∆hx given by

  
∆hx =

∂h(x,y)
∂x ∆x (11)

and then go out a distance   ∆y  in the old y direction,
giving us an additional height   ∆hy given by

  
∆hy =

∂h(x,y)
∂y ∆y (12)

The height   ∆h  at point A will be the sum of these two
heights

  ∆h = ∆hx + ∆hy

=
∂h(x,y)

∂x ∆x +
∂h(x,y)

∂y ∆y (13)

(In our drawing of Figure (5), we have shown the x
axis as being horizontal, so that the slope

  ∂h(x,y)/∂x would be zero.  This makes the drawing
easier to interpret, but we do not need to assume the
x slope is zero for the current discussion.)

The final step in calculating the height   ∆h  of point
A from the second route is to relate   ∆x  and   ∆y  to the
distance   ∆x′  traveled along the x′ axis.  From the top
view of Figure (5) it is clear that

  ∆x = ∆x′cos φ

  ∆y = ∆x′sin φ (14)

Using these values in Equation (13) give us

  
∆h =

∂h(x,y)
∂x ∆x′cos φ +

∂h(x,y)
∂y ∆x′sin φ

(15)
We can now equate our two formulas, Equation (10)
and Equation (15) for the height   ∆h  at point A.  The
factors of   ∆x′  cancel and we are left with

  ∂h(x′,y′)
∂x′ =

∂h(x,y)
∂x (cos φ) +

∂h(x,y)
∂y (sin φ)

(16)
Comparing Equation (15) with Equation (8) for the
transformation of the  x  component of the displace-
ment vector  C

  Cx′ = Cx cos φ+ Cy sin φ (8a) repeated

we see that the x component of the gradient trans-
forms (changes) in the same way as a displacement
vector when we rotate the coordinate system by an
angle φ .

Exercise 2
Using similar arguments, show that the y′  slope

  ∂h(x′,y′)/ ∂y′  is given by

  ∂h(x′,y′)
∂y′

=
∂h(x,y)

∂x
(– sin φ) +

∂h(x,y)
∂y

(cos φ) (17)

which is the same as the transformation of the  y
component of a displacement vector.

Figure 5 repeated
Our tangent plane of Figure (3) showing the rotated
coordinate system x', y', and the point A, a distance

  ∆∆x  down the x' axis.
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Gradient as a Vector Field
What is the significance of our demonstration that
the quantity   ∇ h(x,y) , defined by

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3) Repeat

transforms like a vector at each point (x,y) in space?
As we pointed out in Chapter 29 of the Physics text,
a vector field, which is a vector at every point in
space, is uniquely determined if we have general
formulas for the surface integral and the line integral
of the field.  There were four Maxwell's equations
because we needed formulas for the surface and the
line integrals of both the electric and magnetic
fields.

In the Physics text and the first part of this chapter,
we knew that the electric field was a vector field
because of its definition as the force vector acting on
a unit test charge.  The knowledge that forces trans-
form as vectors was sufficient to tell us that any
correct formula for  E  gave us a vector field.  In this
section with the definition of Equation (3), the
gradient is given a geometrical definition, which at
first sight might or might not make   ∇ h(x,y)  behave
as a vector field.  The demonstration that   ∇ h(x,y)
transforms as a vector means that concepts like line
and surface integrals can be applied to any gradient
fields.

As we saw in the first part of this chapter, the
extension of Equation (3) to the gradient of a three
dimensional function is

  ∇ h(x,y,z) = x ∇ xh + y ∇ yh + z ∇ zh (18)

where   ∇ x ,   ∇ y  and   ∇ z  are the partial derivatives
  ∂/∂x ,   ∂/∂y , and   ∂/∂z .  Equation (18) here is equiva-

lent to Equation (16) in the first part of the chapter
relating  E  to   ∇ V(x,y,z) .

This completes our discussion of the gradient vector
  ∇ h(x,y,z)  from a geometrical point of view.  If you

have not done so already, now is the time to look at
applications of the gradient vector to electric field
problems, starting with the discussion of the gradi-
ent vector just before Equation (16) of the first part
of the chapter.
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View 3
Pressure Force as a Gradient

We end the chapter with View 3, an application to
fluids, where we see that the pressure force   fp  acting
on the fluid particles is the gradient of the pressure
field p. This represents a straightforward example of
obtaining a vector field   fp  from a scalar field p.

PRESSURE FORCE AS A GRADIENT
In the Physics text, there were two main places
where we dealt with the concept of pressure.  The
first was in Chapters 17 and 18 on the ideal gas law,
and the second was in Chapter 23 during our discus-
sion of Bernoulli's equation.  In both cases we
mentioned that pressure had the dimensions of a
force per unit area, but was itself a scalar field
p(x,y, z) that did not point anywhere.  We pointed
out that the pressure force acting on an area   ∆A was
directed perpendicular to the area and had a magni-
tude

  ∆F = p∆A (1)

We will now use the concept of a gradient to show
that the pressure force per unit volume  fp , acting on
the fluid particles, is equal to minus the gradient of
the pressure p(x,y,z)

  fp = –∇ p(x,y,z) (2)

This is analogous to the electric field being equal to
minus the gradient of the electric voltage

  E = – ∇ V(x,y,z) (3-19)

CH 3 VIEW 3 PRESSURE FORCE
AS A GRADIENT
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which we saw back in Equation (3-19) of this chap-
ter.

To calculate the pressure force, we start with a small
volume   ∆V = ∆x∆y∆z  shown in Figure (1).  This
volume element has a left face located at z and a right
face at   z + ∆z .  The center of the faces are located at
(x, y) where the pressures are p(x,y,z) and
p(x,y,z +   ∆z) respectively.

The pressure force   ∆F 1  exerted on the left face of
  ∆V  is equal to the force per unit area  p1(x,y,z)  times

the area   ∆A1 = ∆x∆y  of that face.  The pressure
force is directed into the volume, toward the right in
the z  direction, as shown

  ∆F1 = zp(x,y,z)∆x∆y (3)

On the right side, the force is directed back into   ∆V ,
in the –z direction, and has a value

  ∆F2 = –zp(x,y,z +∆z)∆x∆y (4)

The net force on these two sides is

  ∆F1 + ∆F2

= –z p(x,y,z +∆z) – p(x,y,z) ∆x∆y

= –z
p(x,y,z +∆z) – p(x,y,z)

∆z
∆x∆y∆z

(5)
You can immediately see that when we take the limit
that   ∆V  is an infinitesimal volume and   ∆z  goes to
zero, the quantity in the square brackets in Equation
(5) becomes the partial derivative of p(x,y,z) with
respect to z.

z
z z+∆z

∆z

∆y

∆x

x

(1)
(2)

y
∆F2∆F1

Figure 1
The volume element       ∆∆x∆∆y∆∆z .

  
limit

∆z → 0

p(x,y,z +∆z) – p(x,y,z)
∆z

=
∂p(x,y,z)

∂z
(6)

Thus Equation (5) can be written in the somewhat
mixed form

  ∆F1 + ∆F2 = –z
∂p(x,y,z)

∂z ∆x∆y∆z (7)

where we will shortly think in terms of the limit that
  ∆V = ∆x∆y∆z  goes to zero.

Before we do, let us add in the pressure forces  F 3
and  F 4  acting on the bottom and top faces respec-
tively, and  F 5  and  F 6  acting on the back and front
faces to get the total pressure force   ∆Fp  acting on

  ∆V .  Following the same steps used to derive
Equation (7), we get

  ∆Fp

= ∆F1 +∆F2 +∆F3 +∆F4 +∆F5 +∆F6

= – z
∂p(x,y,z)

∂z + y
∂p(x,y,z)

∂y + x
∂p(x,y,z)

∂x ∆x∆y∆z

(8)
The quantity in the square brackets in Equation (8)
is the gradient   ∇ p  of the pressure field.  Thus we
have, after dividing both sides by   ∆V = ∆x∆y∆z

  ∆Fp

∆V
= –∇ p(x,y,z) (9)

We recognize the left side of Equation (9) as the total
pressure force acting on   ∆V  divided by the volume

  ∆V .  It is therefore the pressure force per unit
volume  f p(x,y,z)  acting in that region of the fluid,
and we get our advertized result

   
fp(x,y,z) = – ∇ p(x,y,z)

pressure
force
per unit
volume

(2) repeated
With Equation (2) we have a powerful way of
calculating pressure forces, since we can evaluate
the gradient in any of the coordinate systems we
have been discussing, such as cylindrical or spheri-
cal polar coordinates.
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Calculus 2000-Chapter 4
The Operator 

     
∇∇ 2 ≡≡ ∇∇ ⋅⋅ ∇∇

(The Laplacian)

CHAPTER 4 THE OPERATOR      ∇∇ 2 ≡≡ ∇∇ ⋅⋅ ∇∇

In our earliest discussion of vectors in Chapter 2 of
the Physics text, we were introduced to the vector
dot product

   A ⋅ B ≡ AxBx + AyBy + AzBz (1)

as having the special property of being a scalar
quantity.  That is, the quantity    A ⋅ B  had the same
value no matter what coordinate system we used to
evaluate it.  Having just seen that the gradient
operator  ∇ operating on a scalar field h(x,y,z)
produces a vector field, one might wonder what we
get when we take the dot product of two gradient
operations acting on a scalar  field. The answer is
that we get another scalar field.

The standard name for this dot product of two
gradient operators is del squared, written as

   ∇ 2 ≡ ∇ ⋅ ∇ (2)

It is often called the Laplacian operator after the
French mathematician Laplace.  This operator is
essentially an extension to three dimensions of the

second derivative we encountered in Calculus Chap-
ter 2, during our discussion of the one dimensional
wave equation. Thus we should expect   ∇ 2 to appear
when we begin to discuss three dimensional wave
equations in the next few chapters.

Fluid theory
Another area of physics where the operator   ∇ 2

plays a prominent role is in fluid dynamics.  For
common fluids like water and air, the viscous force
acting on the fluid particles turns out to be propor-
tional to the Laplacian of the velocity field, namely

   ∇ 2 v .  We will derive that result starting from an
assumption that Issac Newton made about the na-
ture of viscous forces.

As an application of the theory of viscous forces, we
will look at  the steady  flow of a viscous fluid in a
pipe. This example provides a way to measure the so
called coefficient of viscosity that appears in
Newton's  theory. It also provides an example of the
use of the operator   ∇ 2 acting on a vector field.



Cal 4 -2       Calculus  2000 - Chapter 4      Del Squared

Schrödinger's Equation
One of the glaring omissions in the Physics text
resulted from our inability to calculate the electron
wave patterns in the hydrogen atom. All we were
able to do is show drawings of a few of the lowest
energy wave patterns, describe the electron's en-
ergy and angular momentum in these wave patterns,
and then state that these patterns came from a wave
equation called Schrödinger's equation. We were
neither able to write down or solve the equation
itself.

To handle Schrödinger's equation as applied to the
hydrogen atom, we needed two mathematical con-
cepts we did not then have.  One is the operator

  ∇ 2 which we are introducing in this chapter, the
other is the concept of a complex variable which we
will introduce in the next chapter, Chapter 5. Once
we develop these two mathematical tools, we will be
ready to approach Schrödinger's equation in Chap-
ter 6.

When we apply Schrödinger's equation to the hydro-
gen atom, we are dealing with a system that has
spherical symmetry.  As a result it is much easier to
deal with the theory using a coordinate system that
has the same symmetry.  The problem is that the
operator   ∇ 2 , which in Cartesian coordinates is a
straightforward extension of the second derivative,
becomes quite complex when we work in other
coordinate systems like spherical polar coordinates.
The reason for the complexity is that in any coordi-
nate system except Cartesian coordinates, the unit
vectors may change direction as we move from one
point in space to another.  This change in the
direction of the unit vectors complicates the formu-
las for   ∇ 2 .

The Formulary
In the main part of this chapter we will simply state
the formula, in spherical polar coordinates,  for

  ∇ 2 acting on a scalar field  ψ .  This is the formula
we will use in Chapter 6 in our discussion of the
hydrogen atom.  In the appendix, however, we will
derive the formula, showing you exactly how the
changing unit vectors affect the results.  We have
placed this derivation in an appendix because it is
the kind of derivation you probably want to observe
only once in your life, to find out where the rather
messy results come from.

When you are actually working problems involving
quantities like   ∇ 2 in cylindrical or spherical coor-
dinates, you do not want to derive the formulas
yourself because the chances of your getting the
right answer are too small.  You are not likely to
memorize them correctly either, unless you use a
particular formula often.  Instead, the best proce-
dure is to look up the result in a table of formulas,
sometimes called a formulary.  We provide a for-
mulary at the end of this text, one adapted from a
formulary  developed by David Book of the Naval
Research Laboratory.

In our discussion of viscous forces in this chapter,
we use the formulary to find the formula in cylindri-
cal coordinates for   ∇ 2  acting on the vector field v .
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     ∇∇ 2  IN CARTESIAN COORDINATES
We will first take a careful look at   ∇ 2 = ∇ ⋅∇  in
Cartesian coordinates before we approach the spheri-
cal case.  Using the unit vector notation for  ∇  we
have

  ∇ = x ∂
∂x + y ∂

∂y + z ∂
∂z (3)

where x, y and z  are unit vectors pointing in the x,
y, and z directions respectively.  The dot prod-
uct   ∇ ⋅ ∇  acting on some function f(x,y,z) should be
given by

  ∇ ⋅∇ f(x,y,z)

= x ∂
∂x + y ∂

∂y + z ∂
∂z ⋅ x ∂f

∂x + y ∂f
∂y + z ∂f

∂z

= x ∂
∂x ⋅ x ∂f

∂x + x ∂
∂x ⋅ y ∂f

∂y + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + z ∂
∂z ⋅ z ∂f

∂z (4)

Being very careful with our differentiation, we have,
for example,

 
  

x ∂
∂x ⋅ x ∂f

∂x = x ⋅ ∂x
∂x

∂f
∂x + x ∂2f

∂x2 (5)

We have been overly careful because the unit vec-
tors x, y and z  are constant in both magnitude and
direction, thus

  ∂x
∂x = 0 (6)

and we are left with

  
x ∂

∂x ⋅ x ∂f
∂x = x ⋅ x ∂2f

∂x2 = ∂2f
∂x2 (7)

Similarly

  
x ∂

∂x ⋅ y ∂f
∂y = x ⋅ ∂y

∂x
∂f
∂y + y ∂2f

∂x∂y

= x ⋅ y ∂2f
∂x∂y = 0 (8)

because   ∂y/∂x = 0   and   x ⋅ y = 0 .

As a result, all we are left with, when we evaluate
  ∇ 2f  in Cartesian coordinates is

  
∇ 2f(x,y,z) = ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2 (9)

which is an obvious extension to three dimensions of
the second derivative   ∂2f/∂x2  that appeared in our
one dimensional wave equation in Chapter 2 of the
Calculus text.

     ∇∇ 2  in Spherical Polar Coordinates
As we mentioned, the results are not so simple when
we are working in other coordinate systems. In
spherical polar coordinates, when   ∇ 2 is acting on a
scalar function, we get the following result which is
derived in the appendix to this chapter.

  

∇ 2f = 1
r

∂2

∂r2 (rf)

+ 1
r2

1
sinθ

∂
∂θ sin θ ∂f

∂θ + 1
sin2θ

∂2f
∂φ2

(10)
where r, θ , and ϕ  are the polar coordinates shown
in Figure (1). Much of this complexity comes from
the fact that the unit vectors are not constant, and
have to be differentiated. You will see how this
works by going to the appendix.

(We should note that, in non Cartesian coordi-
nates,   ∇ 2  acting on a vector, e.g.   ∇ 2E , has an even
more complex formula, which is given in the formu-
lary at the end of the text.)

x

θ

z

r

φ

p 

Figure 1
Spherical polar coordinates.
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NEWTONIAN FLUIDS
We now move on to our example of the use of the
Laplacian operator to describe viscosity in a
Newtonian fluid.

Newton proposed that viscous effects in a fluid
resulted from the shearing motion of one layer of
fluid over another. This shearing force can be intro-
duced as follows.

Suppose we have a simple flow where all the fluid is
moving in the x direction, and the velocity is increasing
in the y direction as shown in Figure (2).

To analyze the forces involved, consider a horizon-
tal plane indicated by the dashed line labeled by
A----B.  The fluid above the plane, which is travel-
ling faster, drags the fluid below forward.  The fluid
below, which is going slower, drags the upper fluid
back.  Let   τ+  be the force per unit area exerted by the
upper fluid on the lower fluid, and   τ– , the force
exerted by the lower fluid on the upper.  In Figure (2)
we have drawn the forces   τ+ and   τ–  inside the fluids
upon which they act.

This combination of oppositely directed forces on
opposite sides of the plane is called a stress, in this
case a stress generated by the action of viscosity.  For
a so called Newtonian fluid, the stress ττ  is assumed
to be directly proportional to the rate at which the
velocity field is changing as we move up, which for
our x directed flow is

  
τ = µ

∂vx(y)
∂y

(11)

The quantity µ  is called the coefficient of viscosity

  
µ = coefficient of viscosity (12)

For a Newtonian fluid, µ  is assumed to be a constant
throughout the fluid.  In many situations, both water
and air behave as Newtonian fluids.

Figure 2
Diagram of a simple flow where the velocity field v  is
x directed and increasing in the y direction.

x

y

v

τ
A B

–

τ+
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VISCOUS FORCE ON A FLUID ELEMENT
Suppose again that we have a simple x directed
velocity field whose velocity profile is shown in
Figure (3).  Now consider a small volume element
with sides   ∆x ,   ∆y  and   ∆z , the bottom of which is
located at (y) and the top at (y +   ∆y ) is shown.  The
fluid below the plane A----B at y is dragging the fluid
above, back with a force per unit area   τ–(y)

   
τ–(y) = –µ

∂vx(y)
∂y

force per unit
area at the bottom
of volume element

(13)

The total force at the bottom is the force per unit area
  τ–(y)  times the area   ∆x∆z  upon which it is acting

  ∆F–(y) = τ–(y)∆x∆z

= –µ
∂vx(y)

∂y ∆x∆z

(14)

Up at the top of the volume element, the faster fluid
above the C----D plane at (y +   ∆y ), is pulling for-
ward the slower fluid below with a total force

  ∆F+(y+∆y) = τ+(y+∆y)∆x∆z

= +µ
∂vx(y+∆y)

∂y ∆x∆z

(15)

With Equations (14) and (15) we see that the total
viscous force on the fluid in our volume element can
be written

  ∆Fx = ∆F–(y) +∆F+(y+∆y)

= – µ
∂vx(y)

∂y
+ µ

∂vx(y+∆y)
∂y

∆x∆z

(16)
Multiplying the right side by   ∆y/∆y  gives

  

∆Fx = µ

∂vx(y+∆y)
∂y

–
∂vx(y)

∂y
∆y

∆x∆y∆z (17)

The quantity in the square brackets should be recog-
nized as the second derivative of  v x(y)  with respect
to y.  Dividing through both sides by the volume

  ∆x∆y∆z  gives us the viscous force per unit volume

   ∆Fx

∆x∆y∆z
= fνx

viscous force per unit
volume acting on
the fluid element

  
fνx = µ

∂2vx(y)
∂y2 (18)

This is the formula for the viscous force per unit
volume acting on the fluid particles when we have a
purely x directed flow of a Newtonian fluid whose
speed varies only in the y direction.  In the next
section we generalize the result to three dimensional
flows.

x

y

y+∆y

y

∆y
(y)

(y+∆y)

τ 
A B

C D

–

τ+

v

Figure 3
Calculating the viscous force on a fluid element.
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VISCOUS FORCE FOR THREE
DIMENSIONAL FLOWS
At first sight, there seems to be a rather obvious
extension of Equation (18) to three dimensional
flows.  In a chapter devoted to discussing the opera-
tor   ∇ 2 , we might expect that the generalization of
our formula for the viscous force  fν  per unit volume
should be

  fν = µ∇ 2v (19)

To check that Equation (19) reduces to our result in
Equation (18), when v is the one dimensional flow

 v x(y) , we have
  

fνx = µ∇ 2vx(y) = µ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 vx(y)

= µ
∂2vx(y)

∂y2 (20)

Thus we get the desired result for one dimensional
flows.

However, complications arise in three dimensional
flows that we did not consider in our analysis of the
simple one dimensional flow pattern.  In three di-
mensions, fluids flow around corners and x directed
flows can become y or z directed.  The definition of
viscous stress we gave in Equation (11) simply
cannot handle changes in the direction of the flow.

An effective way to deal with viscous forces in three
dimensional flows is to note that the resulting force

 fν  per unit volume must be a vector field.  That is,
 fν  must transform like a vector field when we rotate

the coordinate system.  (See the discussion of the
transformation of vector fields at the end of the
geometrical discussion of the gradient in Chapter 3.)

We will also require that  fν  be made up of some
combination of constants and second derivatives of
the velocity field.  These requirements on  fν  are
essentially what we mean by a Newtonian fluid with
constant coefficients.  If the viscous forces are more
complex, which they can be for something like a
liquid crystal, then we say that the fluid is
non Newtonian.

What we want is the most general combination we
can make out of constants, two derivatives  ∇ , and a
velocity field v.  Basically we have three vectors  ∇ ,

 ∇ , v, and we must multiply them together to get a
single vector.  To do this, we have to take the dot
product of two of them.  The possibilities are   (∇ ⋅ ∇ )v
and   ∇ (∇ ⋅v) .*  As a result, our most general for-
mula for a Newtonian fluid with constant coeffi-
cients is

  fν = µ1(∇ ⋅ ∇ )v + µ2∇ (∇ ⋅v) (21)

where   µ 1  and   µ 2  are constants.  There is no other
combination of constants and second derivatives of
the velocity field that transforms as a vector when
we rotate the coordinate system.

If we are dealing with a constant density fluid,
  ∇ ⋅v = 0  and we are left with

  fν = µ1(∇ ⋅ ∇ )v = µ∇ 2v (19a)

which is the result we guessed back in Equation (19),
with   µ 1 = µ .

Equation (21) suggests that it is possible to have a
second kind of viscosity when the fluid is compress-
ible and   ∇ ⋅v is not zero.  This has in fact been
observed, and   µ 2  is sometimes called the second
viscosity coefficient.  (Some texts use a second
viscosity coefficient defined as   λ = µ 2 – µ .)  In this
text we will only deal with incompressible fluids
where there is no second viscosity, and   f ν  is simply
given by the Laplacian operator   ∇ 2 acting on v,
namely   f ν = µ∇ 2v .

* (You might also consider vector cross products
involving  ∇ ,  ∇ , and v .  The possibilities are

  ∇ ×(∇ ⋅v) ,   ∇ ⋅ (∇ ×v) ,  and   ∇ ×(∇ ×v) . At the be-
ginning of Chapter 9, we find that the first two of
these are identically zero, and the third turns out to be

  ∇ ×(∇ ×v) = ∇ (∇ ⋅v) – (∇ ⋅ ∇ )v

which involves only the two terms we got from dot
products. Thus we get nothing new by considering
cross products. )
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Viscous Force in
Cylindrical Coordinates
Now that we have the formula for the viscous force

  f ν = µ∇ 2v , which applies to any fluid that we will
consider in this text, we are free to use general
formulas we have in the formulary for   ∇ 2  in various
coordinate systems.  We are about to study the flow
of a viscous fluid in a pipe, a problem that obviously
has cylindrical symmetry.  Thus to analyze the
viscous forces, we should work with   ∇ 2v  in cylin-
drical coordinates.

We mentioned earlier that   ∇ 2  acting on a vector
field is more complex than   ∇ 2  acting on a scalar
field in anything except Cartesian coordinates.  Thus
evaluating   ∇ 2v  in cylindrical coordinates will give
us some practice in correctly using the formulary.

From the formulary we find the following formula
for   ∇ 2  acting on a scalar field f and a vector field  A .

  ∇ 2f = 1
r

∂
∂r r ∂f

∂r + 1
r2

∂2f
∂θ2 + ∂2f

∂z2 (22)

where the coordinates r, θ , z are the unit vectors r ,
θ , z  shown in Figure (4).

Looking farther down in the formulary we find for
the components of   ∇ 2A

  (∇ 2A)r = ∇ 2Ar – 2
r2

∂Aθ
∂θ –

Ar
r2 (23a)

  (∇ 2A)θ = ∇ 2Aθ + 2
r2

∂Ar
∂θ –

Aθ
r2 (23b)

  (∇ 2A)z = ∇ 2Az (23c)

where, for example,   ∇ 2Az  means apply Equation
(22) to  Az

  
∇ 2Az(r,θ,z) = 1

r
∂
∂r r

∂Az
∂r + 1

r2
∂2Az

∂θ2 +
∂2Az
∂z2

(24)
All this looks like a terrible mess. But suppose we
have a fluid flowing smoothly along a pipe as shown
in Figure (5).  Taking the z  direction down the pipe
and r the distance out from the axis of the pipe, we
can assume, for cylindrical symmetry, that   v(r,θ,z)
is purely z  directed and depends only on the radius r.

  v(r,θ,z) = zv z(r) (25)

Now let us work out   ∇ 2v  for this simple case using
Equations (23) for   ∇ 2  in cylindrical coordinates.
Because  vr  and   vθ  are zero, we do not worry about
Equations (23a) and (23b). From (23c) we have

  (∇ 2v )z = ∇ 2vz (26)

Thus for this case we do not have to worry about the
extra stuff that comes in when we take   ∇ 2  of a
vector.

x

y

z

r

r

z

θ

θ

p 

Figure 4
Cylindrical coordinates.

z

z

R

r

z

v (r)

Figure 5
Velocity profile for the
uniform flow in a pipe.
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Next we note that  vz = vz(r) , thus we can ignore the
  ∂vz/∂θ  and   ∂vz/∂z  terms in (13a) and we are left

with
  

(∇ 2v )z = 1
r

∂
∂r r

∂vz(r)
∂r (27)

which is not such a difficult thing to work with after
all.

To get a feeling for what the viscous force looks like
for pipe flow, we look up in a fluids text what the so
called laminar (i.e., non turbulent) velocity profile
is in a pipe.  The result they give is

  
vz(r) =

V0

R2 (R2 – r2)
parabolic
velocity
profile

(28)

where R is the radius of the pipe,  V0  the flow speed
at the center, and  r  the radial distance from the axis.
This is the parabolic profile shown in Figure (5).
You can see that at the edge of the pipe, where r = R,
the velocity goes to zero. At the center where r = 0,

 vz = V0 is a maximum.

To calculate the viscous force per unit volume for
this parabolic profile, we have

  fν = µ∇ 2v (29)

  
(fν )z = µ(∇ 2v)z = µ 1

r
∂
∂r r

∂vz(r)
∂r (30)

With Equation (28) written as

 vz(r) = –
V0

R2 r2 + V0 (28a)

we easily get

  ∂vz(r)
∂r = –

2V0

R2 r

  
r

∂vz(r)
∂r = –

2V0

R2 r2 (31)

Thus   (∇ 2v )z  becomes
  

(∇ 2v )z = 1
r

∂
∂r r

∂vz(r)
∂r

= 1
r

∂
∂r –

2V0

R2 r2

= 1
r –

2V0

R2
∂r2

∂r

= 1
r –

2V0

R2 2r

(32)

The r's cancel and we are left with

  (∇ 2v )z = –
4V0

R2 (33)

The viscous force   f ν = µ∇ 2v  becomes

  
fνz = –µ

4V0

R2 (34)

We end up with the result that  fν  points in the  – z
direction (it has only a negative z component) and is
constant in magnitude throughout the pipe.  This is
a wonderfully simple result considering the stagger-
ing mess of terms we faced in Equation (23).

We will see that the physics of the parabolic laminar
flow is that this uniform  – z  oriented viscous force
is balanced by a uniform  + z oriented pressure
gradient down the tube.  Thus there is no net force on
each fluid element and the fluid moves down the
pipe without acceleration, i.e., at constant velocity.
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Measuring the Viscosity Coefficient
If we have an apparatus where we know the pressure
gradient, we can use that to measure the viscosity
coefficient µ  of the fluid.  Such an apparatus is
sketched in Figure (6), a sketch taken from the
excellent fluid dynamics text by Tritton.

Since there is essentially no viscosity acting in the
region between points (1) at the top of the fluid in the
container, and point (2) near the entrance to the pipe,
we can use Bernoulli's equation to get

  
p1 +

ρv1
2

2 + ρgh1 = p2 +
ρv2

2

2 + ρgh2 (35)

With  v 1 = 0  and  h1 – h2 = h , we get

  
p2 – p1 = ρgh –

ρv2
2

2 (36)

If we use a sufficiently long and small diameter pipe,
the pipe flow velocity will be sufficiently small that
we can neglect  v 2

2  compared to gh. Noting that
both  p3 and  p1  are both atmospheric pressure and
thus equal, we get for the pressure difference  (p2 –p3)
at the ends of the pipe

   
(p2 –p3) = ρgh

pressure difference
between ends of
the pipe

(37)

The pressure force on the fluid at the front end of the
pipe is  p2A2 = p2A  where A is the cross sectional
area of the pipe.  At the far end it is  –p3A, the minus
sign is used because the pressure force is in the
–z direction.  Thus the net pressure force  Fp  is

  Fp = z(p2A – p3A)

= z(p2 – p3)A

= zρghA

(38)

If we divide  Fp  by the volume AL of the pipe, we get
the average pressure force per unit volume  fp .

  
fp =

Fp

AL
=

z
AL

ρghA

   
fp = z

ρgh

L

average pressure
force per
unit area

(39)

As we mentioned, for steady laminar flow, the
viscous force should be exactly opposed by the
pressure force so that there is no acceleration of the
fluid.  Since the viscous force per unit volume is
uniform throughout the fluid for parabolic pipe
flow, the pressure force per unit volume should also
be uniform, with the result that Equation (39) for  f P
should apply at all points in the fluid in the pipe.
(There will always be some disturbance at the begin-
ning of the flow that we are neglecting.)

supply

P
(1)

(2)
(3)

overflow

outlet to
atmosphere

L

h

long, small diameter pipe

v

1

Figure 6
Apparatus to measure the viscosity coefficient.
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Saying that the viscous and pressure forces oppose
each other throughout the pipe flow gives us from
Equations (34) for   f ν  and (39) for  fp

  fp = – fν

  
z

ρgh
L

= – – z
4V0

R2 µ

  ρgh
L

=
4V0µ

R2 (40)

We are left with an equation involving measurable
constants and the viscosity coefficient µ .

Later in the text, we will see that the ratio   µ/ρ , which
is called the kinematic viscosity coefficient ν , is
more convenient for theoretical work.  Equation
(40) gives us for this ratio

   
ν ≡ µ

ρ =
gh
L

× R2

4V0

kinematic viscosity
determined from
parabolic pipe
flow

(41)

The only constant that may be a bit difficult to
measure directly is the stream velocity  V 0  at the
center.  This can be accurately determined by mea-
suring the flow rate which we will call  Φ (phi), and
then express  V 0  in terms of  Φ .  We have called the
flow rate  Φ  because it is simply the flux  Φ  of the
fluid through the pipe, given by our old flux formula

  Φ = v ⋅dA
area of
tube

(42)

and is measured, in the MKS system, in cubic meters
per second.

To calculate  Φ , we divide the cross sectional area
into circular bands of radius r, thickness dr, as shown
in Figure (7).  The area of a band is   2πrdr  and the
flux   dΦ  through the band is

  dΦ = 2πrv(r) dr (43)

With v(r) given by the parabolic profile
 ( V0/R2 )( R2 – r2 ) , we get for the total flux

  
Φ = dΦ

0

R

=
V0

R2

0

R

R2 – r2 2πrdr

= 2πV0 rdr

0

R

– 1
R2 r3dr

0

R

= 2πV0
r2

2
0

R

– 1
R2

r4

4
0

R

  
Φ = 2πV0

R2

2 – R2

4 =
V0
2 πR2 (44)

Since   V0(πR2)  is the flux we would get if the
velocity were a uniform  V0  across the pipe, we see
that the flow rate for a parabolic profile is half that
for a uniform flow.

With Equations (41) and (44) we can now express
the kinematic viscosity ν  in terms of the easily
measured volume flux   Φ .  From Equation (44) we
get

Figure 7
The integration area is the
area       2ππR dr of the band.

R

r

dr
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V0 = 2Φ

πR2 ; 1
V0

= πR2

2Φ

and from Equation (41) we get

  ν =
µ
ρ =

gh
L

R2

4
1

V0

=
gh
L

R2

4
πR2

2Φ

   
ν =

πghR4

8L Φ

formula for
measuring
kinematic
viscosity

(45)

Although rather a mess of constants appears in our
formula for the kinematic viscosity ν , all are quite
easily measured.  Note that by going to the kinematic
viscosity, the result is independent of the density of
the fluid.

Exercise 1

Show that the kinematic viscosity ν  has the dimensions
of  meters2/second .

The two fluids that we will most often use in any
discussion of fluid dynamics are water and air.  At
room temperature and pressure, the kinematic vis-
cosity ν  of these two fluids are approximately

  ν water = 1.0 × 10– 6meter2/second

  ν air = 1.5 × 10– 5meter2/second (46)

Intuitively you would think that air would be much
less viscous than water, but the two coefficients   νair
and   νwater  are quite close, with air having the greater
value.  What has happened is that we have divided by
the density, which brings the viscosity coefficients
much closer together.
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SPHERICAL POLAR COORDINATES
We will begin with a review of spherical coordinates
discussed in Chapter 3. In spherical polar coordi-
nates, the three unit vectors are r , θ , φ are shown in
Figure  (A1) which is Figure (3-10) repeated.  We
have a complication in evaluating   ∇ 2f  in spherical
polar coordinates because these unit vectors change
direction as we move about, and we can no longer set
the derivatives of the unit vectors to zero.  Thus we
have to evaluate derivatives of the unit vectors as
well as use the rather messy formula for   ∇ f  we
derived in Equation (3-88)

  
∇ f(r,θ,φ) = r ∂f

∂r + θ
r

∂f
∂θ +

φ
r sinθ

∂f
∂φ (3-88)

What we have to evaluate is the complete expression

  
∇ 2f(r,θ,φ) ≡ ∇ ⋅ ∇ f(r,θ,φ)

= r ∂
∂r + θ

r
∂
∂θ +

φ
r sinθ

∂
∂φ

⋅ r ∂f
∂r + θ

r
∂f
∂θ +

φ
r sinθ

∂f
∂φ

(A1)

x

r sin θ

y

θ

z

r

r

θ

φ

φ
φ

p 

Figure A1 (3-10 repeated)
Unit vectors in spherical polar coordinates.

Appendix: The Operator 
     

∇∇ 2
in Spherical Polar Coordinates

This product involves terms like

  
θ
r

∂
∂θ

⋅ r ∂f
∂r = θ

r ⋅ ∂r
∂θ

∂f
∂r + r ∂2f

∂θ∂r

= 1
r θ⋅ ∂r

∂θ
∂f
∂r + (θ⋅ r ) 1

r
∂2f

∂θ∂r
(A2)

Because the unit vectors always remain perpendicu-
lar to each other as we move around in space,

  θ⋅ r = 0  and the second term in Equation (A2) is
zero.  However, when we change the angle θ , the
unit vector r  changes direction.  For example, at

  θ = 0 , r  points straight up, but at   θ = 90° , r  is
horizontal.  Thus   ∂r /∂θ   is not zero and has to be
evaluated.

In order to evaluate Equation (A1) for   ∇ 2f , we will
first calculate all the derivatives of all the unit
vectors, and then plug the whole mess together.  We
find derivatives like   ∂r /∂θ  by evaluating the change

  ∆ r  as we make a change  ∆θ  and then taking the
limit as  ∆θ  goes to zero.  The nine derivatives are as
follows.

APPENDIX THE OPERATOR   ∇ 2IN SPHERICAL POLAR COORDINATES
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Derivatives of r

1) Change of r with r

   ∂r
∂r

= 0
because r does not
change direction as we
go out along a radius

2) Change of r with θθ
Figure (A2) shows  ∆r that we get when θ  increases
by  ∆θ .  We see that  ∆r points in the θ  direction and
has a length    ∆r = r ∆θ = 1 × ∆θ .  Thus we get

  ∆r = θ(∆θ)

  
∆r
∆θ = θ ⇒ ∂r

∂θ = θ (A3)

3) Change of r with φφ
In Figure (A3), when we go from φ  to   φ+ ∆φ , the
unit vector r  goes to the unit vector  r ′ .  The projec-
tions of r  and  r ′  in the horizontal plane have a length

  r sinφ= 1sinφ, and differ in direction by an angle
 ∆φ .  The change   ∆r = r ′ – r  points in the φ direc-

tion, and has the same length as the change in the
horizontal projections of r  and  r ′ , which from the
small triangle is seen to be   (sinφ)(∆φ) .  Thus

  ∆r = φ(sinφ)∆φ

  
∆r
∆φ

= φ(sinφ) = ∂r
∂φ (A4)

x

y

θ ∆θ

∆θ

z

r

r

r+∆r

r

∆r points in the θ direction

r+∆r

∆r = θ∆θ

x

y

Unit vectors enlarged. |r| = |r+∆r| = 1

θ

z

r

r

∆r is the change in the unit vector r 
when we increase θ by ∆θ.

θ

x
|r| sin θ

y

θ

z

r

r

r'

r'

φ
∆φ

∆φ|r| sin θ = sin θ

|r'| sin θ

|r'| sin θ = sin θ

∆r = φ (sin θ)∆φ

∆r is the change in the unit vector r 
when we increase φ by ∆φ.

Unit vectors enlarged.

Figure A2
Evaluation of       ∂∂r/ ∂∂θθ.

Figure A3
Evaluation of       ∂∂r/ ∂∂φ.
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Derivatives of θθ
4) Change of θθ with r

None of the unit vectors change direction as we go
out along the radius, thus

  
∂θ
∂r = 0 (A5)

5) Change of θθ with θθ

From Figure (A4) we see that as we increase θ  to
  θ + ∆θ , the unit vector θ  goes to   θ′ = θ + ∆θ .

From the small triangle, we see that the change  ∆θ
points in the –r  direction, and has a magnitude   ∆θ .
Thus we have

  ∆θ = (–r )∆θ

  
∆θ
∆θ = – r = ∂θ

∂θ (A6)

6) Change of θθ with φφ
From Figure (A5), we see that θ  changes to  θ′  as φ
goes to   φ+ ∆φ .  The change  ∆θ  points in the φ
direction.  To determine the magnitude of  ∆θ , note
that  ∆θ  and its projection in the horizontal plane are
the same.  Since the projections of θ  and  θ′  have a
length of   cosθ , and an angle  ∆φ  between them, the
length of  ∆θ  is   cosθ∆φ as seen in the small horizon-
tal triangle.  Thus

  ∆θ = φ(cosφ)∆φ

  
∆θ
∆φ = φcosθ = ∂θ

∂φ
(A7)

Derivatives of φφ

7) Change of φφ with r

As we noted earlier, the unit vectors do not change
with r, thus

  ∂φ
∂r = 0 (A8)

x

y

θ ∆θ

∆θ

z

r

∆θ points in the −r direction

Unit vectors 
enlarged.

∆θ is the change in the unit vector θ 
when we increase θ by ∆θ.

θ

θ

∆θ = −r ∆θ

θ'

θ'

Figure A4
Evaluation of      ∂∂θθ/∂∂θθ.

x
|θ| cos θ

y

θ

z

θ

θ'

φ ∆φ

∆φ|θ| cos θ

|θ'| cos θ

|θ'| cos θ

∆θ = φ(cos θ)∆φ

∆θ is the change in the unit vector θ 
when we increase φ by ∆φ.

|θ| = |θ'| = 1

∆θ points in the φ direction

Figure A5
Evaluation of      ∂∂θθ/∂∂φ.
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8) Change of φφ with θθ

As we can see from Figure (A6), the unit vector φ does
not change direction when we change the angle θ .

For example, when r  is in the xz plane, φ points in
the  +y  direction for all angles θ .  Thus

  ∂φ
∂θ = 0 (A9)

9) Change of φφ with φφ

Finally, we have to figure out how the unit vector φ
changes with the angle φ .  This time we will take a
top down view as shown in Figure (A7).  When we
change φ  to   φ+ ∆φ , the unit vector φ goes to  φ′ .
From the small triangle we see that the change   ∆ φ
points toward the z  axis and has a magnitude  ∆φ .

In Figure (A8), we see that a unit vector u pointing
toward the z axis is given by

  unit vector
pointing
toward
z axis

= – r sinθ – θcosθ

Thus   ∆φ = ∆φ(– r sinθ – θcosθ)  and we get

  ∆φ
∆φ

= – r sinθ – θcosθ =
∂φ
∂φ (A10)

x

y

θ ∆θ

z

r

The unit vector φ does not change 
when we increase θ by ∆θ.

φ
φ

x

y

∆φφ

∆φ

∆φ = (–u)∆φ

r

r'

φ

φ

φ'

φ'

Unit vectors enlarged. The unit 
vector –u points toward the z axis.

z axis straight up

∆φ is the change in the unit vector φ 
when we increase φ by ∆φ.

Figure A6
Evaluation of      ∂∂φφ/ ∂∂θθ .

x

r-θ plane

r

y

θ

z

θ

ru 

φ

θ

θ
z

θ

r

u 

u = (–r ) sin θ +  (–θ) cos θ 

r

u = unit vector 
pointing toward 
z axis

Figure A7
Evaluation of      ∂∂θθ/∂∂φ.

Figure A8
The unit vector we call u that points toward the z axis.
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Summary of Derivatives of Unit Vectors
In summary, we get

  ∂r
∂r = 0 ;

∂r
∂θ = θ ;

∂r
∂φ = φsinθ

  ∂θ
∂r = 0 ; ∂θ

∂θ = – r ; ∂θ
∂φ = θcosθ

  ∂φ
∂r = 0 ;

∂φ
∂θ = 0 ;

∂φ
∂φ = – r sinθ – θcosθ

(A11)

Calculation of      ∇∇ 2f

We are now ready to calculate   ∇ 2f  given again by
Equation (A1)

  ∇ 2f(r,θ,φ) ≡ ∇ ⋅ ∇ f(r,θ,φ)

= r ∂
∂r + θ

r
∂
∂θ +

φ
r sinθ

∂
∂φ

⋅ r ∂f
∂r + θ

r
∂f
∂θ +

φ
r sinθ

∂f
∂φ

  
= r ⋅ ∂r

∂r
∂f
∂r + r ∂2f

∂r2 + ∂θ
∂r

1
r

∂f
∂θ + θ ∂

∂r
1
r

∂f
∂θ

  
+

∂φ
∂r

1
r sinθ

∂f
∂φ + φ∂

∂r
1

r sinθ
∂f
∂φ

  

+ θ
r ⋅ ∂r

∂θ
∂f
∂r + r ∂2f

∂θ∂r
+ ∂θ

∂θ
1
r

∂f
∂θ + θ

r
∂2f
∂θ2

  
+ ∂φ

∂θ
1

r sinθ
∂f
∂φ + φ ∂

∂θ
1

r sinθ
∂f
∂φ

  

+ φ
r sinθ ⋅ ∂r

∂φ
∂f
∂r + r ∂2f

∂φ∂r + ∂θ
∂φ

1
r

∂f
∂θ

  
+ θ

r
∂2f

∂φ∂θ + ∂φ
∂φ

1
r sinθ

∂f
∂φ

  
+ φ 1

r sinθ
∂f2

∂φ2 (A12)

The terms in Equation (58) with a single line through
them are zero because the unit vectors are orthogo-
nal: i.e.,   r ⋅ θ = 0,   θ ⋅ φ= 0 , etc.  Next we use our
summary, Equation (57) to evaluate the following
terms.

  
r ⋅ ∂r

∂r = 0 because ∂r
∂r = 0 (A13a)

  
r ⋅ ∂θ

∂r = 0 because ∂θ
∂r = 0 (A13b)

  
r ⋅ ∂φ

∂r = 0 because
∂φ
∂r = 0 (A13c)

  
θ ⋅ ∂r

∂θ = θ ⋅ θ = 1 (A13d)

  
θ ⋅ ∂θ

∂θ = θ ⋅ (– r ) = 0 (A13e)

  
θ ⋅ ∂φ

∂θ = 0 because
∂φ
∂θ = 0 (A13f)

  
φ ⋅ ∂r

∂φ = φ⋅ (φsinθ) = sinθ (A13g)

  
φ ⋅ ∂θ

∂φ = φ⋅ (φcosθ) = cosθ (A13h)

  
φ ⋅ ∂φ

∂φ = φ⋅ (– r sinθ – θ cosθ) = 0 (A13i)

The terms in Equation (A12) for   ∇ 2f, that are zero
because of Equations (A13), have a double line
through them.  We are left with

  
∇ 2f = r ⋅ r ∂2f

∂r2 + θ
r ⋅ ∂r

∂θ
∂f
∂r

+ θ
r ⋅ θ

r
∂2f
∂θ2 +

φ
r sinθ ⋅ ∂r

∂φ
∂f
∂r

+
φ

r sinθ ⋅ ∂θ
∂φ

1
r

∂f
∂θ +

φ
r sinθ ⋅ φ

r sinθ
∂2f
∂φ2

(A14)
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Using Equations (A13), Equation (A14) becomes

  
∇ 2f = ∂2f

∂r2 + 1
r

∂f
∂r + 1

r2
∂2f
∂θ2

+ 1
r sinθ sinθ ∂f

∂r
+ 1

r sinθ cosθ 1
r

∂f
∂θ

+ 1
r2 sin2θ

∂2f
∂φ2 (A15)

This becomes

  

∇ 2f = ∂2f
∂r2 + 2

r
∂f
∂r

+ 1
r2

cosθ
sinθ

∂f
∂θ + ∂2f

∂θ2

+ 1
r2 sin2θ

∂2f
∂φ2

(A16)

In most textbooks, you will find the equivalent
formula

  

∇ 2f = 1
r

∂2

∂r2 (rf)

+ 1
r2

1
sinθ

∂
∂θ

sin θ ∂f
∂θ + 1

sin2θ
∂2f
∂φ2

(10)
which is the result we stated earlier in the chapter.

Exercise 2

Show that Equation (A15) follows from Equations (A13)
and (A14).

Exercise 3

Show that Equations (A16) and (10) are equivalent.
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Calculus 2000-Chapter 5
Introduction to Complex Variables
CHAPTER 5 INTRODUCTION TO
COMPLEX VARIABLES

A ROAD MAP
In this chapter you will see that the use of complex
variables greatly simplifies the analysis of RLC
circuits and other forms of sinusoidal behavior.
This chapter does not depend on previous chapters
of the Calculus text and may be studied directly  in
connection with the related material in Chapters 27
and 31 of  the Physics text.

This chapter is also background material for the
next chapter, Chapter 6, on the Schrödinger's equa-
tion.  The wave equations we have discussed so far
can be solved using either real variables or complex
variables.  Schrödinger's wave equation is different
in that the equation itself involves complex numbers
and cannot be handled by real variables alone.  That
is why this chapter is a prerequisite.  Also, to solve
Schrödinger's equation for the hydrogen  atom  re-
quires the use of    ∇ 2  in spherical polar coordinates,
which we discussed in the last chapter.

Once we finish Chapters 5 and 6 on complex vari-
ables and Schrödinger's equation, we return to
basic calculus operations, discussing  divergence in
Chapter 7 and curl in Chapter 8. We then apply
divergence and curl to electromagnetism in Chap-
ters 9, 10, and 11, and to fluid dynamics in Chapters
12 and 13.

INTRODUCTION
After introducing the concepts of imaginary and
complex numbers, we find that an important feature
of a complex number is that it can be expressed as a
complex exponential.  We then go on to two major
applications of complex variables that we just men-
tioned. One is the analysis of RLC circuits, which
can be handled using real variables only, but where
there is an enormous simplification if we use com-
plex variables.  Then in the next chapter, we discuss
the Schrödinger's equation where the equation itself
involves complex variables.

There are other topics involving the theory of com-
plex variables that we will not discuss in these
introductory chapters.  It is possible to construct
fascinating maps of complex functions and distort
these maps in intriguing ways (not completely unlike
the distortion of images one can create on the
computer).  Complex variables are also useful in
finding the formulas for various integrals.  These
advanced topics are usually covered in a graduate
level mathematical physics course.
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Figure 2
Plot of the complex number (4 + 3i), where the real
part is plotted along the x axis and the imaginary part
long the y axis.

r

4

3i

imaginary

real

r

x

y

Figure 1
The coordinate vector for a two
dimensional strobe photograph.

IMAGINARY NUMBERS
What number, when multiplied by itself gives (-1)?
The answer is none of the ordinary numbers.  This
number,  –1   is not one of the real numbers like 5,
–2, 3, etc.  It belongs to a completely different
system of numbers which we call imaginary num-
bers.  The number  –1  is denoted by the letter  i, and
the square root of any negative number can be
written as a real number times  i.  For example

   –7 = 7 × (– 1) = 7 × –1

= ( 7 )i

example
of an
imaginary
number

(1)

All numbers with one factor of i are imaginary.

COMPLEX NUMBERS
We can make things a bit more complicated by
adding together a real number and an imaginary
number, such as (4 + 3i).  Such a mixture with both
a  real part  (4) and an imaginary part (3i) is called
a complex number.  These two parts are distinct;
there is no way we can confuse the real and imagi-
nary parts because imaginary numbers are not part
of the real number system.

This is not the first time we have encountered a
quantity that has two distinct parts.  In our strobe

photographs showing the motion of a ball, we noted
that the position of the ball could be described by the
coordinate vector r , as shown in Figure (1).  For the
strobe photographs, which only show two dimen-
sions, the coordinate vector r  was completely speci-
fied by its (x) and (y) components.  Thus two
dimensional coordinate vectors and complex num-
bers are similar in that they both consist of two
independent components.

This similarity suggests that we can treat a complex
number in the same way we handle a two dimen-
sional coordinate vector, plotting the real and imagi-
nary parts along different axes.  It is traditional to
plot the real part along the x axis and the imaginary
part along the y axis.  Thus, for example, the com-
plex number (4 + 3i) can be represented by a point
whose coordinate vector has an x  component of 4
and a  y  component of 3 as shown in Figure (2).

In this chapter you will see that in some cases there
is considerable simplification of the mathematics
and much greater insight when we use complex
numbers.  This is illustrated in our analysis of the
RLC circuit where we will see that a sinusoidal
oscillation and an exponential decay can both be
handled by one simple complex function.
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EXPONENTIAL FORM
OF THE COMPLEX NUMBER
Once we start plotting complex numbers on x and y
axes, we will find that any complex number can be
expressed in the exponential form    reiθ.  How we get
to this rather remarkable result can be seen in the
following way.

Let us go back to Figure (2), showing the plot of the
complex number (4 + 3i).  One way to describe that
point is to give its  x and y coordinates (x = 4, y = 3i).
An equally good description, shown in Figure (2a),
is to give the distance r from the origin to the point,
and the angle θ that r  makes with the x or real axis.
From the Pythagorean theorem we have

 r2 = x2 + y2 = 42 + 32 = 16 + 9 = 25

 r = 5 (2)

The tangent of the angle θ is the opposite side y
divided by the adjacent side  x

  tan θ =
y
x = 3

4
= .75 (3)

Entering .75 in our calculator and pressing the  tan– 1

button gives 36.9°.  Thus the point is located at a
distance r = 5 from the origin at an angle   θ = 36.9°.

It is traditional to use the letter (z) to describe a
complex number.  Thus if a complex number (z) has
a real part (x) and an imaginary part (iy), we can write

   z = x + iy (4)

Now let us express z in terms of the variables r and θ
rather than x and y.  Since from Figure (2a) we see that

  x = r cos θ
  y = r sin θ (5)

we can write (z) as

   z = x + iy = rcosθ + i rsinθ

   z = r(cosθ + i sinθ) (6)

It is the function    (cosθ + i sinθ)  that we wish to
study in detail.

Let us first look at the derivative of    (cosθ + i sinθ) .
Since

  d
dθcosθ = – sinθ; d

dθ sinθ = cosθ (7)

we get

   d
dθ (cosθ + i sinθ) = – sinθ + i cosθ

Since   (– 1) = i2, this can be written

   d
dθ(cosθ + i sinθ) = i2sin θ + i cos θ

= i (cosθ + i sinθ)
(8)

To express this result more formally, let us write

   f(θ) = (cosθ + i sinθ) (9)

Then Equation (8) becomes

   d
dθ f(θ) = i f(θ) (8a)

To within a constant (i), the function   f(θ) is equal to
its own derivative.  What function that you are
already familiar with, behaves this way?  The expo-
nential function!  Recall that

 d
dx

eax = aeax (10)

Thus if we replace (x) by θ and (a) by (i) , we get

   d
dθ e iθ = ie iθ (11)

Comparing Equations (8) and (11), we see that the
function    (cosθ + i sinθ)  and the function   e iθ obey
the same rule for differentiation.

r

x

y

imaginary

real
θ

Figure 2a
Plot of the complex number (4 + 3i),
showing the angle θθ.
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When two functions    (cosθ + i sinθ)  and   e iθ have
the same derivatives, does that mean that they are the
same functions?  It will if we show that both func-
tions start off with the same value for small values of
θ. Then as we increase θ, if both functions have the
same derivative or slope, they must continue to be
the same function for all values of θ.

Small Angle Approximations
We can show that    (cosθ + i sinθ)  and   e iθ have the
same values for small θ by using the small angle
approximations for   sin θ ,   cos θ   and   e iθ.  In our
discussion of the exponential in Chapter 1 of the
Calculus text, (Cal 1, Eq. 136), we had

  ex = 1 + x + x2

2!
+ x3

3!
+ ⋅ ⋅ ⋅ (1-136)

While this expansion is true for any value of x, it is
most useful for small values of x where we do not
have to keep many terms to get an accurate answer.

Setting    x = iθ gives

   
e iθ = 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ ⋅ ⋅ ⋅ (12)

(Since our previous discussion of exponents only
dealt with real numbers, we can consider Equation
(12) as the definition of what we mean when the
exponent is a complex number).

What we did not discuss earlier were the expansions
for   cosθ  and   sinθ.  Let us state them and check their
accuracy now.  They are

  
cos θ = 1 – θ2

2!
+ θ4

4!
+ ⋅ ⋅ ⋅ (13)

  
sin θ = θ – θ3

3!
+ θ5

5!
+ ⋅ ⋅ ⋅ (14)

where θ  is in radians. Again these expansions are
valid for any value of θ , but most useful for small
values where we do not have to keep many terms.

Let us check the accuracy of these expansions for
  θ = .1  radians.  We have, keeping three terms,

  
cos (.1) = 1 –

(.1)2

2!
+

(.1)4

4!

= 1 – .01
2 + .0001

4 × 3 × 2

= 1 – .005 + .0000004166

= .995004166

(15)

Changing our calculator from degrees to radians and
taking the cos(.1) gives

  cos (.1) = .995004165 (16)

We see that we get almost a nine place accuracy by
keeping the first three terms of the expansion.

For sin(.1), keeping the first three terms, we have

  
sin (.1) = .1 –

(.1)3

3!
+

(.1)5

5!

= .1 – .001
3 × 2

+ .0001
5 × 4 × 3 × 2

= .1 – .000166666 + .000000083

= .009833417 (17)

The calculator gives

 sin (.1) = .099833416 (18)

which is again accurate to almost nine places.

If you can't figure out how to get your calculator to
work in radians, you can convert .1 radians to
degrees by using the conversion factor

  360 degrees/cycle
2πradians/cycle

= 57.29577951
degrees
radian

(19)
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Now that we have checked the expansions (13) and
(14) let us see what the expansion for    (cosθ + i sinθ)
is.  We get, replacing – signs by i2, and using

  i4 = + 1,

   
cos θ = 1 – θ2

2!
+ θ4

4!
= 1 + i2θ2

2!
+ i4θ4

4!

   
i sin θ = i θ – θ3

3!
+ θ5

5!
= iθ + i3θ3

3!
+ i5θ5

5!

(20)

Adding these gives

   
(cosθ + i sinθ) = 1 + iθ + i2θ2

2!
+ i3θ3

3!

+ i4θ4

4!
+ i5θ5

5!
+ ⋅ ⋅ ⋅

(21)
which is just the expansion we had for   e iθ in Equa-
tion (12).

Comparing Equations (20) and (21), you can see that
the expansions for   cos θ  and    i sinθ fit together to
produce the much more regular expansion of   e iθ.
We will also see that it is often much easier to work
with the complete function   e iθ than with   cos θ  and

  sin θ  separately.

In summary, if we define a complex exponential by
the series expansion of Equation (12), then we have
shown that

   
e iθ = cosθ + i sinθ (22)

Even though we checked the sin and cosine expan-
sions for a small value of θ , the fact that   e iθ and

   (cosθ + i sinθ)  have the same derivative properties
means that Equation (22) holds for all values of θ .

If we replace θ  by –θ  in Equation (22) we get

   e–iθ = cos(–θ) + i sin(–θ)

Since   cos(–θ) = cosθ,   sin(–θ) = –sinθ, this gives

   
e–iθ = cosθ – i sinθ (23)

If we add Equations (22) and (23), the   sinθ terms
cancel, and we are have, after dividing through by 2,

   
cosθ =

e iθ + e–iθ

2 (24)

Subtracting Equation (23) from (22) cancels the
  cosθ terms, leaving, after dividing through by 2i,

   
sinθ =

e iθ – e–iθ

2i (25)

If we note that

   1
i = 1

i × i
i = i

i2 = i
–1

= – i

we can write Equation (25) as
   

sin θ = (– i)
e iθ – e–iθ

2
   

sinθ = i
e–iθ – e iθ

2 (25a)

Equations (22) through (25) give a complete pre-
scription of how to go back and forth between   cosθ,

  sinθ,    e iθ and    e– iθ.

Finally returning to our complex function

   z = x + iy

= r cos θ + i r sinθ

= r (cosθ + i sinθ)

we now have

   
z = r e iθ         (26)

as the other way of expressing a complex number,
where r is the distance from the origin and θ  the angle
the coordinate vector r  makes with the x or real axis.

Exercise 1
(a) Construct a series expansion for     e– iθ.

(b) Using the series expansions for   eiθ and     e– iθ in
Equation (25a), show that you end up with the series
expansion for   sin(θ).

r

x

y

imaginary

real
θ
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The Complex Conjugate Z*
The complex conjugate of a complex number is
defined as the number we get by replacing all factors
of (i) by (–i) in the formula for the number.  We
generally denote the complex conjugate by placing
an asterisk after the number.  For example, if

  z = x + iy

then

  z* = x – iy (26a)

If we start with

   z = r eiθ

then

   z* = r e–iθ (26b)
The main reason for defining a complex conjugate is
that the product of a complex number z with its
complex conjugate z* is always a real positive
number, equal to the square of the distance r that the
complex point is from the origin.  For our two
examples above, we have

  z*z = (x – iy)(x + iy)

= x2 – ixy + iyx – i2y2

= x2 + y2 = r2

and

   z*z = (r e–iθ)(r eiθ) = r2 (26c)

DIFFERENTIAL EQUATIONS
FOR R, L, C CIRCUITS
One of the most convenient uses of complex vari-
ables is in the analysis of electric circuits involving
resistors, capacitors and inductors.  We will see that
using complex variables unifies the analysis and
greatly simplifies the work involved.

The RC Circuit
Let us begin with the RC circuit shown in Figure (3).
If we charge up the capacitor to a voltage  V0, and
close the switch, a current flows out of the capacitor
through the resistor, and the voltage  VC  on the
capacitor decays exponentially.

The formulas for the capacitor voltage  VC and resis-
tor voltage  VR  are

 VC =
Q
C

; VR = iR (27)

where Q is the charge on the capacitor, C the
capacitor's capacitance, (i) the current through the
resistor and R the resistor's resistance in ohms.  It is
assumed that C and R are constants and that (i) is the
rate at which charge Q is leaving the capacitor.  That is,

 i = –
dQ
dt (28a)

Setting the sum of the voltage rises around the circuit
equal to zero (see Equation 27-41 in the Physics text)
and using (28a) for i, gives us

 VC – VR = 0

 Q
C

– iR = Q
C

+ dQ
dt

R = 0 (28b)

Dividing through by R, we get

 dQ
dt

+
Q

RC
= 0 (29)

as the differential equation for the amount of charge
Q remaining in the capacitor.

r  
= x 

 + y

x

y

2

2

2

Figure 3
The RC circuit. When we walk around in the
direction shown by the circular arrow, we go
with  VC but against  VR, giving  VC–  VR as the
sum of the voltage rises.

C

switch

V  = C
Q
C

V  = iRR

i

R
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An Aside on Labeling Voltages
To avoid worrying about minus signs like the

 i = – dQ/dt  for the discharging capacitor, we will
obtain the differential equations for our L, R, and C
circuits by sketching the voltages when the rate of
change of charge in the capacitor and change of the
current in an inductor are all positive.  If we had an
increasing current running down through three cir-
cuit elements R, L, and C, all
the voltages would point up as
shown in Figure (4).  The re-
sistance voltage  VR  is always
directed opposite to the cur-
rent.  If the downward current
is increasing, then the induc-
tor opposes the increase and
points upward.  With a posi-
tive current flowing into the
capacitor, the current  is equal
to  +dQ/dt .  If the capacitor
started off with zero charge,
then the upper plate is becom-
ing positively charged by the
positive current flowing into it.

Using these conventions for
the current and voltages, we
can construct an RC circuit
from Figure (4) by pulling out the inductor and
connecting the back  side of the circuit as shown in
Figure (5).  Setting the sum of the voltages to zero
around Figure (5) gives (walking around the circuit
counterclockwise as shown by the circular arrow)

 VR + VC = 0

 iR +
Q
C

= 0 (30)

With  i = +dQ/dt , this gives

 
R

dQ
dt

+
Q
C

= 0 ;
dQ
dt

+
Q

RC
= 0 (29a)

This is just the same as Equation (29) for the dis-
charge of the capacitor.

Figure (5) appears less intuitive than Figure (3)
because we have drawn a current flowing into the
capacitor, while we know that the current actually
flows out.  But the fact that we analyzed the circuit
in Figure (5), assuming the wrong direction for the
current, does not affect the resulting differential
equation for the circuit.  When using Kirchoff's laws
to analyze a circuit, you do not have to know the
correct direction for the currents ahead of time.  If
you make the wrong guess, the resulting equations
will fix things up by giving you a minus sign.

While Figure (5) is less intuitive than Figure (3), it
is much more straightforward to stick with all posi-
tive quantities and always label our circuit element
voltages and currents as shown in Figure (4).  With
more complex circuits it is the only way to maintain
sanity and get the right differential equation.

R

L

C

i

RV  = i R

CV  = Q
C

LV  = di
dtL

i = dQ
dt

Figure 4
Direction of the
voltages for an
increasing
downward
current.

R

i

RV  = i R

C CV  = Q
C

i = dQ
dtFigure 5

The RC circuit for a
positive increasing
current i.
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Solving the RC Circuit Equation
Solving the differential equation

 dQ
dt

+
Q

RC
= 0 (29) repeated

for the capacitor discharge was quite straightfor-
ward.  We first looked at the circuit experimentally
and saw that the voltage Q/C appeared to decay
exponentially as shown in Figure (27-44c) from the
Physics text, reproduced here.  This suggested that
we try, as a guess, a solution of the form

  Q = Q0 e– αt (31)

  dQ
dt

= – αQ0 e– αt (32)

Plugging our guess into Equation (30) gives

  
– αQ0 e– αt +

Q0 e– αt

RC
= 0

The constants  Q0  and the functions   e– αt  cancel,
and we are left with

  – α + 1
RC

= 0

We can satisfy the differential equation if α  has the
value

  
α =

1
RC (33)

The formula for Q becomes

  
Q = Q0 e– t /RC

(34)
We see the time constant for the decay of the charge
Q is T = RC.  I.e., when t gets up to T  =  RC, the value
of the charge has decreased to  e– 1 = 1/e  of its
original value.

The LC Circuit
We will construct an LC circuit from Figure (4) by
taking out the resistor and connecting the back side
as shown in Figure (6).  Setting the sum of the
voltage rises around this circuit equal to zero gives

 VL + VC = 0 (35)

 Ldi
dt

+
Q
C

= 0 ; i = + dQ
dt

(36)

Writing  di/dt = d2 Q/dt2  , and dividing through by L
gives

 
d2Q
dt2 + Q

LC
= 0 (37)

Now suppose we naïvely try the same exponential
decay solution we had for the RC circuit

  Q = Q0e–αt ;      dQ
dt

= –αQ0e–αt (guess)

  d2Q
dt2 = – αQ0 –αe–αt = α2Q0e–αt (38)

Plugging our guess (38) into the differential Equa-
tion (37) gives

  
α2Q0e–αt +

Q0e–αt

LC
= 0

Again the   Q0′s and   e– αt′s cancel and we are left with

  α2 + 1
LC

= 0 (39)

The differential equation will be solved if we can set

  α2 = – 1
LC (40)

  
α = – 1

LC
– 1 (41)

T

V

R = 10K, d = 2mm

?

?

Figure 27-44c
Discharge of our aluminum plate capacitor
(separation 2mm) through a 10KΩ resistor.
The inset is the experimental data and the
solid curve is drawn from that data.

Figure 6
The LC circuit.

i

C CV  = Q
C

L LV  = di
dtL

?

?
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When we tried this in the Physics text, we noted
thatα  comes out imaginary.  We also noted that the
LC circuit oscillated rather than decayed.  Thus we
concluded that we had guessed the wrong function,
and tried a sine wave

  Q = Q0 sinω0t (42)

instead.  When you plug the guess (42) into the differ-
ential Equation (37) you end up with

  ω0
2 = 1

LC
; ω0 = 1

LC
(43)

which avoids imaginary numbers and gives a result in
agreement with experiment.  The quantity   ω0 = 1/ LC
is the resonant frequency of the LC circuit.  (If you do
not remember plugging the guess   Q = Q0 sin(ω0t)
into the LC differential equation, do so now.)

Knowing more about handling imaginary numbers, let
us see what happens if we take our guess   Q = e– αt

seriously for the LC circuit.  We still have to satisfy
Equation (40),

  α2 = – 1/LC

Writing   1/LC = ω0
2, we get

  α2 = – ω0
2 (44)

which has two solutions, namely

   α = iω0 (45a)

   α = –iω0 (45b)
You can see this by noting that both   i2 = –1 and

  (–i)2 = – 1.  Thus the possible solutions for Q are

   Q1 = Q0eiω0t (46a)

   Q2 = Q0e– iω0t (46b)

While Equations (46a, b) are both mathematical
solutions to the differential equation for the LC
circuit, both are complex functions.  But the amount
of charge Q in the capacitor must be described by a
real number.  No imaginary charge resides there.

However in Equations (24) and (25) we saw that we
could construct the real functions   cosθ and   sinθ
from the complex functions   e iθ and    e–iθ.  Replacing
θ  by   ω0t , we have

   cosω0t = 1
2

eiω0t + e– iω0t (47a)

   sinω0t = i
2

e– iω0t – eiω0t (47b)

One of the features of differential equations like the
one for the LC circuit*  is that if the equation has
more than one solution, any combination of the
solutions is also a solution of the equation.  In our
case the two solutions are    Q1 = Q0e iω0t  and

   Q2 = Q0e–iω0t.  Thus the combination

  Q = aQ1 + bQ2 a,b,constants (48)

must also be a solution, as you will check for yourself
in Exercise 2.  Choosing the constants a = 1/2,
b = +1/2 gives

  Q = Q0 cosω0t (49a)

and choosing   a = – i/2,   b = i/2 gives

  Q = Q0 sinω0t (49b)

These are both real functions which can describe the
electric charge in the capacitor.

Thus we see that for both the RC and the LC circuit,
we can use the same trial function   Q = Q0e–αt.  For
the RC circuit,  α  was a real number, which gave us
the exponential decay   Q = Q0 e– t /RC.  For the LC
circuit,  α  turned out to be imaginary which gave us
real oscillating solutions like   Q = Q0cos ω0t .  By
using complex numbers, we are able to handle both
the RC and the LC circuits with the same trial
function.  Whether  α  turns out to be real or imagi-
nary tells us whether the circuit decays or oscillates.

*This is an example of what is called a homogenous differential
equation. We will have more to say about them shortly.
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In the next section we will consider the RLC circuit,
which is an LC circuit with resistance included.
Experimentally we saw that such a circuit could
have a decaying oscillation.  When we plug the
guess   Q = Q0e–αt into the equation for the RLC
circuit,  α  will turn out in some cases to be complex,
i.e., have both a real and an imaginary part.  The
imaginary part will describe the oscillation of the
circuit while the real part will tell us how the oscil-
lation decays.  But before we get to the RLC circuit,
we need to discuss a simpler way to get real solutions
from complex solutions of differential equations.
Before that, do Exercise 2 to see that  Q = aQ1 + bQ2
is a solution of our LC equation.

Exercise 2
The differential equation for an LC circuit is

 d2Q
dt2

+ Q
LC

= 0 (37) repeated

This is called a homogenous differential equation be-
cause it contains only terms involving Q or its deriva-
tives.  An example of a non homogeneous differential
equation will be

  d2Q
dt2

+ Q
LC

= a sin ω1t (50)

This will represent an LC circuit that is being forced to
oscillate at some frequency   ω1 .  The appearance of the
term  (   a sin ω1t ) with no factor of Q makes this a non
homogeneous equation.  We will discuss this equation
shortly, to show what effect the non homogeneous term
has.  For now we will limit our discussion to homoge-
neous equations.

You have seen that     Q1 = aeiω0t  and     Q2 = be–iω0t are
both solutions to Equation (37) when a and b are
constants and    ω0 = 1/ LC .  Now explicitly plug in

    Q = aei ω0t + be–iω0t (51)

into Equation (37), and show that this is a solution for any
constant values of a and b.  This demonstrates that any
linear combination of     eiω0t and     e–iω0t is also a solution.

A FASTER WAY TO FIND REAL SOLUTIONS

When we got the complex solutions    e+iω0t  and
   e– iω0t for the LC circuit differential equation, we

were careful to construct real combinations of these
complex solutions.  You might think that it was
lucky that we just happened to know that the combi-
nation    1 21 2( eiω0t – e– iω0t ) was the real function

  cosω0t.  You might be concerned that for some other
differential equations you would not be so lucky.

Don't worry.  If you find a complex solution for a
homogeneous differential equation, you can simply
take the real part of the complex solution and throw
away the imaginary part.  This works because both
the real part and the imaginary part must separately
be solutions of the differential equation.  (You could
also keep the imaginary part without the (i) and
throw away the real part.)

To see why both the real and imaginary parts are
solutions, let us write the complex solution for Q in
the form

  Q = Qreal + iQimaginary (52)

where both  Qreal  and  Qimaginary  are real functions.
Plugging Equation (52) into the LC differential
equation gives

  d2Q
dt2 +

Q
LC

=
d2Qreal

dt2 +
Qreal
LC

+ i
d2Qimaginary

dt2 +
Qimaginary

LC

= 0 (53)

Since both  Qreal  and  Qimaginary   are real functions,
their derivatives must also be real functions, and the
quantities inside both square brackets in Equation
(53) must be real.  As a result the first square bracket
is purely real, and the second square bracket with its
factor of (i) must be purely imaginary.  The only way
you can add purely real and purely imaginary func-
tions together to get zero is for both functions to be
separately equal to zero.
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That is, we must have

 d2Qreal

dt2 +
Qreal
LC

= 0 (54a)

 d2Qimaginary

dt2 +
Qimaginary

LC
= 0 (54b)

Equations (54) tell us that both functions  Qreal  and
 Qimaginary  must be solutions of the LC differential

equation.  If we want a real solution, we can use
either  Qreal ,  Qimaginary  or any linear combination of
the two.  A similar argument applies to the solution
of any homogeneous differential equation.

As an explicit example for our LC equation, suppose
we had come up with the solution

   Q = Q0e iω0t (55)

and had not noticed that    Q = Q0e– iω0t  was also a
solution.  Instead of hunting for another complex
solution and then trying to find real combinations,
we could just break    e iω0t into its real and imaginary
parts using    e iθ = cosθ + i sinθ to get

   Q = Q 0e iω0t = Q0cosω0t + iQ0sinω0t (55a)

Then we immediately know that the real functions
  Q0cosω0t and   Q0sinω0t are solutions of the LC

differential equation.  We can use either one or some
linear combinations of the two.  (Using a linear
combination is equivalent to using an arbitrary phase
angle, like   Q = Q0sin(ω0t + φ) .  See the Physics
text, pages 15-17 or 16-31.)

THE RLC CIRCUIT
Adding a resistor to an LC circuit gives us the RLC
circuit shown in Figure (7).  If the resistance R is not
too large, we get a decaying oscillation like that
shown in Figure (31-A9) taken from the Physics text.

The equation for the RLC circuit is obtained by
setting to zero the sum of the voltage rises around the
circuit, giving

 VR + VL + VC = 0 (56)

 iR + Ldi
dt

+
Q
C

= 0 (57)

Setting

 
i =

dQ
dt

; di
dt

=
d2Q
dt2 (58)

and dividing through by L gives

  d2Q
dt2 + R

L
dQ
dt

+ Q
LC

= 0 the LRC
equation (59)

As a trial function, suggested by the decaying oscil-
lation of Figure (31-A9), we could try the solution

   Q = Q0e– αt cosωt guess (60)

R

L

C

i

RV  = i R

CV  = Q
C

LV  = di
dtL

Figure 7
The RLC circuit.

Figure 31-A9 – Ringing like a bell
We hit the RLC circuit with a square wave and the
circuit responded like a bell struck by a hammer.
We are looking at the voltage across the capacitor.

experimental data
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If you plug the guess (60) into Equation (59),  you get
many terms involving both   sin ωt  and   cos ωt .

   Q = Q0e– αt cosωt guess (60) repeated

 d2Q
dt2 + R

L
dQ
dt

+ Q
LC

= 0 (59) repeated

To see where the terms come from, consider

  dQ
dt

= Q0(– α ) e– α t cosωt + Q0e– α t (– sinωt)

(61)
where we had to differentiate the two terms   e– αt and

  cosωt separately.  Differentiating again we get four
terms for  d2Q/dt2 , two with a   cosωt and two with a

  sinωt.  When we plug this all back into Equation (59),
we end up with seven terms, four with   cos ωt   and three
with   sin ωt .  In order for all this to be equal to zero, you
have to separately set the   sinωt and the   cosωt terms
equal to zero.  This leads to two equations, from which
you can determine both the constants α  and  ω .  If you
are careful, your chances of getting the answer without
making a mistake may be as high as 50%.  In other
words this is the hard way to solve the problem.

Exercise 3

Try finding the coefficients α  and  ω  by using Equation
(60) as a trial solution for Equation (59).  Then check
your answer with the one we get in the next section.

The Easy Way
Working with separate sines and cosines is the
difficult way to handle the RLC circuit.  Using
complex variables which provide a unified treat-
ment of both decay and oscillation is the easy way.

For a trial solution, let us use

  Q = Q0e– at ;
dQ
dt

= – aQ0e– at

  d2Q
dt2 = a2Q0e– at (62)

It looks much easier already.  Substituting this trial
solution into the LCR differential equation gives

 d2Q
dt2

+ R
L

dQ
dt

+ Q
LC

= 0 (59) repeated

  
a2Q0e– at – aR

L
Q0e– at +

Q0e– at

LC
= 0 (63)

The function   e– at and constant  Q0  cancel and we
are left with

 a2 – aR
L

+ 1
LC

= 0 (64)

This is a standard quadratic equation of the form

 x2 + bx + c = 0 (65)

whose solution is

  
x = – b ± b2 – 4c

2
(66)

For our case, –b = R/L, c = 1/LC, thus (a) is given by

  
a = 1

2
R
L

± R2

L2
– 4

LC

= R
2L

± R2

4L2
– 1

LC
(67a)

= R
2L ± (– 1) 1

LC
– R2

4L2
(67b)

Setting   1/LC = ω0
2 , where   ω0  is the resonant fre-

quency of the undamped (R = 0) circuit, and taking
 – 1  outside the square root as a factor of (i) gives

   
a = R

2L ± i ω0
2 – R2

4L2
(68)

Figure 31-A9 (repeated)
We are looking at the voltage across
the capacitor in an RLC circuit.

?

?
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We now introduce the notation

  α = R
2L

ω = ω0
2 – R2

4L2
= ω0

2 – α2

(69)

So that

   a = α ± iω (70)
and our trial solution  Q = Q0e–at  becomes

   Q = Q0e– (α ± iω) t

   
Q = Q0e–α t e±iωt solution for the

RLC circuit (71)

where

  
α = R

2L ; ω = ω0
2 – α2 (69) repeated

For the case where   ω0  is bigger than α ,
  ω = ω0

2 – α2  is a real number, the real part of
   e iωt is   cosωt and we get the real solution

  Q1 = Q0e– α t cosωt (72)

The imaginary part of    e iωt is proportional to   sinωt ,
which gives us the other real solution

  Q2 = Q0e– α tsinωt (73)

As in the case of the LC circuit, the sine and cosine
waves can be combined as a sine wave with an
arbitrary phase angle φ  to give the general solution

   
Q = Q0e– α t sin(ωt + φ) damped oscillation

of an RLC circuit

(74)
Equation (74) represents a damped oscillation of
frequency   ω = ω0

2 – α2  and a damping time con-
stant T given by

   
T = 1

α = 2L
R

damping time
constant (75)

Imagine that we start with an RLC circuit that
initially has negligible resistance, and that we gradu-
ally increase the resistance.  When R = 0, then α = 0
and the oscillation frequency is   ω = ω0

2 = ω0 ,
where   ω0  is the undamped frequency.

As R and   α = R/2L  are increased, the oscillation
frequency   ω = ω0

2 – α2  decreases until we reach
  α = ω0 .  At that point,   ω = ω0

2 – α2 = 0 , oscilla-
tion ceases, and we have what is called critical
damping.  The time constant for decay at critical
damping is just the length of time it takes the
undamped circuit to go through one radian of oscil-
lation, or   1/2π of a complete cycle.  You can see that
result from dimensions. We have

  1
ω0

radians
second

= 1
ω0

seconds
radian (76)

and at critical damping, where   α = ω0,

  T = 1
α = 1

ω0
seconds
radian (77)

At critical damping, there is only one unique solu-
tion for the RLC circuit.  As we increase the resis-
tance beyond critical damping, when   α = R/2L  be-
comes larger than   ω0 , the solution becomes
overdamped.  For   α > ω0 , it is easiest to go back to
writing the solution in the form

 Q = Q0e– at (from Eq.62)

  
a = R

2L
± R2

4L2 – 1
LC

= α ± α 2 – ω0
2

(from Eq.67a)
and we see that we now have two exponential decay
solutions

  Q1 = Q0 e– α + α2 – ω0
2 t (78a)

  Q2 = Q0 e– α – α2 – ω0
2 t (78b)

If we increase the resistance so much that   ω0
2 is

completely negligible compared to   α2 , then the two
solutions become

  Q1 → Q0e– 2αt α2 > > ω0
2 (79a)

  Q2 → Q0e0 = Q0 (79b)

In this limit we easily see that the solution  Q1  damps
more rapidly than  Q2 .  For the  Q2  solution, we have
increased the resistance so much that no charge
leaves the capacitor and the charge remains at  Q0 .
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We can get a better insight into the solution  Q2  by
assuming that   ω0

2  is small but not quite zero.  In this
case we can write  Q2  as

  
Q2 = Q0 e–α 1 – 1 – ω0

2 α2ω0
2 α2 t (80)

Since   ω0
2 α2ω0
2 α2 << 1, we can use the approximation

formula

  1 – x ≈ 1 – x
2

x << 1

We get, for  x =   ω0
2 α2ω0
2 α2 ,

  
α 1 – 1 –

ω0
2

α2
≈ α 1 – 1 –

ω0
2

2α2

= α
ω0

2

2α2 = 1
2 ω0

2 1
α

With ω0
2 = 1/LC and α = R/2L, we get

= 1
2

× 1
LC

× 2L
R

= 1
RC

(81)

Thus for   α2 >> ω0
2 we have

  
Q2 = Q0 e– t/RC α2 >> ω0

2 (82)

This is just the solution for the decay of an RC circuit
with a time constant T = RC.

The condition   α2 >> ω0
2 can be written as

 R2

4L2
>> 1

LC
or R2C

4L
>> 1 (83)

We can meet this condition for finite values of R and
C by making L small enough.

Exercise 4
To make our study of the RLC circuit more concrete,
suppose that in the circuit you use a 0.10 microfarad
capacitor and one millihenry inductor, so that

 L = 10– 3 hy

 C = 10– 5 farads

(a) What is the resonant frequency   ω0radians/second
and f0 cycles/second, when R = 0?

(b) What is the length of time it takes the R = 0 circuit to
go through one radian of its oscillation?

(c) What value of resistance  RC should you use for
critical damping?

(d) What is the time constant for the decay at critical
damping?

(e) Suppose you raise R from its critical value  RC up to
 2RC.  What are the time constants  T1  and  T2  for the

decay of the solutions  Q1  and  Q2  respectively?  (Partial
answer:  Q2  takes twice as long as  Q1  to decay when

 R = 2RC.)
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IMPEDANCE
Circuits commonly encountered are AC circuits
where the current has a sinusoidal form

  i = i0 sin ωt (84)

For standard American households, the household
current has a frequency of 60 cycles/second, or

  ω = 2π ×60  radians/second.  In much of the rest of
the world the standard household frequency is 50
cycles per second.  World War II aircraft used a
standard frequency of 400 cycles per second which
resulted in smaller and lighter transformers.

The concept of impedance, which involves complex
variables, provides an easy way to handle the volt-
ages across R, L, and C circuit elements in an AC
circuit.  To demonstrate the advantage of the com-
plex variable approach, we will first analyze these
voltages using our standard real variables, and then
see how much the calculations are simplified by
complex variables.

Suppose we have three circuit elements, an R, L, and C,
connected in series as shown in Figure (8), and run
an AC current through them.  In the diagram we
show the formula for the voltage across each circuit
element.  What we wish to calculate is the total
voltage V across all three elements.

The individual voltages were calculated noting that

  d sin ωt
dt

= ωcosωt

  sin ωt dt = – 1
ωcosωt .

The voltage V across all three elements is just the
sum of the individual voltages

  
V = i0 R sinωt + Lωcosωt – 1

Cω
cosωt

= i0 Rsinωt + Lω – 1
ωC

cosωt

  
V = i0 [Asinωt + Bcosωt] (86)

where

  A = R; B = Lω – 1
ωC (87)

We want to express the term   [Asinωt + Bcosωt]  as
a single sine wave with an amplitude which we will
call  Z0 , and a phase angle φ

  [Asinωt + Bcosωt] = Z0 sin(ωt + φ) (88)

To do this we use the trigonometric identity

 sin (a + b) = cos b sina + sinb cos a

to write

  sin (ωt + φ) = cosφsinωt + sinφcosωt (89)

Multiplying through by  Z0  gives

  Z0 sin (ωt + φ) = (Z0 cosφ) sinωt + (Z0 sinφ) cosωt

  = Asinωt + Bcosωt (90)

where

  A = Z0 cosφ ; B = Z0sinφ (91)

  B
A

=
sinφ
cosφ

= tanφ (92)

  A2 + B2 = Z0
2(cos2 φ+ sin2 φ) = Z0

2 (93)

Figure 8
AC voltages in the R, L, and C circuit elements.

R

L

C

V = ?

(85a)

(85c)

(85b)

  i = i0sinωt

  VR = iR = i0Rsinωt

  VL = Ldi
dt

= i0Lωcosωt

  VC = Q
C

= 1
C

idt

= – i0
Cω

cosωt
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Applying Equations (91), (92), and (93) to our formula

  V = i0 [Asinωt + Bcosωt] (86) repeated
 gives

  
V = i0 Z0 sin(ωt + φ) (94)

where from Equations (92) and (87)

  
tanφ = B

A
= Lω – 1/ωC

R
(95)

and from Equation (93)

  
Z0

2 = R2 + Lω – 1
ωC

2
(96)

After a fair amount of calculation, we see that the
voltage across all three circuit elements is still propor-
tional to   sinωt.  Its amplitude  Z0  is given by
Equation (96) and there is a phase shift by an angle
φ  that is given by Equation (95).

Now let us see how much more quickly we can arrive
at the amplitude  Z0  and phase shift φ  using the
complex variables shown in Figure (9).

In Figure (9) we have a current  i  given by the formula

   i = i0 eiωt (97)

and the resulting voltage across the three circuit
elements is the sum of the individual voltages which
can easily be written in the form

   
V = i0 R + i Lω – 1

ωC
eiωt (98)

The quantity in square brackets is the complex
number    R + i( Lω – 1/ωC) graphed in Figure (10).
It can be represented by an arrow whose length is  Z0
given by the Pythagorean theorem as

  
Z0

2 = R2 + Lω – 1
ωC

2
(99)

and is oriented at an angle φ  whose tangent is

  tan φ = Lω – 1/ωC
R

(100)

Notice that the formulas for  Z0  and   tan φ are the
same as in Equations (96) and (95), which we got
after so much more work.

C

R

imaginary

real
φ

0

Lω ωC
1–

Lω

ωC
1–

Figure 10
Graph of the complex number        R + i(Lωω – 1/ωωC) .

Figure 9
AC voltages in the R, L, and C circuit
elements, using complex notation.

R

L

C

V = ?

   i = i0eiωt

   VR = iR = i0Reiωt

   VL = Ldi
dt

= L i0(iω)eiωt

    VC = Q
C

= 1
C

idt

= i0
iωC

eiωt = – i i0
ωC

eiωt
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From our earliest work with complex variables we
saw that the complex number

z = x + iy (4) repeated

could be written as the exponential

  z = reiθ (26) repeated

where z is graphed in Figure (2a) repeated here.

Thus the complex number    R + i( Lω – 1/ωC) ,
graphed in Figure (10) can also be written in the
exponential form

   R + i Lω – 1
ωC

= Z0eiθ (101)

where  Z0  is the distance from the origin and φ  the
angle above the real axis.

Using Equation (100) for the square brackets in
Equation (98) for the voltage V gives

   
V = i0 R + i Lω – 1

ωC eiωt

= i0 Z0 eiφ eiωt

   
V = i0Z0ei (ωt + φ)

(102)

  
Z0

2 = R2 + Lω – 1
ωC

2
(99) repeated

  tan φ = Lω – 1/ωC
R

(100) repeated

Equation (102) is our complex formula for the voltage
across the three circuit elements.

To find the real voltage, we simply take the real (or
imaginary) part of the complex voltage.  Choosing
the imaginary part (without the i) to get a sine wave,
we get

  
V = i0Z0sin(ωt + φ)

(103)

which is the same answer, Equation (94), that we got
from the real analysis.

The main advantage of the complex analysis is that
all the voltages had the same factor    eiωt, so that we
could simply add the voltages without using the
fairly messy trigonometric identities.  Also note that
the main result of all the work of the real analysis
was to calculate the amplitude  Z0  and the phase
angle φ .  We got  Z0  and φ  immediately in the
complex analysis, as soon as we graphed the com-
plex coefficient of    eiωt in Figure (10).

r

x

y

imaginary

real

φ

Figure 2a (repeated)
Plot of the complex number (4 + 3i),
showing the angle φφ.



Cal 5-18      Calculus  2000 - Chapter 5      Complex Variables

Impedance Formulas
The concept of a complex impedance which we will
now introduce, allows you to determine the ampli-
tude  Z0  and phase angle φ  by inspection, without
doing hardly any calculation at all.

In Figure (11), we have redrawn our three circuit
elements, introduced a complex current    i = i0 eiωt,
and expressed voltage in terms of i and the complex
impedances  ZR,  ZL,  ZC defined by

  ZR ≡ R (104a)

   ZL ≡ iωL (104b)

   ZC ≡ – i
ωC (104c)

In terms of these   Z′s, the voltages are

 VR = iZR

VL = iZL

VC = iZC

(105)

The sum of the three voltages V becomes

 V = VR + VL + VC

= i(ZR + ZL + ZC ) (106)

If we define the total impedance Z of the three circuit
elements connected in series by the equation

 Z = ZR + ZL + ZC (107)

then our formula for the complex voltage is

 V = iZ (108)

Comparing this with Ohm's law for a single resistor

  VR = iR Ohm's law (Physics 27-1)

we see that we can think of Equation (108) as simply
a complex form of Ohm's law.

When we graph the complex impedance Z we can
immediately read off the amplitude  Z0  and phase
angle φ , as shown in Figure (12). We have

   
Z = R + i Lω – 1

ωC
= Z0eiφ complex

impedance

(109)
where

   
Z0

2 = R2 + Lω – 1
ωC

2 magnitude of
impedance (110a)

   tan φ = Lω – 1/ωC
R

phase of
impedance

(110b)

In Equation (109), we introduced the exponential
form   Z0eiφ for the complex variable Z.

Figure 11

The voltages  VR ,  VL ,and  VC expressed
in terms of impedances Z.

Z

Z      = R

Lω ωC

real

Z        =imag
1–

φ

0

Figure 12
The complex impedance can be pictured as an arrow of
length   Z0 = Zreal

2 + Zimag
2  oriented at an angle φφ.

R

L

C

i

V

   i = i0eiωt

   VR = (i0eiωt)R = (i)ZR

   VL = (i0eiωt)Liω = (i)ZL

    VC = (i0eiωt) – i
ωC

= (i)ZC
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The Driven RLC Circuit
Our first demonstration in the physics course was the
driven RLC circuit, which could be used to measure the
speed of light without looking at light. (This was a crucial
point in our discussion of special relativity.)  In Chapter 31
we calculated the resonant frequency of an LC circuit and
wrote down some formulas for the driven RLC circuit.
But we did not derive the formulas because the work is
messy when we have to use real functions.  However with
the complex analysis we have developed in this chapter,
we get, almost by inspection, not only the formulas but
considerable insight into the behavior of the circuit.

In the lecture demonstration, we drove the LRC circuit
by wrapping a couple of turns of wire around the outside
of the inductor and attaching the wire to an oscillator.
The oscillating magnetic flux produced by these few
turns induces a voltage  Vind  in the coil and drives the
circuit to oscillate.

The important thing is that we did not put the oscillator
directly in the circuit, for the oscillator has its own
internal resistance, capacitance and inductance that could
completely alter the behavior of the circuit.  The idea is
to give the circuit a gentle voltage shove of the form

   Vind = V0eiωt (111)

as indicated in Figure (13), and see how the circuit
responds.

Setting the sum of the voltage rises to zero around
the circuit in Figure (13) gives, (walking counter
clockwise),

 VC + VL + VR – Vind = 0 (112a)

   iZR + iZL + iZC = V0eiωt (112b)

Solving for the current  i   in the circuit gives

   

i =
V0eiωt

Z (113)

where   Z = ZR + ZL + ZC = Z0eiφ is the total im-
pedance of the circuit.

Using the exponential form for Z in Equation (113)
for the current  i gives

   
i =

V0e iωt

Z0eiφ ; i =
V0

Z0
ei (ωt – φ) (114)

Equation (114) tells us that if we drive an RLC
circuit with an induced voltage    Vind = V0eiωt   the
circuit will respond with a current  i  that has an
amplitude  (V0/Z0) and a phase   (– φ) relative to the
driving voltage.  We get this result almost without
doing any calculation.  To get the same result using
real functions   sinωt  and  cosωt    would have taken
several pages of algebra and trigonometric identities.

R

L

C

i

R R

0

V  = iZ

indV    = V e 

C CV  = iZ

L LV  = iZ

iωt

Figure 13
The driven RLC
circuit. Photo is
Figure (1-10) from
the Physics text.

Figure 14
Complex impedance for an RLC circuit.

Z

R

imaginary

real

φ
0

Lω ωC
1–

Lω

ωC
1–

    Z = Z0eiφ
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Let us look at the physics contained in Equation (114).

   
i =

V0

Z0
ei (ωt – φ)

(114) repeated

For very low frequencies, for sufficiently small ω ,
the quantity   1/ωC  is much larger than either Lω  or
R, the impedance is essentially all capacitive as
indicated in Figure (15).  For this case,

  Z0 ≈ 1
ωC

; φ ≈ – 90° = – π
2

(115)

and the formula for the current in the circuit caused
by the induced voltage  Vind is

   
i = V0ωCei (ωt + π/2)

current
at low
frequencies

(116a)

   
Vind = V0eiωt

complex
induced
voltage

(116b)

Taking the real part of Equations (116) gives us the
real current for a real induced voltage

   
i = V0ωC cos (ωt + π/2)

Vind = V0 cosωt
small ω

(117)

From Equations (117), we see that at low frequen-
cies, the phase of the current is   π 2π 2 ahead of the
induced voltage, and the amplitude goes to zero as ω
goes to zero.

The other extreme, at high frequencies where ωL  is
much bigger than R or   1/ωC , we have

  Z0 ≈ Lω (118)

  φ ≈ +90° (π/2) (119)

And we get

   
i =

V0

Lω
ei (ωt – π/2)

current
at high
frequencies

(120)

Taking the real part gives us the real current

   
i =

V0

Lω
cos (ωt – π/2)

Vind = V0 cosωt
large ω (121)

We see that at high frequencies the phase of the current
is   π 2π 2 behind of the induced voltage, and the amplitude
goes to zero as ω goes to infinity.

Z

R

imaginary

realφ

0

Lω ωC
1–

Lω

ωC
1–

Z

R

imaginary

real

φ

0

Lω ωC
1–

Lω

ωC
1–

Figure 15
Z for small ωω .

Figure 16
Z for large  ωω .
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There is a special frequency, call it   ω0 , where the
capacitive impedance   ZC = – 1/ω0C just cancels the
inductive impedance   ZL = Lω0, leaving us with a
pure resistive impedance  ZR = R, as shown in Fig-
ure (17).

This happens when

 ZL = –ZC

  ω0L = + 1
ω0C

(122)

  
ω0

2 = 1
LC (123)

This special frequency is the resonant frequency
  ω0 = 1/ LC  of the RLC circuit.  We now see that

the resonance occurs when the capacitive and induc-
tive impedances cancel, leaving only the resistance
to dampen the current in the circuit.  Also note that
at this frequency the phase angle φ  is zero, and the
current  i is given by

   
i =

V0

R
ei (ω0t) current

at
resonance

(124)

Taking the real part of Equation 24 gives

   
i =

V0

R
cosω0t

Vind = V0 cosω0t
at
resonance (125)

We see that, at resonance, the current and the in-
duced voltage are in phase with each other, and the
only thing that limits the current is the actual resis-
tance R in the circuit.

Comparing Equations (117, 121, and 125), we see
that the phase of the current shifts by 180 degrees (π)
as we go from well below to well above the reso-
nance. The smaller the value of R, the sharper the
resonance, and the faster this phase shift occurs. The
shape of the resonance curves, for three different
values of R were shown in the Physics text, Figure
(14-31) repeated here.

Z
R

imaginary

real
0

Lω

ωC
1– Figure 14-31

Amplitude of the oscillation for various values of the
resistance R.  The peak occurs at ωω =  ωω0 because the
inductive and capacitive impedances cancel at the
resonant frequency  ωω0.

Figure 17
At resonance, the capacitive and inductive
impedances cancel, and we are left with only the
resistive impedance.

0 1.0 1.2 1.40.80.6
frequency

ω/ω

 
V =

V0
Z0
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TRANSIENTS
While the above discussion of the driven RLC
circuit describes what you most likely will see when
you study the circuit in the lab, it is not the whole
story.  There are other solutions for the circuit,
solutions which die out as time goes on, and thus are
called transient  solutions.  To see where the tran-
sients come from, we need to go back to the differ-
ential equation for the driven circuit.  We get the
equation from Figure (18) which is simply Figure
(13) with some labels changed.  To make the circuit
more nearly what we deal with in the lab, we are
writing the induced voltage as a real function

  V0cos ωdt , where we are now calling the driving
frequency   ωd .

Particular Solution
Setting the sum of the voltages around the circuit
equal to zero gives

 VR + VL + VC = Vind (110) repeated

  iR + Ldi
dt

+
Q
C

= V0 cosωdt (126)

This time, let us express everything in terms of the
current i rather than the charge Q, by differentiating
Equation (126) with respect to time and using

 i = dQ/dt.  We get, after dividing through by L
  
d2i
dt2 + R

L
di
dt

+ i
LC

=
–V0ωd

L
sinωdt (127)

where we used   d(cos ωdt)/dt = –ωd sinωdt .

Equation (127) is an example of a non-homoge-
neous differential equation.  It is non-homoge-
neous because of the driving term

  – V0ωd/L sin ωdt  which does not have a factor of
the variable (i) or a derivative of (i).  This is called
the inhomogeneous term.

In the previous section, we found that Equation
(127) has the solution

   
ip =

V0
Z0

ei (ωt – φ) particular
solution (114) repeat

where

  Z0
2 = R2 + ( Lω – 1

ωC
)
2

(99) repeated

  tanφ = Lω – 1/ωC
R

(100) repeated

The value of ip from Equation (113) is called the
particular solution of the differential equation (127).

Transient Solutions
To see what the other solutions are, let us look at the
homogeneous differential equation

 d2i
dt2 + R

L
di
dt

+ i
LC

= 0 (128)

which represents an RLC circuit with no driving
term. I.e., it is Equation (127) without the inhomoge-
neous  term.

As a review, let us see how quickly we can solve
Equation (128).  Using the trial solution

 
i = i0e– at ; di

dt
= – ae– at ; d2i

dt2 = a2e– at

gives

 a2 – R
L

a + 1
LC

= 0

This is a quadratic equation in a, of the form
 a2+ba +c = 0 which has the solution

  
a = –b ± b2 – 4c

2
= –b

2
± b2

4
– c

R

L

C

i

R

0

V  = i R

ind dV    = V cos ω  t

CV  = Q
C

LV  = di
dtL

i = dQ
dt

Figure 18
The driven RLC circuit again.
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With b = R/L and c = 1/LC we get
   

a = R
2L

± R2

4L2
– 1

LC

= R
2L

± i 1
LC

– R2

4L2

Thus the solution to Equation (128) is

   
iT = i0 e– α t e± iωt

so called
transient
solution

(129)

Where
  

α = R
2L

; ω = 1
LC

– R2

4L2

We can write ω in the form

  ω2 = ω0
2 – α2

where

  ω0 = 1
LC

is the resonant frequency. Equation (129) is just
Equation (71) expressed in terms of the current  i
rather than the charge Q.  We are calling this a
transient solution iT.  The reason for the name will
become apparent shortly.

Combined Solutions
Let us now go back to Equation (127) for the driven
circuit, and write  id  for the constant (   – V0ωd/L ) in
order to simplify the equation's appearence

  d2i
dt2 + R

L
di
dt

+ i
LC

= id sinωdt (127a)

Now try the solution

 inew = ip + aiT (130)

where ip is the particular solution (113), iT  is the
transient solution of Equation (129), and (a) is an
arbitrary constant.  We know that

  d2(ip)

dt2 + R
L

d(ip)
dt

+
(ip)

LC
= id sinωdt (131)

 d2(aiT)
dt2 + R

L
d(aiT)

dt
+

(aiT)
LC

= 0 (132)

Adding Equations (131) and (132) together gives

  d2(ip+aiT)

dt2 + R
L

d(ip+aiT)
dt

+
(ip+aiT)

LC

= id sinωdt (133)

and we see that  inew = (ip+aiT) obeys the same
equation as ip alone. Thus  inew is a solution of the
equation of the driven RLC circuit, for any value of
the constant (a).

This result tells us that to the driven or particular
solution ip, we can add any amount of the homoge-
neous solution iT, and we still have a solution for the
driven RLC circuit.

The solutions iT for the homogeneous equation are
fundamentally different from the particular solution
ip.  The driven solution

   ip =
V0
Z0

e i (ωt – φ) (113) repeated

goes on at a constant amplitude  V0/Z0 for as long as
the driving voltage is attached.  The transient solution

   iT = i0 e– α t e iωt (129) repeated

dies out exponentially with a time constant   T = 1/α .
Because such solutions do not last, they are called
transient solutions.

What you will observe in the lab is the following.
When you first turn on or suddenly change the
driving voltage   V0cos ωdt , you will see not only the
particular solution ip, but also some transients mixed
in.  If you wait for several time constants   T = 1/α ,
and keep the driving voltage amplitude  V0  con-
stant, the transients will die out and the pure driven
solution will appear on your oscilloscope.  If you
want to see the transient solutions, you have to look
within a time constant   1/α  of the time you changed
the driving voltage.

This finishes our discussion of the application of
complex variables to the analysis of circuits.  We
now move on to the use of complex variables to
describe wave motion.

non-homogeneous equation

homogeneous equation
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SOLUTIONS OF THE ONE
DIMENSIONAL WAVE EQUATION
In Chapter 2 of the Calculus text we discussed the
one dimensional wave equation applied to both
waves on a rope and sound waves.  Applied to waves
on a rope, the equation was

  ∂2y(x,t)

∂t2 = vwave
∂2y
∂x2 (134)

(Calculus 2-73)
where  y(x,t) represented the height of the rope
above its equilibrium position at some point x along
the rope at some time t.  (For a sound wave, replace
y(x,t) by p(x,t) where p(x,t) is the change in pressure
due to the sound wave at some point x and time t.)

(Recall that when we are working with more than
one variable, like x and t, we use the notation

  ∂f(x,t)/∂t to mean the derivative of f(x,t) with re-
spect to t, holding x constant.  This is called a partial
derivative with respect to time).

We solved Equation (134) with a trial function of the
form

  y(x,t) = A sin(kx – ωt) (135)

  ∂2y
∂x2 = – k2y ;

∂2y
∂t2 = – ω2y (136)

to get

  –ω2y = –vwave
2 k2y

  vwave
2 = ω2

k2

  
vwave = ω

k (137)

In the solution   sin(kx – ωt) , ω  is, as we have noted
many times, the angular frequency, of the number
of radians per second.  The quantity k, which is
called by the rather bland name wave number is
actually the spacial frequency or the number of
radians per centimeter.  When we take the ratio   ω/k
we get

  ω
k

radians/second
radians/centimeter

= ω
k

centimeters
second (138)

which is clearly a velocity.

As we saw in Chapter 15 of the Physics text and
Chapter 2 of the Calculus text,

   
y1 = Asin(kx – ωt)

sine wave moving
to the right at a
speed vwave = ω/k

(139)

   
y2 = Asin(kx +ωt)

sine wave moving
to the left at a
speed vwave = ω/k

(140)

If we add  y1  and  y2  we get the standing wave

   y1 + y2 = 2A sinkx cosωt standing
wave (141)

You can use the trigonometric identity
 sin(a + b) = sina cosb + cosa sinb , noting that
 sin(– b) = –sinb, and   cos(– b) = cosb  to check

Equation (141).

Rather than use the real function   sin(kx – ωt) , we
can, as a trial solution to the wave equation, use the
complex function

   y = Ae i (kx – ωt) (142)

   ∂y
∂x = ikAe i (kx – ωt) ;

∂y
∂t = (– iω)Ae i (kx – ωt)

   ∂2y
∂x2 = (ik)2Ae i (kx – ωt) = –k2y

   ∂2y

∂t2 = (– iω)2Ae i (kx – ωt) = –ω2y (143)

where   (– i)2 = –1.

We are now right back to Equation (136) and get the
same solution   vwave

2 = ω2/k2 .  In this case it is
actually easier to work with the real function

  sin(kx – ωt)  rather than the complex function
   e i (kx – ωt)  because you do not have to take the real

part of the complex function at the end.  Working
with the real variables was not difficult in this case
because the wave equation did not mix up sine and
cosine functions as the RLC equation did.



Calculus  2000 - Chapter 5      Complex Variables       Cal 5-25

For completeness we have

   
y1 = A ei kx – ωt =

complex sine wave
moving to the right
at a speed ω/k

(142)

   
y2 = A ei kx + ωt =

complex sine wave
moving to the left
at a speed ω/k

(143)

The standing wave solution is

   
ystanding = y1 + y2 = A e i (kx – ωt) + e i (kx + ωt)

= A e i kx e–i ωt + e i kx e i ωt

= 2Ae ikx e–i ωt + e i ωt

2

= 2Ae i kxcos ωt

= 2A(cos kx + i sinkx)cosωt

= 2Acoskx cosωt+ i 2A sinkx cosωt

(144)
The imaginary part of  ystanding  is

  (ystanding)imag
= 2A sinkx cosωt (145)

which is the standing wave solution we got using
real variables.  Using complex variables to get the
standing wave solution was not easier than using
real variables.
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In the introduction to Chapter 37 of the Physics text,
we quoted the following story from an address by
Felix Block to the American Physical Society in
1976.

“Once at the end of a colloquium I heard Debye
saying something like: ‘Schrödinger, you are not
working right now on very important problems...why
don’t you tell us some time about that thesis of de
Broglie, which seems to have attracted some atten-
tion?’ So in one of the next colloquia, Schrödinger
gave a beautifully clear account of how de Broglie
associated a wave with a particle, and how he could
obtain the quantization rules ... by demanding that
an integer number of waves should be fitted along a
stationary orbit. When he had finished, Debye casu-
ally  remarked that he thought this way of talking
was rather childish ... To deal properly with waves,
one had to have a wave equation.”

Calculus 2000-Chapter 6
Introduction to the
Schrödinger Wave Equation

As we mentioned, Schrödinger took Debye’s advice,
and in the following months devised a wave equation
for the electron wave, an equation from which one
could calculate the electron energy levels. That
wave equation is now the foundation of chemistry.

In this chapter we sketch the ideas that led
Schrödinger to formulate an equation involving
complex variables to describe the electron. We then
go on to solve that equation for the lowest energy
spherically symmetric wave functions for the elec-
tron in a hydrogen atom. This is enough to show that
the Schrödinger equation, without any extra as-
sumptions, is enough to explain the quantized en-
ergy levels of hydrogen.

CHAPTER 6 INTRODUCTION TO

SCHRODINGER'S EQUATION
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SCHRÖDINGER'S WAVE EQUATION
Schrödinger's approach to finding a wave equation
for the electron was roughly as follows.

De Broglie, suspecting that the electron, like the pho-
ton, had a wave nature as well as a particle nature, went
back to Einstein's formula for the energy of a photon

 E = hf (1)

where h is Planck's constant, (   f = c/λ ) the frequency
of the photon and λ  its wavelength. Setting  E = mc2

where m is the mass of the photon gives

  mc2 = hf = h c
λ ; m = h

λc
Since photons travel at the speed c, the photon's
momentum p should be its mass m times its speed c, or

  p = mc = h
λc

c

  
p = h

λ (2)

Equation (2) is the famous de Broglie formula for the
relationship between the wavelength and momen-
tum of any particle.  De Broglie explained the
quantization of angular momentum in the Bohr
theory by assuming that the allowed Bohr orbits
were those in which exactly an integral number of
wavelengths fit around the orbit.

Schrödinger's job was to find a wave equation based
on the two fundamental relationships  E = hf  for the
particle energy and    p = h/λ   for the particle wave-
length.  Because we have been writing wave
equations in terms of the angular frequency

 ω radians/second rather than the regular frequency
f cycles/second, and the wave number (spacial fre-
quency) k radians/cm rather than the wavelength
λ  cm/cycle, let us first re-express E and p in terms
of  ω  and k rather than f and λ .  Using dimensions
we have

  f
cycles
second

= ω radians/sec
2πradians/cycle

=
ω cycles

2πsecond

  1
λ cm/cycle

= 1
λ

cycles
cm = k

2π
radians/cm

radians/cycle

= k
2π

cycles
cm (3)

Using the standard notation

   h ≡ h
2π h "bar" (4)

we get

  E = hf = h ω
2π

= hω

  p = h
λ = h k

2π
= hk

Thus we get the very simple formulas

  
E = hω ; p = hk (5)

as the relationship between a particle's energy E and
momentum p, and its wave's frequency  ω  and wave
number k.

Schrödinger's first attempt at finding a wave equa-
tion was to start with the relativistic relationship
between the energy and momentum of a particle.
That relationship, as we saw in the section on par-
ticle accelerators,  page 28-24 of the Physics text, is

  
E2 = p2c2 + m0

2c4
relativistic
relationship
between E and p

(6)

where  m0  is the rest mass of the particle.

To see how to construct a wave equation, let us start
with the simple case of a zero rest mass particle,
namely the photon. For the photon, we have simply

  E2 = p2c2 zero rest mass
particle (7)

We will see that the one dimensional wave equation
that leads to Equation (7) is

  ∂2ψ
∂t2 = c2 ∂2ψ

∂x2 (8)

where  ψ  (psi) is a Greek letter to represent the wave
amplitude.  (For rubber rope waves   ψ = y , the wave
height.  For sound waves   ψ = p , the excess pres-
sure.) To check that Equation (8) is the correct
equation, use the trial function

   ψ = ψ0e i (kx – ωt) (9)

which, as we saw at the end of the last chapter (see
Equation 5-142), represents a wave travelling to the
right at a speed  ω/k.
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We have
   ψ = ψ0e i (kx – ωt)

   ∂ψ
∂t = – iωψ ;

∂2ψ
∂t2 = (– iω)2ψ = –ω2ψ

   ∂ψ
∂x = – ikψ ;

∂2ψ
∂x2 = (– ik)2ψ = – k2ψ

Plugging these values into Equation (8) gives

   
  ∂2ψ

∂t2 = c2 ∂2ψ
∂x2 (8) repeated

  –ω2ψ = c2(– k2)ψ

The factor   – ψ  cancels and we get

  ω2 = c2k2
(10)

Multiply through by  h2  and noting that   E = hω
and  p = hk we get

  h2ω2 = c2(h2k2)

 E2 = c2p2 (11)
which is the result we wanted.

Exercise 1
For a traveling wave, use the trial function

   ψ = ψ0sin (kx – ωt)

and show that you get the same result.

You can see that the process is quite straightforward.
For each factor of ω  you want from your differential
equation, you put a   ∂/∂t  into the equation.  For each
factor of (k), you include a   ∂/∂x .

If we set   ψ = E or B in Equation (8) we get the wave
equations

  ∂2E
∂t2 = c2 ∂2E

∂x2 (12a)

  ∂2B
∂t2 = c2 ∂2B

∂x2 (12b)

These turn out to be the differential form (in one
dimension) of the electromagnetic wave we discussed
in Chapter 32 in the Physics text. (These are Equations
(24a) and (24b) of Chapter 9 of the Calculus text, if we
set   c2 = 1/µ0ε0 .) This should not be surprising, be-
cause an electromagnetic wave just represents the
wave nature for the zero rest mass photon.

Now that we have some experience constructing
wave equations, let us go for the equation for a particle
with rest mass.  This time let us first convert the
relationship between the particle energy E and momen-
tum p into a relationship between ω  and k. We have

 E2 = p2c2 + m0
2c4

Setting   E = hω and  p = hk  gives

  h2ω2 = h2k2 c2 + m0
2 c4

Dividing through by  h2  gives

  
ω2 = c2k2 +

m0
2c4

h2 (13)

Using a   ∂/∂t  for each ω  and a   ∂/∂x  for each k
suggests the wave equation

  
∂2ψ
∂t2 = c2 ∂2ψ

∂x2 –
m0

2c4

h2 ψ
(14)

Plugging in the trial solution

   ψ = ψ0e i (kx – ωt)

  ∂2ψ
∂t2 = –ω2ψ ;

∂2ψ
∂x2 = – k2ψ

gives

  
– ω2ψ = – c2k2ψ –

m0
2c4

h2 ψ (15)

cancelling the factor of   – ψ  gives

  
ω2 = c2k2 +

m0
2c4

h2 (16)

which is the result we wanted.

Equation (14) is the one dimensional form of
Schrödinger's relativistic wave equation.  This is
the first wave equation Schrödinger found, but he
ran into trouble with it.
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Consider the case of a particle at rest, or nearly at
rest, so that we can neglect  p2c2  compared to

 m0
2c4 .  Then the square of the energy E is approxi-

mately equal to the square of the rest energy  m0c2

   E2 ≈ m0
2c4 for

small p (17)

This equation has two solutions

 
 E1 = m0c2

E2 = – m0c2
(18)

Solution (2) appears to represent a particle with a
negative rest energy, a very un-physical thing.  The
corresponding wave solutions are

   ψ1 = ψ0e i (kx – ω1t) ; hω1 = E1 (19)

   ψ2 = ψ0e i (kx – ω2t) ; hω2 = E2 (20)

When you encounter two solutions to a physical
problem, and one is nonsense, you usually throw the
bad solution out.  For example, the hypotenuse of a
right triangle is given by the equation

 c2 = a2 + b2 (21)

which has two solutions

 c1 = + a2 + b2 (22)

 c2 = – a2 + b2 (23)

Since you know that you cannot have a negative
hypotenuse, you just throw out the un-physical solu-
tion  c2 .

Schrödinger tried to throw out the un-physical solu-
tion   ψ2  of his relativistic wave equation, but ran into
the following problem.  If he started with pure   ψ1
waves for the electrons, and let the electrons inter-
act,   ψ2  waves were generated. In other words, if he
threw out the un-physical   ψ2  waves, the equations
put them back in.  We did not have this problem with
the Pythagorean theorem.

Schrödinger gave up on the relativistic wave equation
and decided to use the nonrelativistic relationship
between the kinetic energy E and momentum p of a
slowly moving particle.

That relationship is

 kinetic
energy E = 1

2
mv2 = 1

2m
(m2v2) (24)

where v is the speed of the particle, m the rest mass,
and mv = p is the momentum.  Thus E and p are
related nonrelativistically by

 
E =

(mv)2

2m
=

p2

2m
(25)

Writing   E = hω ,  p = hk , the nonrelativistic rela-
tionship between ω  and k is

   
hω = h2k2

2m

nonrelativistic
relationship
between ω and k (26)

Schrödinger went to the nonrelativistic form be-
cause the relationship  E = p2/2m  does not involve
negative rest masses.

To construct a wave equation that gives this nonrela-
tivistic relationship between ω  and k, we need one
time derivative to give the one factor of ω , and two
x derivatives to give the factor of  k2 .  What works,
as we will check, is

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2

one dimensional
Schrödinger's
equation for
a free electron

(27)

With the trial solution

   ψ = ψ0e i (kx – ωt)

   ∂ψ
∂t = – iωψ ;

∂2ψ
∂x2 = – k2ψ (28)

we get

   
ih(–iωψ) = h2

2m
k2ψ

   
– i2ωhψ = h2

2m
k2ψ (29)

The   ψ′s cancel, and with   – i2 = 1,  we are left with
the desired result

  
hω = h2k2

2m
(26) repeated

Equation (27) is the one dimensional form of
Schrödinger's equation for a free particle.
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In Chapter 2 of the Calculus text, we saw that the
equations for rope waves, sound waves, and electro-
magnetic waves all had second derivatives of both
space and time.  That is how we got the oscillating
solutions.   In our study of the RLC circuit, we saw
that the presence of a first derivative, the R term in

 d2Q
dt2

+ R
L

dQ
dt

+ Q
LC

= 0 (5-59) repeated

led to an exponential decay.

One might wonder, since there is only a first deriva-
tive with respect to time in Schrödinger's equation,
shouldn't that lead to an exponential decay with
time, of the wave amplitude  ψ ?  It did not do so
because of the explicit factor of (i) in Schrödinger's
equation.  With the trial solution    ψ = ψ0e i (kx – ωt)

the (–i) from the first derivative with respect to time
was turned into a 1 by the i in the   ∂/∂t  term.  Thus
by having an (i) in Schrödinger's equation itself, we
can get an oscillating solution with a first time
derivative.

The reason we have introduced Schrödinger's equa-
tion after a chapter on complex variables is that
factor of (i) in the equation itself.  With the other
differential equations we have discussed so far, we
had the choice of using real or complex variables.
But we cannot write, let alone solve, Schrödinger's
equation without the use of complex variables.

Exercise 2
In three dimensions, the momentum vector

 p = (px, py, pz) has a magnitude p given by the
Pythagorean theorem as

 p2 = (px
2+ py

2+ pz
2)   (30)

With  p = hk , we have

 p2 = h2(kx
2+ ky

2+ kz
2)  (31)

We got the one dimensional wave equation by replac-
ing  kx

2 by    ∂2/∂x2. This suggests that the extension of
Equation (27) to describe three dimensional plane
waves should be

     
i h ∂ψ

∂ t
= – h2

2m
∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2  (32)

As a trial solution, try the guess

    ψ = ei (k⋅x – ωt) = ei (kxx + kyy + kzz – ωt)
 (33)

and show that the guess implies

   
hω =

h2

2m(kx
2 + ky

2 +kz
2)  (34)

and
  

E =
p2
2m
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Figure 1
Spherical polar coordinates.

POTENTIAL ENERGY &
SCHRÖDINGER'S EQUATION
The relationship  E = p2/2m = mv2/2  is for a free
particle traveling at a constant speed v.  If the particle
has a potential energy  V(x), like spring potential
energy

  
V(x) = – 1

2
Kx2

spring
potential
energy (35)

where K is the spring constant, then the formula for
the total nonrelativistic energy E is

 
E = 1

2
mv2 + V(x) =

p2

2m
+ V(x) (36)

In terms of ω  and k we have

  
hω = h2k2

2m
+ V(x) (37)

and the corresponding one dimensional wave equa-
tion should be

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2 + V(x)ψ

one
dimensional
Schrödinger
equation

(38)
If you did Exercise (2), it is clear that the three dimen-
sional form of Schrödinger's equation is expected to be

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2

+
∂2ψ
∂y2

+
∂2ψ
∂z2

+V(x,y,z)ψ

(39)
In Chapter 4 of the Calculus text, we discussed the
combination of derivatives   ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

and gave them the special name

   ∇ 2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
definition
of ∇ 2 (40)

With this notation, the three dimensional form of
Schrödinger's equation can be written in the more
compact and familiar form

   
ih

∂ψ
∂t

= – h2

2m
∇ 2ψ + V(x,y,z)ψ

full
Schrödinger
equation

(41)
We can immediately get back to the one dimensional
Schrödinger's equation by replacing   ∇ 2  by   ∂2/∂x2 .

THE HYDROGEN ATOM
The reason Schrödinger developed his wave equation
was to handle the electron waves in hydrogen in a
mathematically rigorous way.  To apply Schrödinger's
equation of the hydrogen atom, you use the fact that the
electron is bound to the proton nucleus by a Coulomb
force of magnitude  e2/r2  whose potential V(r) is

  
V(r) = – e2

r
Coulomb
potential
energy

(42)

With this potential energy, Schrödinger's equation (41)
for the hydrogen atom becomes

   
h
i

∂ψ
∂t

= h2

2m
∇ 2ψ – e2

r ψ
Schrödinger's
equation for
hydrogen atom

(43)
Solving Equation (43) is not easy.  The first problem
we encounter is the fact that we have been writing

  ∇ 2 = ∂2/∂x2 + ∂2/∂y2 +∂2/∂z2  using Cartesian co-
ordinates  x, y, z, while the Coulomb potential  – e2/r
has spherical symmetry.  The best way to handle the
situation is to use a coordinate system that has the
same symmetry as the potential energy.

The coordinate system of choice is the
spherical polar coordinate system that has an inherent
spherical symmetry.  This coordinate system is de-
scribed in Chapter 4 of the Calculus text and indicated
in Figure (1).  Instead of locating a point by giving its
x, y, and z coordinates, we locate it by the  r, θ  and φ
coordinates.  The quantity r is the distance from the
origin, θ the angle down from the z axis, and φ the
angle over from the x axis, as shown.
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In the appendix to Chapter 4 of the Calculus text, we
calculated   ∇ 2  in spherical polar coordinates.  The
result was

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ) + 1

r2 sinθ
∂
∂θ

sinθ ∂ψ
∂θ

+ 1
r2 sinθ

∂2ψ
∂φ2

(44)

This surely does not look simpler than
  ∇ 2 = ∂2/∂x2 + ∂2/∂y2 +∂2/∂z2 , but it does allow

you to find solutions to Schrödinger's equation for
the hydrogen atom.

In the appendix to this chapter, we calculate some
spherically symmetric solutions to Schrödinger's
equations.  These are solutions that depend only on
r, namely   ψ = ψ(r) , so that   ∂ψ/∂θ = 0  and

  ∂ψ/∂φ= 0, which eliminates the second and third
terms in Equation (44).  The solutions we get, (we
solve one and leave the second as a homework
exercise) are

   
ψ1 = e– r /a0 e– iω1t (45)

   
ψ2 = 1 – r

2a0
e– r /2a0 e– iω2t

(46)

where  a0  has the value

  
a0 = h2

me2
Bohr radius (47)

This quantity  a0  is the Bohr radius, the radius of the
smallest orbit in the Bohr theory of hydrogen. (See
Exercise 7 in Chapter 35 of the Physics text.)

Exercise 3

Go to Appendix II of this chapter (page 6-14) and study
the steps that led to the solution   ψ1 . Then work Exercise
5 to find the solution   ψ2 . After that return here and
continue reading.

A special feature we discover when we solve
Schrödinger's equation in Appendix II,  is that in
order for   ψ1  and   ψ2  to be solutions of Schrödinger's
equation (43), the frequencies   ω1  and   ω2  have to
have the following values

  hω1 = – e4m
2h2

= – 13.6 eV (48)

  hω2 = – e4m
8h2

= – 3.60 eV (49)

You can immediately see that   hω1  is the energy of the
electron in the lowest hydrogen energy level, and   hω2
is the electron energy in the second energy level.  Just
looking at the spherically symmetric solutions begins
to tell us that Schrödinger's equation is going to explain,
in a natural way, the hydrogen energy levels.

As we mentioned in our discussion of the hydrogen
atom in Chapter 38 of the Physics text, there are many
allowed standing wave patterns for the electron in
hydrogen.  In Figure (38-1), reproduced on the next
page, we show sketches of the six lowest energy
patterns   ψn, ,m  labeled by their energy quantum num-
ber (n), angular momentum quantum number ( ) and
z projection of angular momentum quantum number
(m).  We noted that all the zero angular momentum
patterns  ( = 0)  are spherically symmetric.  By solving
Schrödinger's equation for spherically symmetric stand-
ing waves, we began to generate the  = 0  patterns.
Explicitly, the waves we got are

   ψ1,0,0 = ψ1 (of Equation 45)

   ψ2,0,0 = ψ2 (of Equation 46)

To solve for the non symmetric patterns like   ψ2,1,1 that
have angular momentum, you have to be able to handle
angular terms involving θ  and φ  in the formula (44)
for   ∇ 2 .  Differential equations involving   ∇ 2  have
been studied for well over a century, and the angular
terms, which are common to many of these equations,
have been carefully worked out with standardized
notation.  The angular dependence of the non spherical
standing waves involve what are called spherical
harmonics which are briefly discussed in  Appendix II
of this chapter.
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Figure 38-1 (page 38-3 of the Physics text)
The lowest energy standing wave patterns in hydrogen. The intensity is what you
would see looking through the wave. We have labeled      ψψ1  and      ψψ2 on the diagram.

E
 =

 –
13

.6
eV

n = 2,   = 0,  m = 0

  
ψ2(r) = 1 –

r

2a0
e– r /2a0

n = 3,   = 0,  m = 0

n = 2,   = 1,  m = 1

top view

side view side viewside view

There are 8 more n = 3 patterns
in addition to the one shown.
The  and m quantum numbers
are
 = 1;   m = 1, 0, –1
 = 2;   m = 2, 1, 0, –1, –2.

n = 2,   = 1,  m = 0 n = 2,   = 1,  m = –1

n = 1,   = 0,  m = 0

E
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 –
3.

40
eV

E
 =

 –
1.

51
eV

top viewtop view

(a)

(b)

(d)

(c) (e)

(f ) (h)

(g)

(i)

  ψ1(r) = e– r /a0
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INTERPRETATION OF SOLUTIONS
TO SCHRÖDINGER'S EQUATION
Bohr's theory of the hydrogen atom, although quite
successful, was based on Newtonian mechanics with
the ad hoc assumption that angular momentum was
quantized in units of h .  De Broglie's theory suggested
that the reason for the quantization of angular momen-
tum was due to the wave nature of the electron, but he
also treated the electron wave in a rather ad hoc manner.
If one assumes that Schrödinger's equation rather than
Newtonian mechanics provides the basic theory for the
electron in hydrogen, then all the quantized energy
levels follow a direct consequence of the theory.  No
extra assumptions have to be fed in.  Schrödinger had
found the theory to replace Newtonian mechanics in
describing atoms.

But questions remained.  The electron's wave nature
was well established, but what was the meaning of the
electron wave?  The answer to that was provided a
couple of years later by Max Born, who was calculating
how electron waves would be scattered by atoms.  The
calculations suggested to him that the electron wave
should be interpreted as a probability wave, as we
discussed in Chapter 40 of the Physics text.

One of the main features of a probability wave is that
it has to be represented by a real, positive number.  You
cannot have negative probabilities or imaginary prob-
abilities.  But so far, our electron waves are described
by a complex variable  ψ , obtained from an equation
that was itself complex.  How do we get real positive
numbers from the complex  ψ ?

We ran into a somewhat similar problem in our discus-
sion of electromagnetic radiation.  Maxwell's equa-
tions predict that light waves consist of electric and
magnetic fields  E  and   B  .  Yet most of the time we are
concerned with the intensity or energy density of a light
wave.  To predict the intensity from Maxwell's theory,
we have to know how to calculate the intensity from the
vectors  E  and  B .  The answer is that the intensity is
proportional to the square of  E  and   B.  If we use the
correct units, the intensity is proportional to

  (E ⋅ E + B ⋅ B) .  These dot products   E ⋅ E  and   B ⋅ B
are always positive numbers and therefore can repre-
sent an energy density or intensity.

If we can get a positive number for a vector field by
taking the dot product of the vector with itself, what
do we do to get a positive number from a complex

 ψ ?  The answer, as we mentioned at the beginning
of Chapter 5 (see Equation 5-26), is that we get a real
positive number from a complex number by multi-
plying by the complex conjugate.  To remind you
how this works, suppose that we have separated  ψ
into its real and imaginary parts

   ψ = ψreal + iψimag (50)

where both   ψreal  and   ψimag  are real numbers.  Then
the complex conjugate, which we designate by   ψ* ,
is defined by changing (i) to (–i)

   ψ* = ψreal – iψimag (51)

To calculate the complex conjugate   ψ*  you do not
have to separate the function into real and imaginary
parts ahead of time.  You get the same result by
replacing all (i) by (–i) in the complex formula.

When you multiply a complex number  ψ  by its
complex conjugate   ψ* , the result is a real positive
number, as you can see below

   ψ*ψ = (ψreal – iψimag) (ψreal + iψimag)

= ψrealψreal + iψrealψimag

– iψimagψreal – i2ψimagψimag

The    iψrealψimag terms cancel, and with   – i2 = 1 we get

  
ψ*ψ = ψreal

2 + ψimag
2

(52)

and thus   ψ*ψ is a real, positive number.

For electron waves, the positive number   ψ*ψ repre-
sents the intensity of the wave in much the same way
that   (E ⋅ E + B ⋅ B)  represented the intensity of the
electromagnetic wave.
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Figure 2
We can use as the volume element  d 3V the spherical
shell of radius r and thickness dr.

Normalization
In describing probabilities, one usually represents a
probability of 1 as being certainty, and that the
probability of an event as being allowed to range
from zero to one.  If the wave function  ψ  is to
represent a probability wave for an electron, we have
to include the idea that the probability of something
ranges from zero to one.

The intensity   ψ*ψ is a density that varies over space.
If you have an energy density, call it E , then the total
energy E is the integral over all of space of the
energy density E .  We can write this symbolically as

  E = E (x,y,z)d3V
all space

(53)

where, if we are using Cartesian coordinates, the
volume element  d3V  would be   (dx×dy×dz) .

If we are to interpret   ψ*ψ as a probability density, then
the total probability should be the integral of the
probability density over all space.  We can write this as

  total
probability = ψ*ψ d3V

all space

(54)

The question is, this is the total probability of what?  If
we are talking about the electron wave in hydrogen, and
we think of   ψ*ψ d3V  as the probability of finding the
electron in some small volume element  d3V , then if
we sum these probabilities over all space, we should
end up with the total probability of finding the electron
somewhere in space.  If the hydrogen atom has one
electron, and you look everywhere, you should eventu-
ally find the electron with a probability (1).  Thus the
total probability should be given by the formula

  
1 = ψ*ψ d3V

all space

(55)

The wave functions   ψ1  and   ψ2  that we presented
you in Equations (45) and (46) do not have this
property.

Let us see what the integral of   ψ1
*ψ1  over all space

is.  We have

   ψ1 = e– r /a0 e– iω1t (56a)

   ψ1
* = e– r /a0 e+ iω1t (change – i to i) (56b)

so that

   ψ1
* ψ1 = e– r /a0 e+ iω1t e– r /a0 e– iω1t

  
ψ1*ψ1 = e– 2r/a0

(57)

The    e iω1t′s  cancelled and we end up with a real
positive density.

To integrate   ψ*ψ over all space, we notice that since
  ψ*ψ is spherically symmetric, we can take  d3V  as the

volume of the spherical shell shown in Figure (2), a
shell of radius r and thickness dr.  That volume is

  d3V = (4πr2)dr (58)

because   4πr2 is the area of a sphere of radius r.
Throughout the shell,   ψ*ψ has the same value

 e– 2r/a0 , thus our volume integral is simply

  
ψ*ψ d3V

all space

= e– 2r/a0 (4πr2)dr
r = 0

∞

 (59)

Being somewhat lazy, we look up in our short table
of integrals, the integral of   r2e– α r.  After some
manipulation shown in Appendix 1, we get

  
4π r2e– 2r/a0dr

0

∞
= π(a0)3 (60)

The result is that the integral of   ψ*ψ over all space
is   π(a0)3  instead of the desired value of 1.
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To fix this problem, we use a so-called normalized
wave function   (ψ1)normalized , which is simply   ψ1
multiplied by an appropriate normalization constant
C.  To find out what C should be, write

  (ψ1)normalized = Cψ1 (61a)

  (ψ1
*)normalized = C*ψ1

* (61b)

where, if we want, the normalization constant can be
complex.  Then we have

  (ψ1*)normalized(ψ1)normalized = (C*C) ψ1* ψ1

  1 = (ψ1*) normalized (ψ1)normalized d3V
all space

= C*C ψ*ψ d3V
all space

= C*Cπ(a0)3

(62)

Thus

  C*C = 1

π(a0)3
(63)

The simplest choice is to take C real, giving

   
C = 1

π(a0)3

normalization
constant for ψ1

(64)

As a result our normalized wave function becomes

  
(ψ1)normalized = 1

π(a0)3
e– 2r/a0 e– iωt

(65)

When you look at tables of wave functions, you will
see factors like 1/   π(a0)3  or    3/8π .  They are
merely the normalization constants.  In one sense,
the normalization constants just make the formulas
look complicated.  Most of the physics in our equa-
tion for   ψ1  is contained in the factor   e– r/a0 .  It tells
us that the electron wave decays exponentially as we
go out from the proton, decaying by a factor of 1/e
when we go out one Bohr radius  a0 .  The intensity,
or probability   ψ*ψ  is proportional to   e– 2r/a0  and
thus drops off by a factor  1/e2  when we are a Bohr
radius from the proton.  We also calculated the
energy levels  E1  and  E2  without worrying about
the normalization constants.  It is nice to have a table
that gives you the normalization constants, but you
get a better insight into the shape of the standing
wave patterns if you have another table without
them.

Exercise 4
At what finite radius is there zero probability of finding
an electron when the electron is in the n = 2,  = 0,
m = 0 standing wave pattern?  Explain why and sketch
the intensity   ψ2,0,0

* ψ2,0,0
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THE DIRAC EQUATION
Our story is incomplete if we stop our discussion of
particle wave equations with Schrödinger's equa-
tion.  As successful as that equation is, it still does
not handle relativistic effects.  As we saw,
Schrödinger could avoid the negative rest mass
solutions by starting with the nonrelativistic formula

 E = p2/2m  rather than the relativistic one
 E2 = p2c2 + m0

2c4 .

It appeared to Dirac that the reason Schrödinger
could avoid the nonphysical solutions is because the
nonrelativistic equation involves only the first de-
rivative with respect to time   ∂ψ/∂t , rather than the
second derivative   ∂2ψ/∂t2  that appeared in the
relativistic equation (see Equation (14).  Dirac thought
that if he could develop a relativistic wave equation
that avoided second time derivatives, then perhaps
he could avoid the un-physical negative mass solu-
tions.

By 1929, when Dirac was working on the problem,
it was known that the electron had two spin states,
spin up and spin down.  It was these two spin states,
along with the Pauli exclusion principle, that led to
an understanding of the structure of the periodic
table.  These spin states are not included in or
explained by Schrödinger's equation.

Slightly earlier, Wolfgang Pauli had introduced a
new mathematical quantity called a spinor to de-
scribe the spin state of the electron.  Spinors are
quantities, involving complex numbers, that are in a
sense half way between a scalar number and a
vector.  The existence of such a mathematical quan-
tity was unknown until its invention was required to
explain the electron.  Pauli was able to modify
Schrödinger's equation with the use of spinors to
include the effects of electron spin.

Dirac found that by using a certain combination of
spinors, he could write a relativistic wave equation
for the electron that had only a first order time
derivative   ∂ψ/∂t .  He hoped that this equation would
avoid the un-physical negative mass solutions.

Dirac's equation was successful in that it not only
included all the results of Schrödinger's and Pauli's
equations, but it also correctly predicted tiny relativ-
istic effects that could be detected in the spectra of
hydrogen.  However, Dirac soon found that his
equation also led to the apparently negative mass
solutions.

Dirac could not throw his equation away because it
successfully predicted relativistic effects that were
observed by experiment.  Instead he found a new
interpretation of the previously undesirable solu-
tions.  He found that these solutions could be reinter-
preted as the wave for a particle whose mass was
positive but whose electric charge was of the oppo-
site sign.  The equation led to the prediction that
there should exist a particle with the same rest mass
as the electron but with a positive electric charge.
That particle was observed four years later in Carl
Anderson's cloud chamber in the basement of the
physics building at Caltech.  It became known as the
positron.

We now know that any relativistic wave equation for
a particle has two kinds of waves for a solution.  One
represents matter particles, and the other, like the
wave for the positron represents antimatter.  If you
have a relativistic wave equation, even if you start
only with matter particles, the equation contains the
mechanism for particle-antiparticle pair creation.
You let the matter particles interact, and antimatter
has a finite probability of being created.  That is why
Schrödinger and Dirac could not suppress the anti-
matter waves in the relativistic equations.  However,
by going to a nonrelativistic equation, representing
situations where not enough energy is available to
create electron positron pairs, Schrödinger could
avoid the antimatter waves.
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Our normalization integral is

  
ψ*ψ d3V

all space

= 4π r2 e– 2r/a0 dr
r = 0

∞
  (59) repeat

Looking for the integral of   r2e– α r in our short table
of integrals in the formulary, we find instead

 x2e– axdx = 1
a3(a2x2 + 2ax + 2)e– ax (66)

If we set x = r and integrate from 0 to infinity, we have

  
r2e– ardr

0

∞

= 1
a3(a2r2 + 2ar + 2)e– ar

0

∞

= 1
a3(a2R2 + 2aR + 2)e– aR

R = ∞

– 1
a3(a202 + 2a×0 + 2)e– a×0

(67)

The exponential decay is so powerful that in the limit
of large R, a term of the form  Rne– aR  goes to zero
for any value of n for positive (a). Thus all terms with
a  e– aR go to 0 as R goes to infinity. With  e0 = 1, we
are left with

  
r2e– ardr

0

∞

= 2
a3 (68)

Now set  a = 1/ 2a0  and we get

  
4π r2e– 2r/a0 dr

0

∞

= 4π 2
(2/a0)3

= π(a0)3
(69)

Appendix I – Evaluation of a Normalization Integral



Cal 6-14      Calculus  2000 - Chapter 6       Introduction to Schrödinger's Equation

APPENDIX II - An introduction to Schrödinger's
Equation Applied to the Hydrogen Atom
The Hydrogen Atom
Schrödinger's first major success with his wave
equation was to solve for the electron standing
waves in hydrogen, and to determine the electron
energies in each of the standing wave patterns.  For
an electron in hydrogen, the potential energy is
given by Coulomb's law as

 V(r) = – e2

r (42) repeated

where –e is the charge on the electron and r is the
separation of the electron and proton.  Thus the
equation Schrödinger had to solve for hydrogen is
the three dimensional equation

   
ih

∂ψ
∂t

= – h2

2m
∇ 2ψ – e2

r ψ
Schrödinger′s
equation for
hydrogen atom

(43) repeated

Quite a few steps are required to obtain solutions to
Equation (43).  The first is to look for solutions of
definite frequency  ω  or energy   E = hω  by using the
trial function

   ψ = ψ(x,y,z) e– iωt

= ψ(x) e– iωt
(70)

where we will use the bold face x to stand for (x,y,z).
Plugging this guess into Equation (43) gives

    
ih(– iω)ψ(x) e– iωt = – h2

2m
∇ 2ψ(x) e– iωt

– e2

r ψ(x) e– iωt

The factor   e– iωt  cancels and we are left with

   
hωψ(x) = – h2

2m
∇ 2ψ(x) – e2

r ψ(x) (71)

With   hω = E, this becomes

   
Eψ(x) = – h2

2m
∇ 2ψ(x) – e2

r ψ(x) (72)

The next step is to note that  it is not convenient to
handle a spherically symmetric potential  V(r) = – e2/r
using Cartesian coordinates x, y, and z.  In the Chapter
4 of the Calculus text we derived the formula for   ∇ 2  in
spherical polar coordinates  r, θ , φ  which are shown
in Figure (1) reproduced here.  In these spherical
coordinates we show, after considerable work, that

  ∇ 2ψ  is given by Equation (4-10) as

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ)

+ 1
r2sinθ

∂
∂θ

sinθ∂ψ
∂θ

+ 1
r2 sin2θ

∂2ψ
∂φ2

(4-10)

(Note: many texts write the first term as
  1/r2 ∂/∂r (r2∂ψ/∂r)  which is an equivalent but usu-

ally less convenient form.)

x

y

θ

z

r

φ

Figure 1 (repeated)
Spherical polar coordinates.
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If we look at only the spherically symmetric solu-
tions where

   
ψ(x,y,z) = ψ(r)

spherically
symmetric
wave (73)

then   ∂ψ(r)/∂θ = 0 ,   ∂ψ/∂φ= 0 , and only the radial
part of   ∇ 2ψ(r)  survives.  Schrödinger's equation for
the spherically symmetric waves of energy E becomes

  
Eψ = – h2

2m
1
r

∂2

∂r2
(rψ) – e2

r ψ (74)

Multiplying through by  2mr/h2, Equation (74) can
be written in the form

  ∂2

∂r2
(rψ) + a

r + b rψ = 0 (75)

where

 a = 2me2

h2 ; b = 2mE
h2 (76)

If we define the variable  u(r)  by

  u = rψ ; ψ = u
r (77)

our equation for u becomes

  ∂2u
∂r2 + a

r + b u = 0 (78)

Exercise 5

Derive Equation (78) starting from Equation (74).

Equation (78) is a differential equation we have not
encountered before.  Neither of our familiar guesses
for a solution, like   u = e– α r or   u = sinωr , will work,
as you can check for yourself.  What does work is the
function we will call  u1 , which is

   u1(r) = re– α r guess (79)

Plugging our guess into Equation (79) gives

  du1
dr

= e– α r – α re– α r

  d2u1

dr2
= – αe– α r – αe– α r + α2re– α r

Thus 
 d2u1

dr2 + a
r + b u = 0  becomes

  – 2αe– α r + α2re– α r + a
r re– α r + bre– α r = 0

The common factor   e– α r cancels and we are left with

  – 2α + a + r α2 + b = 0 (80)

The only way we can satisfy Equation (80) for
arbitrary values of r is to set both square brackets
separately equal to zero, giving

  2α = a ; α = a/2 (81a)

  α2 = –b (81b)

Squaring Equation (81a) gives

  α2 = a2

4
(81c)

For Equations (81b) and (81c) to be consistent, the
constants (a) and (b) must satisfy the relationship

 –b = a2

4
(82)

To see what Equation (82) implies, let us put back in
the values of (a) and (b)

  a = 2me2

h2
; a2

4
= 1

4
× 4m2e4

h4
(83a)

 –b = – 2mE
h2

(83b)

Thus Equation (82) requires

 – 2mE
h2

= m2e4

h4

or

 
E = – me4

2h2 = – 13.6 eV (84)

In our study of the Bohr theory, we found that the
lowest energy level of the hydrogen atom was

 E1 = – me4/2h2  which turns out to be –13.6 elec-
tron volts.  We now see that if the hydrogen wave
amplitude is given by the solution  u1 , or   ψ1 = u1r ,
then the energy of the electron in this wave pattern
must be the same as the lowest energy level of the
Bohr theory.  This is a prediction of Schrödinger's
wave equation without any arbitrary added assump-
tions like assuming angular momentum is quan-
tized.
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To see what the wave pattern is that corresponds to
the energy level  E1 , note that the Bohr radius  a0 , the
radius of the smallest Bohr orbit in the Bohr theory,
is given by

  
a0 = h2

me2 Bohr radius (85)

Thus our constant (a) in Equation (77) can be written

 a = 2me2

h2
= 2

a0
(86)

Thus Equation (81a) requires that

  a = 2α = 2
a0

; α = 1
a0

(87)

and the wave function   ψ1(r)  is given by

  ψ1(r) =
u1(r)

r = r e– α r
r = e– α r

  ψ1(r) = e– r/a0 (88)

The electron wave decays exponentially as we go
out from the nucleus, decaying by a factor of 1/e
when we go out one Bohr radius.  We have just used
Schrödinger's equation to solve for the ground state
wave function, the lowest energy level standing
wave pattern in hydrogen.

The Second Energy Level
In the following exercise you will find another
spherically symmetric solution for the hydrogen
atom.

Exercise 6
Try the guess

   u2(r) = (r + cr2)e– αr , u2 = rψ2 (89)

as a possible solution to Equation (78) where (c) is an
unknown constant.  Show that for (89) to be a solution,
you have to satisfy the conditions

  – 2α + 2c + a = 0 (90a)

  α2 – 4cα + ac + b = 0 (90b)

  α2c + bc = 0 (90c)

Then show that this requires    α2 = –b  as before, and that

   
– b = a2

16
⇒ – 2mE2

h2 = 1
16

×
4m2e4

h4 (91)

or

  
E2 = – 1

4
me4

2h2 =
– 13.6 eV

4 = – 3.60 eV (92)

Then show that    ψ2(r) is given by

   
ψ2 = (1 – r

2a0
)e– r/2a0

  E2 = – 3.6 eV (93)
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In the Bohr theory, the energy levels  En  are given by

 
En =

E1

n2
= – 13.6 eV

n2
(94)

The second energy level  E2  is thus

 
E2 =

E1

(2)2
=

E1
4

= – 3.6 eV

Thus the wave pattern you solved for in Exercise (8)
is the spherically symmetric standing wave pattern
in the second energy level.  It is what we have called
the  n = 2,  = 0 wave pattern.  Note that in the
solution

  ψ2(r) = 1 – r
2a0

e– r /2a0 (93) repeated

when we are at a distance

 r
2a0

= 1 ; r = 2a0 (95)

the wave pattern in Equation (93) goes to zero.  This
means that the standing wave   ψ2(r)  has a spherical
node out at a distance  r = 2a0 .  This is the spherical
node we saw in the   ψ(n = 2, = 0)   pattern shown in
the Physics text, Figure (38-1) repeated here.

If you try a guess of the form

  u3(r) = (1 + c2r + c3r2)e– α r (96)

you end up with a spherical wave pattern   ψ3(r)  that
has two spherical nodes, and has an energy

 
E3 =

E1

32 (97)

which is the third energy level.

You can now see the pattern.  We can generate all the
spherically symmetric  = 0  wave patterns by add-
ing terms like  c4r3 ,  c5r4 ,   ⋅ ⋅ ⋅ cnrn–1  to our guess for

 un(r) .  Solving for all the constants, we end up with

 
En =

E1

n2
(98)

which is the energy level structure Bohr discovered.

Figure 38-1a
Hydrogen atom
standing wave
pattern for
n = 2,  = 0.

Figure 38-1i
Wave pattern for n = 3,  = 0.

Figure 3
Tacoma Narrows
bridge in an n = 2
second harmonic
standing wave
pattern.

(Movie. Press esc to stop)
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Non Spherically Symmetric Solutions
It was fairly easy to handle the spherically symmet-
ric solutions to Schrödinger's equation for hydro-
gen, because we did not have to deal with the angular
terms involving θ  and φ  in Equation (4-10) for   ∇ 2 .
To find non spherically symmetric solutions, we
have to work with the complete equation

  
Eψ = – h2

2m
∇ 2ψ + V(r)ψ

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ)

+ 1
r2sinθ

∂
∂θ

sinθ∂ψ
∂θ

+ 1
r2 sin2θ

∂2ψ
∂φ2

(99)

Differential equations involving   ∇ 2  in spherical
coordinates have been studied for a long time and
standard procedures have been carefully worked out
to handle the angular dependence of the solutions of
these equations.  As long as the equation has no other
angular terms except those that appear in   ∇ 2 , then
the solutions are of the form

  f(r,θ,φ) = Rn m(r)Y m(θ,φ) (100)

where  Rn m(r)  are functions that depend only on the
variable (r), and the   Y m(θ,φ)  are functions only of
the angles θ  and φ .  The subscripts n,  and m can
take on only integer values.

When we are dealing with Schrödinger's equation,
the solutions are of the form

  ψ(r,θ,φ) = ψn m(r)Y m(θ,φ) (101)

where each different allowed integer value of the
subscripts  n, , and m corresponds to a different
allowed standing wave pattern for the electron.

The functions   Y m(θ,φ) , which are called spherical
harmonics, start off quite simply for small , m, n,
but become more complex as  and m increase.  The
simplest are

   Y0,0(θ,φ) = 1 no angular dependence

  Y1,0 = cosθ

  Y1,1 = – 1
2

sinθ eiφ

  Y1,– 1 = 1
2

sinθ e–iφ (102)

Since  Y0,0  has no angular dependence, all solutions
of the form

  ψn,0,0 = ψn(r)Y0,0 = ψn(r) (103)

are the spherically symmetric solutions we have
already been studying.  We calculated   ψ1(r)  and
had you calculate   ψ2(r) , which corresponds to the
values n = 1 and n = 2 respectively.

When we worked out the solution   ψ1(r)  we found
that it represented an electron in the lowest, n = 1,
energy level.  You were to show that   ψ2(r)  repre-
sented an electron in the second, n = 2, energy level.
We can see that for the symmetric solutions, the
integer subscript n is the energy quantum number for
the electron.

It turns out that the integer subscripts  and m define
the amount of angular momentum the electron has in
a particular wave pattern.  When  = 0, m = 0, the
electron has no angular momentum.  Thus the sym-
metric solutions represent an electron with no angu-
lar momentum.

The quantum number  is related to the total orbital
angular momentum of the electron, and m is propor-
tional to the z component  Lz  of orbital angular
momentum.  Explicitly

 Lz = mh (104)
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The fact that the numbers , m and n have to have
integer values is simply a consequence that for any
confined wave, there is an explicit set of allowed
standing wave patterns.  The electron in the hydro-
gen atom is confined by the Coulomb force of the
proton.  When you work out the mathematics to
handle   ∇ 2  in spherical coordinates, you find that the
allowed standing wave patterns can be identified by
the integers , m and n.

There are certain rules for the possible values of ,
m and n.  When n = 1, there is only one solution
which we found.  It corresponds to  = m = 0.  For
n = 2, the possible solutions are:

n m

2 0 0                 possible values of
and m for n = 2

2 1 0

2 1 1

2 1 –1

In general, n  ranges from 1 to infinity,  can have
values from 0 up to n - 1, and m can range in integer
steps from +  down to - .  These are the rules that
define the possible standing wave patterns of the
electron in hydrogen.
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Calculus 2000-Chapter 7
Divergence

CHAPTER 7 DIVERGENCE

In the Physics text we pointed out that a vector field
was uniquely determined by formulas for the surface
integral and the line integral.  As we have mentioned
several times, that is why there are four Maxwell
equations, since we need equations for the surface
and line integral of both the electric and magnetic
fields.  The divergence and curl are the surface and
line integrals shrunk down  to an infinitesimal or
differential scale.  We will discuss divergence in this
chapter and curl in the next.
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THE DIVERGENCE
As we mentioned, the divergence is a surface inte-
gral shrunk down  to an infinitesimal or differential
scale. To see how this shrinking takes place, we will
start with the concept of the surface integral as
expressed by Gauss' law and see how we can apply
it on a very small scale.

We begin with Equation (29-5) of the Physics text

  E⋅dA
closed
surface

=
Qin
ε0

(29-5)

Equation (29-4) says that for any closed surface, the
integral of   E ⋅ dA  over the surface is equal to   1/ε0
times the total charge  Qin  inside the volume bounded
by the surface.

The interpretation we gave to this equation was to
call   E ⋅ dA  the flux of the field  E  out through the
area element  dA  .  The integral  over the closed
surface is the total flux flowing out through the
surface. We said that this net flux out was created by
the electric charge inside.  By calculating the flux of

 E  out through a spherical surface centered on a
point charge, we found that the amount of flux
created by a charge Q  was   Q/ε0 .

The fact that Equation (29-4) applies to a surface of
arbitrary shape follows from the fact that the electric
field of a point charge is mathematically similar to
the velocity field of a point source in an incompress-
ible fluid like water.  We described a point source of
a velocity field as some sort of "magic" device that
created water molecules.  The physical content of
Gauss' law applied to water was that the total flux of
water out through any closed surface had to be equal
to the rate at which water molecules were being
created inside.

Of course for a real situation there are no "magic"
sources creating water molecules, with the result
that there is no net flux of water out through any
closed surface, and the velocity field of water obeys
the equation

  v ⋅ dA
closed
surface

= 0 (1)

Equation (1) is the condition that the velocity field is
a purely solenoidal field like the magnetic field.

Back to Gauss' law, Equation (29-5). Before we
shrink the law to an infinitesmal scale, we would like
to change the right hand side, expressng the total
charge  Qin  in terms of the charge density   ρ(x,y,z)
that is within the volume bounded by the closed
surface.

We do this by considering a small volume element
  ∆Vi = (∆x ∆y ∆z)i .  If the charge density at point

(i) is   ρ(xi,yi,zi)  then the amount of charge   ∆Qi  at
  ∆Vi  is

  ∆Qi = ρ(xi,yi,zi)∆Vi (2)

Adding up all the   ∆Qi  that reside inside the surface
gives us

  Qin = ∆QiΣ
i

= ρi∆ViΣ
i

= ρ(xi,yi,zi) ∆xi ∆yi ∆ziΣ
i

(3)

Taking the limit as the   ∆x ,   ∆y  and   ∆z  go to zero
gives us the integral

  Qin = ρ(x,y,z)
volume
bounded by
closed surface

dxdydz

(4)

To shorten the notation, let V be the volume bounded
by the closed surface S, and introduce the notation

  d3V ≡ dxdydz (5)

Then Equation (4) can be written

  
Qin = ρ(x,y,z)

V

d3V (6)

Using Equation (6) in Gauss' law (29-5) gives us

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7)

Equation (7) is a more general integral form of
Gauss' law, relating the surface integral of  E  over a
closed surface S to the volume integral of ρ  over the
volume bounded by S. It is Equation (7) that we
would now like to shrink down to an infinitesmal
scale.

∆x
∆y

∆z ∆V
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We know how to go to the small scale version of the
volume integral of ρ ,  just undo the steps (2) through
(6) that we used to derive the volume integral.  In
particular we will focus our attention on one small
volume element   ∆Vi = ∆xi ∆yi ∆zi  and apply Gauss'
law to this volume

  
E⋅dA

surface
bounding
∆Vi

=
∆Qi
ε0

= 1
ε0

ρ(xi,yi,zi)∆Vi

(8)

It is clear how we got the total charge  Qin when we
added up all the   ∆Qi  inside the volume V.  But how
do we handle the surface integral of  E ?  How do we
interpret adding a bunch of surface integrals over the
small volume elements   ∆Vi  to get the surface inte-
gral over the entire surface S?

The way to picture it is to remember that the surface
integral over the surface of   ∆Vi  is equal to the flux
of  E  created inside   ∆Vi .  From this point of view,
the total flux flowing out through the surface of the
entire volume will be the sum of the fluxes created
within each volume element.  To calculate this sum,
we first have to calculate the flux flowing out of the
volume element   ∆Vi .

In Figure (1), we show the volume element   ∆Vi
located at  (xi,yi,zi) , with sides   ∆x ,   ∆y  and   ∆z .
Flowing through this volume element is the electric
field  E(x,y,z) .

Also in Figure (1) we have drawn the surface area
vectors   ∆A1 , and   ∆A2  for the left and right vertical
faces.  Recall that for a surface integral, the area
vector   ∆A  or  dA  is perpendicular to the surface,

pointing out of the surface.  Thus   ∆A2  is x directed
with a magnitude equal to the area   ∆y∆z of that side,
while   ∆A1  points in the –x direction and has the
same magnitude.

We can formally write

  ∆A1 = – x∆y∆z ; ∆A2 = x∆y∆z (9)

where x is the unit vector in the x direction.  Similar
formulas hold for the area vectors for the other four
faces of   ∆V .  For example, on the top face we have

  ∆A3 = z∆x∆y .

To calculate the total flux of  E  out of   ∆V , we have
to calculate the flux out through each of the six faces.
For the two x oriented areas   ∆A1 , and   ∆A2 , only
the x component of  E  will contribute to the dot
products   E⋅ ∆A .  Let  Ex(x,y,z)  be the average
value of  Ex  at face 1, and   Ex(x +∆x,y,z)  be the
average value of  Ex  at face 2, which is a distance   ∆x
down the x axis from face 1.  The flux out of face 2
will be

  flux out
of face 2 = Ex(x +∆x,y,z)∆A2

= Ex(x +∆x,y,z)∆y∆z
(10)

At face 1, where   ∆A1 = – x∆y∆z  , the dot product
  E⋅ ∆A  can be written

  E⋅∆A1 = (xEx+yEy+zEz)⋅(–x∆y∆z)

= –Ex(x,y,z)∆y∆z
(11)

where   x ⋅ x = 1 ,   y ⋅ x = z ⋅ x = 0.  We wrote the full
dot product in Equation (11) so that you could see
explicitly where the minus sign came from.

Combining Equations (10) and (11) for the total flux
out of the two x directed faces of   ∆V , we get

  flux out
of x
directed
faces

= Ex(x +∆x,y,z) – Ex(xy,z) ∆y∆z

(12)

∆x
∆y

∆z

z

x

y

∆A1 ∆A2

∆A3    

(x , y , z ) i i i

Figure 1
The volume element      ∆∆Vi .
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If we multiply Equation (12) by   ∆x/∆x = 1  we get

  flux out
of x
directed
faces of ∆V

=
Ex(x+∆x,y,z) –Ex(x,y,z)

∆x
∆x∆y∆z

(13)
At this point,   Ex(x +∆x,y,z)  and  Ex(x,y,z)  are the
average values of  Ex , averaged over the x directed
faces at   x + ∆x  and x respectively, while the func-
tions without averaging, namely   Ex(x +∆x,y,z)  and

 Ex(x,y,z)  are just the values of  Ex at the lower front
corners of the x oriented faces as shown in Figure
(2).  Any difference between the average values of

 Ex  and the corner values  Ex  will be due to y and z
variations of  Ex  over the area   ∆y∆z .

In Equation (13) we see that the change of  Ex , as we
move in the x direction, is going to become very
important.  It should be clear that we are going to get
a partial derivative of  Ex  with respect to x.  What we
are going to do now is say that variations of  Ex  in the
x direction are important but variations of  Ex  in the
y  and z direction are not, and as a result we can
replace the average values of  Ex  with the corner
values  Ex .

The above paragraph was intended to sound like a
questionable procedure.  If we do it, Equation (13)
immediately simplifies, as we will see shortly. But
how do we justify such a step?  The answer, which
we work out in detail in the appendix to this chapter,
is that when we take the limit as   ∆V  goes to zero,
contributions due to y and z variations of  Ex  go to
zero faster than the contribution from the x variation.
Neglecting the  y  and z variations turns out to be
similar to neglecting   α2  terms compared to α  terms
in an expansion of   (1 + α )n  when α  is a small
number.

We put this discussion in the appendix because it
takes some effort which distracts from our goal of
reducing Gauss' law to a differential equation.  How-
ever it is important to know how to figure out when
certain terms or dependencies can be neglected
when we take calculus limits.  Thus the appendix
should not be skipped.

Assuming that we can replace  Ex by  Ex  in Equation
(13), noting that   ∆x∆y∆z = ∆V , and taking the
limit as   ∆x  goes to zero gives us

  flux out of
x directed
faces of ∆V

= limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆V

(14)
The limit is clearly the partial derivative

  ∂Ex(x,y,z)/∂x  and we get

  flux out of
x directed
faces of ∆V

=
∂Ex(x,y,z)

∂x
∆V (15a)

Similar equations should apply to the y and z faces,
giving us

  flux out of
y directed
faces of ∆V

=
∂Ey(x,y,z)

∂y
∆V (15b)

  flux out of
z directed
faces of ∆V

=
∂Ez(x,y,z)

∂z
∆V (15c)

Exercise 1

Draw the appropriate sketches and reproduce the
arguments needed to derive Equation (15b) or (15c).

∆x ∆y

∆z

z

x

E  (x+∆x,y,z)xE  (x,y,z)x

(x, y, z) (x+∆x, y, z) 
Figure 2
Electric field at the lower front corners.
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When we add up the flux  out of all six faces, we get
the total flux out of   ∆V

  
total flux
out of ∆V

=
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
∆V (16)

You should spot immediately that the notation in
Equation (16) can be simplified by introducing the
partial derivative operator

  
∇ = x

∂
∂x + y

∂
∂y + z

∂
∂z

≡ (x ∇ x + y ∇ y + z ∇ z)
(17)

From the definition of the vector dot product we have

  ∇ ⋅E

= x
∂
∂x

+y
∂
∂y

+z
∂
∂z

⋅(xEx+yEy+zEz )

=
∂Ex
∂x

+
∂Ey

∂y
+

∂Ez
∂z

(18)

where we used   x ⋅ x = 1 ,   x ⋅ y = 0 , etc., and noted
that the unit vectors are constants that can be taken
outside the derivative.  For example,

  ∂
∂x

(xEx) = x
∂Ex
∂x

(18a)

Using the notation of Equation (18), we get for the total
flux out of   ∆V

  total flux
out of ∆V

= (∇ ⋅E)∆V (19)

Equation (19) applies to each   ∆Vi  at each point
 (xi, yi, zi)  within any volume V bounded by a

closed surface S.  The total flux out through the
surface S, which is the surface integral of  E , will be
equal to the sum of all the flux created inside in all
the   ∆Vi .  Thus we get

  E⋅dA
surface
bounding V

= (∇ ⋅E)∆ViΣ
i

(20)

As we take the limit at   ∆Vi  goes to zero size, the sum
becomes an integral, and we end up with

   
E⋅dA

closed surface
bounding
volume V

= ∇ ⋅E
V

d3V divergence
theorem (21)

where we are using the notation of Equation (5) that
  d3V ≡ dxdydz .

Equation (21) is known as the divergence theorem,
and the quantity   ∇ ⋅E  is known as the divergence of
the vector field  E .  We saw the same operator  ∇  in
the Chapter 3 when it acted on a scalar field f(x,y,z).
Then we had what was called a gradient

   ∇ f gradient of
a scalar field

∇ ⋅E divergence of
a vector field

(22)

You can see that  ∇  operating on a scalar field
f(x,y,z) creates a vector field   ∇ f .  In contrast, the dot
product of  ∇  with a vector field  E  creates a scalar
field   ∇ ⋅ E  that has a value at every point  in space
but does not point anywhere.

Equation (21), the divergence theorem, is an ex-
tremely useful result for it allows us to go back and
forth between a surface integral and a volume inte-
gral.  In Equation (7) reproduced here,

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7) repeated

we had a mixed bag with a surface integral over a
closed surface on the left and a volume integral over
the enclosed volume V on the right.  Back then, there
was not much more we could do with that equation.
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But now we can replace the surface integral of  E
with a volume integral of   ∇ ⋅E  to get

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7) repeated

  ∇ ⋅E d3V

V

= 1
ε0

ρ(x,y,z) d3V

V

(23)

Since we are integrating over the same volume V for
both integrals, we can write (23) as

  
∇ ⋅E (x,y,z) –

ρ(x,y,z)
ε0

V

d3V = 0 (24)

The next argument is one often used in physics.
Since the integral in Equation (24) has to be zero
for any volume V we choose, the only way that can
happen is if the integrand, the stuff in the square
brackets, is zero.  This gives us the differential
equation

   
∇ ⋅E(x,y,z) =

ρ(x,y,z)
ε0

Gauss'
law in
differential
form

(25)

Equation (25) is the differential equation represent-
ing Gauss' law.  When Maxwell's  equations are
written as differential equations, this will be one of
the four.

Exercise 2
Another of Maxwell's equations in integral form is

  B ⋅ dA
closed
surface

= 0

What is the corresponding differential equation?

Electric Field of a Point Charge
Until now, in both the Physics and Calculus texts,
when we obtained a new differential equation, we
illustrated its use with explicit examples.  This time
we do not yet have a good example for our new
Equation (25)   ∇ ⋅E = ρ/ε0 .  This is the differential
form of Gauss' law, and our best example for the use
of Gauss' law was in calculating the electric field of
a point charge.  The problem is that, at the point
charge itself, the field  E  and its partial derivatives
are infinite and the assumptions we made in deriving
Equation (25) do not apply.

When we are dealing with the electric field of a point
charge, the field  E  is well behaved and all partial
derivatives  are finite, except at the charge.  The way
we can handle point charges is to use Equation (25)

  ∇ ⋅E = ρ/ε0  everywhere except in a small region
around the charge.  In that region we revert to the
integral form of Gauss' law which allows us to work
just outside the point charge and avoid the infinities.

Here is an outline of the way we handle the problem
of a point charge.  We are working with Equation (25)

  
∇ ⋅E(x,y,z) =

ρ(x,y,z)
ε0

(25) repeated

and everything is going well until we come up to a
point charge located at the point  (x0,y0,z0) .  In a
small region surrounding the point charge, we inte-
grate Equation (25) over the volume, getting

  ∇ ⋅E d3V
volume
surrounding
charge

=
ρ
ε0

d3V
volume
surrounding
charge

(26)

The volume integral of the charge density ρ  over the
region of the point charge is simply the charge Q
itself, thus we can immediately do that volume
integral, giving us

  ∇ ⋅E d3V
volume
surrounding
charge

=
Q
ε0

(27)
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We still have the problem that   ∇ ⋅E  is infinite at the
charge itself.  But we can avoid this problem by
converting the volume integral of   ∇ ⋅E  to a surface
integral of  E  using the divergence theorem, Equa-
tion (21)

  ∇ ⋅E d3V
volume
surrounding
charge

= E⋅dA
surface
enclosing
charge

(21) repeated

to get

  E⋅dA
surface
surrounding
charge

=
Q
ε0

(28)

In Equation (28), which we recognize as the form of
Gauss' law we started with in the Physics text, the
electric field is evaluated only at the surface sur-
rounding the point charge, and not at the charge
itself.  Away from the charge, the field is finite and
we have no problem with Equation (28).

There is a mathematical problem with the concept of
a point charge, where a finite amount of charge is
crammed into a region of zero volume, giving us
infinite charge densities and infinite fields there.  We
have just shown how these infinities can be avoided
mathematically, at least for Gauss' law, by convert-
ing the volume integral of   ∇ ⋅E  at the charge to a
surface integral of  E  out from the charge.  Was this
just a mathematical exercise, or in physics do we
really have to deal with point charges?

The theory of quantum electrodynamics, which de-
scribes the interaction of electrons with light (with
photons), is the most precisely verified theory in sci-
ence.  It explains, for example, the very smallest
relativistic corrections observed in the spectrum of the
hydrogen atom.  This theory treats the electron as an
actual point particle with a finite amount of mass and
charge confined to a region of zero volume.  The trick
we just pulled to handle the electric field of a point
charge was quite simple compared to the tricks that the
inventors of quantum electrodynamics, Feynman,
Schwinger, and Tomonaga, had to pull to handle the
infinite mass and energy densities they encountered.
The remarkable accomplishment was that they suc-
ceeded in constructing a theory of point particles, a
theory that gave finite and correct, answers.

The question that remains unanswered, is whether
the electron is truly a point particle, or does it have
some size that is so small that we have not been able
to see the structure yet?  The important feature of
quantum electrodynamics is that it makes testable
predictions without any reference to the electron's
structure.  We get the same predictions whether the
electron has no size, or is some structure that is too
small to see.  Our handling of the electric field of a
point charge is your first example of how such a
theory can be constructed.  By converting to a
surface integral surrounding the charge, it makes no
difference whether the charge is truly a point, or
confined to some region too small to see.

By the way, in the current picture of elementary
particles, in what is often called the standard model,
the true elementary particles are all point particles.
These elementary particles are the six electron type
particles called leptons (they are the electron, the
muon, the tau particle, and three kinds of neutrinos)
and six kinds of quarks.  The standard model makes
many successful predictions but appears to have one
critical flaw.  The problem is that no one has yet
succeeded in constructing a theory for the interac-
tion of point particles with gravity, the so called
quantum theory of gravity.  Every attempt to do so
has thus far led to infinities that could not be gotten
rid of by any known mathematical technique.

This failure to develop a quantum theory of gravity
in which gravity interacts with point particles, has
led to theories such as string theory where the
elementary particles have a finite, but tiny size.
String theory appears to avoid the infinities in the
gravitational interaction, but the strings, from which
particles are assumed to be made, are predicted to be
so small that no way has been found to test whether
they actually exist or not.  It is interesting that so far
our only evidence that elementary particles actually
have structure is our failure to construct a theory of
gravity.
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THE δδ FUNCTION
When we applied the differential form of Gauss' law

  ∇ ⋅E = ρ/ε0  to the field of a point charge, we avoided
the problem of mathematical infinities by integrat-
ing the equation over a small volume surrounding
the charge.  We never did say what the charge
density   ρ(x,y,z)  was for a point charge Q, because
we knew that if we integrated   ρ(x,y,z)  over the
region of the charge, the answer would be simply Q
itself.

In physics we often run into quantities like the
charge density of a point charge where the density at
the charge looks infinite, but when we integrate the
density over the region of the charge, we get a finite,
reasonable answer.  There is a convenient way to
handle such problems by using what is called the
delta (δδ ) function.

The one dimensional δ  function is a curve with a
unit area under it, but all the area is confined to a
region of zero width.  We obtain such a curve
mathematically through the use of a limiting process.

Consider the curve shown in Figure (3) that is zero
everywhere except in the region around the point

 x0 .  In that region it is a rectangle of width   ∆x  and
height   1/∆x .  The area under this curve is

  area under
rectangle = (∆x) 1

∆x
= 1 (29)

Now take the limit as   ∆x → 0, and we end up with
a curve, whose total area remains 1, but whose width
goes to zero and height goes to infinity.  We will call
this curve   δ(x0)

  
δ(x0) ≡ lim

∆x → 0

of the curve of width
∆x and height 1/∆x,
centered at x0

(30)

Even though   δ(x0)  is infinitely high at the point  x0 ,
its integral over any region that includes the point  x0
is just the number 1

  
δ(x0)dx

x less than x0

x greater than x0

= 1 (31)

Actually the only important property of the δ func-
tion is Equation (31).  The curve does not have to be
a rectangle, it could be the limit of some smooth
curve like that shown in Figure (4).  As long as, in the
limit that   ∆x → 0, the curve becomes infinitely
high, infinitely narrow, and has a unit area under it,
it is a δ function.

In three dimensions, the δ function   δ(x0,y0,z0)  is a
quantity that is zero everywhere except at the point

 (x0,y0,z0) , but whose integral over that region is 1

  
δ(x0,y0,z0)dV

any volume
including the
point (x0,y0,z0)

= 1

(32)

An example of such a δ function is the function whose
value is zero everywhere except within a distance   ∆x
of  x0 ,   ∆y  of  y0 , and   ∆z of  z0 .  In that region the value
is   (1/∆x)(1/∆y)(1/∆z) , so that the total volume is 1.
Then take the limit as   ∆x → 0,   ∆y → 0, and   ∆z → 0 .

∆x

∆x
1

x0
Figure 3
When we take the limit as ∆∆∆∆∆x goes to zero,
we get a one dimensional delta function.

∆x

∆x
1

x0

Figure 4
We have a delta function as long as the area
remains 1, and the width goes to zero.
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We can now use the δ function to describe the
charge density of a point charge.  If a point charge
has a total charge Q and is located at the point

 (x0,y0,z0) , then the charge density   ρ(x,y,z)  is

   
ρ(x,y,z) = Qδ(x0,y0,z0)

charge density
of point charge
at x0,y0,z0

(33)

The differential form of Gauss' law applied to this
charge density is

  
∇ ⋅E =

ρ(x,y,z)
ε0

∇ ⋅E =
Q
ε0

δ(x0,y0,z0)

(34)

To handle Equation (34), we use our old trick of
going back to the integral form by first integrating
over a volume that includes the charge

  ∇ ⋅E dV
volume
including
charge

=
Q
ε0

δ(x0,y0,z0)dV
volume
including point
x0, y0, z0

(35)

Since   Q/ε0  is a constant, it can be taken outside the
integral on the right side of Equation (35), giving

  Q
ε0

δ(x0,y0,z0)dV
volume
including point
x0, y0, z0

=
Q
ε0

×1 (36)

where we used the fact that the integral of the δ
function was 1. Now convert the volume integral of

  ∇ ⋅E  to a surface integral

  ∇ ⋅E dV
volume
including point
x0, y0, z0

= E⋅dA
surface
surrounding
x0, y0, z0

(37)

Using (36) and (37) gives

  E⋅ dA
closed surface
including Q

=
Q
ε0

which is our integral form of Gauss' law.

From this example, you can see that the δ  function
allows us to write an explicit formula for the charge
density of a point charge, and you can see that the
only things we have to know about a δ  function is
that   δ(x0,y0,z0)  is zero except at  (x0,y0,z0)  and
that its volume integral around that point is 1.  As you
go farther in physics, you will encounter the δ
function more and more often.  It is rather nice in that
there is no function easier to integrate.

Exercise 3
Explain why the following mathematical relationship is
true for any continuous function f(x,y,z)

   
f(x,y,z)δ(x0,y0,z0)d3V

any volume
includingthe
point (x0,y0,z0)

= f (x0,y0,z0)

(38)
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DIVERGENCE FREE FIELDS
It may seem a bit discouraging that we did all this
work to derive the differential form of Gauss' law

  ∇ ⋅ E = ρ/ε0  , and then end up, when we want to
actually solve a problem, going back to the integral
form of the equation.  At this point, that is about all
we can do to solve for explicit field patterns  E .
However, the differential form begins to tell us
about some general features of a vector field as we
shall now see.  With a lot more practice with the
differential form of the field equations, and perhaps
a computer thrown in, one can begin to solve for
complex field shapes.  In this text we will focus on
what we can learn about general features and leave
the solution of complex field shapes to a later course.

To see what we can learn about general features of
a field, suppose that we have a velocity field  v(x,y,z) ,
whose divergence is zero, i.e., it obeys the equation

  ∇ ⋅v(x,y,z) = 0 (39)

We say that such a field is divergence free.  What can
we say about the properties of such a field?

To answer that question, we will again go back to the
integral form, by integrating Equation (1) over some
volume V to get

  ∇ ⋅v d3V = 0
volume V

(40)

Now use the divergence theorem to convert this
volume integral to a surface integral, giving

  v⋅dA = 0
closed
surface

(41)

Equation (41) is our old equation for a vector field
that has no sources or sinks.  It is the equation for an
incompressible, constant density fluid, a real one
like water where water molecules are not being
created or destroyed.  Thus the condition that a
vector field be divergence free, i.e.,   ∇ ⋅ v = 0  or

  ∇ ⋅ E = 0  or   ∇ ⋅ B = 0 , is that the field behaves like
the velocity field of an incompressible fluid.

What kind of solutions are possible for a divergence
free field?  What are the solutions to the equation

  ∇ ⋅ v = 0 ?

The answer is at least as complex as the behavior of
water.  You have seen water flow smoothly in a lazy
river.  That is called laminar flow.  Such laminar
flow is one solution to   ∇ ⋅ v = 0 .  But in a fast
flowing stream there can be complex eddies called
turbulence.  Turbulent flow is also a solution to the
equation   ∇ ⋅ v = 0 .

You can now see that the equation   ∇ ⋅ v = 0  puts a
restriction on the field v , but still allows an enor-
mous range of solutions.  Because of your familiar-
ity with the flow of water you have some insight into
what these solutions can be.
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APPENDIX — DERIVATION
OF  FLUX  EQUATION  (14)
Earlier in the chapter we had the following formula
for the flux out of the x directed faces of the small
cube   ∆V = ∆x∆y∆z

  flux out
of x directed
faces of ∆V

=
Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆x∆y∆z

(13) repeated
where   Ex(x+∆x,y,z)  and  Ex(x,y,z)  were the average
values of  Ex  on the two x directed faces of the cube.

In Equation (14) we replaced the average values  Ex
by the values   Ex(x+∆x,y,z)  and  Ex(x,y,z)  at the
lower front corners as shown in Figure (2), repeated
here giving

  flux out
of x directed
faces of ∆V

= limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)
∆x

∆V

(14) repeated
What we are doing is in going from Equation (13) to
(14) is to neglect the y and z dependence of  Ex  while
developing an equation for the x dependence.  This
step needs justification.

To see what effect the y and z dependence has, let us
start by approximating the average value of  Ex  over
the entire x faces by the average of the top and
bottom values of the front side of   ∆AX , i.e., the
average of  Ex  at points (1) and (3) on the left and
points (2) and (4) on the right as shown in Figure (5).

This is a rather crude approximation for the average
over the face, but begins to show us what the effect
of the y and z dependence of  Ex  is.

To evaluate  Ex  at   (x, y, z + ∆z) , up at point (3), we
can use a Taylor series expansion.  So far we have
discussed a Taylor series expansion only of a func-
tion of a single variable f(x).  The expansion was,
from Equation (2-44 of Calculus Chapter 2)

  
f(x–x0) = f(x0) + ∂f

∂x
(x–x0) + 1

2!
∂2f
∂x2

(x–x0)2+⋅⋅⋅

(2-44) repeated

which is good for small steps  (x–x0) .

What we are doing when we go from point (1) to
point (3) in Figure (2), is keeping the values of x and
y constant, and looking at the change in  Ex  as we
vary z.  Thus in going up, we have a function  Ex(z)
that is only a function of z, and we can use our old
Taylor series expansion to get

  Ex(x,y,z+∆z) = Ex(x,y,z)

+
∂Ex(x,y,z)

∂z
(∆z)

+ 1
2

∂2Ex(x,y,z)

∂z2
(∆z)2

+ ⋅ ⋅ ⋅

(42)

where   ∆z  is analogous to the step  (x–x0)  in the
Taylor series formula.

Because we are eventually going to take the limit as
  ∆z  goes to zero, we will be able to neglect terms of

order   (∆z)2  compared to   ∆z .  Because of that, it is
sufficient to write

  Ex(x,y,z+∆z) = Ex(x,y,z)

+
∂Ex

∂z
∆z

+ terms of order ∆z2

(42a)

∆x ∆y

∆z

z

x

E  (x+∆x,y,z)xE  (x,y,z)x

(x, y, z) (x+∆x, y, z) 

Figure 2 (repeated)
Electric field at the lower front corners.

E  (x+∆x,y,z)x

E  (x+∆x,y,z+∆z)x

E  (x,y,z)x

E  (x,y,z+∆z)

(1)

(3)
(4)

(2)

x

Figure 5
Electric field at four positions.
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When we take the average of  Ex  at points (1) and
(3), a result we will call  Ex(x)1,3 , we get

  
Ex(x)1,3 =

Ex(x,y,z) + Ex(x,y,z+∆z)
2

= Ex(x,y,z) + 1
2

∂Ex(x,y,z)
∂z

∆z + O(∆z2)
(43)

where   O(∆z2)  means terms of order   (∆z2) .

A similar argument gives the average   Ex(x+∆x)2,4
at points (2) and (4)

  
Ex(x+∆x)2,4 =

Ex(x+∆x,y,z) + Ex(x+∆x,y,z +∆z)
2

= Ex(x+∆x,y,z) + 1
2

∂Ex(x+∆x,y,z)
∂z

∆z + O(∆z2)

(44)

Using our 2 point averages in Equation (13) for the
flux out of   ∆V  gives us

  flux out of
x directed face
of ∆V for 2
point average

=
Ex(x+∆x)2,4 – Ex(x)1,3

∆x
∆V

= ∆V
∆x

Ex(x+∆x,y,z) + 1
2

∂Ex(x+∆x,y,z)
∂z

∆z

– Ex(x,y,z) – 1
2

∂Ex(x,y,z)
∂z ∆z + O(∆z2)

  
=

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆V

+ 1
2

∂Ex(x+∆x,y,z)
∂z

–
∂Ex(x,y,z)

∂z

∆x
∆z∆V

+ O(∆z2)∆V

(45)

When we go to the limit that   ∆x  goes to zero, we see
that we get the partial derivatives

  
limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
=

∂Ex(x,y,z)
∂x

(46)

  

limit
∆x→0

∂Ex(x+∆x,y,z)

∂z
–

∂Ex(x,y,z)

∂z
∆x

=
∂2Ex(x,y,z)

∂x∂z

(47)
Thus Equation (45) is taking on the form

  flux out of
x faces of
∆V for 2
point average

= ∆V
∂Ex
∂x +

∂2Ex
∂x∂z∆z + O(∆z2)

(48)
We see that corrections due to the z dependence of

 Ex  are of magnitude   ∆z  times the partial second
derivative   ∂2Ex/∂x∂z .  As long as all derivatives of

 Ex  are bounded, stay finite as we take the limit as
  ∆x ,   ∆y , and   ∆z  go to zero, then the   ∆z  term in

Equation (48) becomes negligently small, which
means that in the limit we can neglect the z depen-
dence of  Ex , at least in this two point approximation.

Our 2 point approximation to the average of  Ex  can
be improved by using more points.  If we included
the back points at   (y+∆y) , we would add terms to
Equation (48) of the form

  ∂2Ex
∂x∂y∆y + O(∆z2) (49)

terms which would go to zero in the limit   ∆y → 0 .
All points we add in to the average will give terms
proportional to   ∆x  or   ∆y  or some combination, and
all these terms will go to zero when we take the limit
as   ∆x ,   ∆y , and   ∆z  goes to zero.  Thus, it is an exact
result that, in the limit that   ∆v → 0 , only the x
dependence of  Ex  has to be taken into account,
provided all derivatives of  Ex  are finite.
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Calculus 2000-Chapter 8
Curl

CHAPTER 8 CURL

ABOUT THE CURL
In the Physics text, we saw that a vector field was
uniquely determined by formulas for the surface
integral and the line integral. In the last chapter, we
saw that the divergence, such as    ∇ ⋅E , represented
the surface integral shrunk down to an infinitesimal
scale. In this chapter, we study the curl, which is the
line integral shrunk down to an infinitesimal scale.
Here our emphasis will be on the application of the
curl to electric and magnetic fields. In the final
chapters of this text, Chapters 12 and 13, we develop
an intuitive picture of the curl applied to the velocity
field of fluids such as water and superfluid helium.
The curl of the velocity field is called vorticity, a
concept that plays a fundamental role in under-
standing such phenomena as quantum vortices and
turbulence.
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INTRODUCTION TO THE CURL
The partial derivative operator

  ∇ = x ∂
∂x + y ∂

∂y + z ∂
∂z

has now appeared in our formulas for the gradient of
a scalar field f(x,y,z)

  ∇ f(x,y,z) = x ∂f
∂x + y ∂f

∂y + z ∂f
∂z (1)

in the divergence of a vector field  E(x,y,z)

  
∇ ⋅ E =

∂Ex
∂x +

∂Ey

∂y +
∂Ez
∂z (2)

and in the Laplacian

  ∇ ⋅∇ f = ∇ 2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 (3)

While  ∇  is an operator in the sense that it only has a
value when operating on some field, we see that it acts
very much like a vector.  This suggests that we may
encounter other vector like operations involving  ∇ .

In our discussion of vectors in Chapter 2 of the
Physics text, we saw that there were two kinds of
vector products, the scalar or dot product

   C = A⋅B = (AxBx +AyBy +AzBz) scalar
product (4)

and the vector cross product

   C = A × B vector cross product (5)

where the formulas for the components of C were

 Cx = AyBz – AzBy

Cy = AzBx – AxBz

Cz = AxBy – AyBx

(6)

We saw that the vector   C = A × B  was oriented
perpendicular to the plane of the vectors  A  and   B ,
the choice of which direction being given by the
right hand rule as shown in Figure (1).  The magni-
tude was   C = AB sin θ  which is maximum when  A
and  B  are perpendicular and zero when parallel.

The vector cross product seems like a rather peculiar
mathematical construct, but it plays an important
role in physics, particularly in describing rotational

motion.  You will recall that the angular analogy to
Newton's second law was

  τ = dL
dt

(7)

where the torque,   τ = r × F , is what we called the
angular force, and   L = r × p  is the angular momen-
tum.  Despite the appearance of two cross products in
Equation (7), the equation led to a very successful
prediction of the motion of a gyroscope at the end of
Chapter 12 in the Physics text (see page12-18).

With this background, we see that there is one more
natural vector product involving the operator  ∇ .  It
is the cross product of  ∇  with some vector field like

 E ,  B , or v .  The cross product, for example with  B ,
is called the curl of  B .

   ∇ × B = x(∇ yBz – ∇ zBy)

+ y(∇ zBx – ∇ xBz)

+ z(∇ xBy – ∇ yBx)

curl (8)

With all these derivatives in the formula for   ∇ × B , the
concept of the curl looks rather formidable.  Later in
this chapter we will discuss the formula for the curl in
cylindrical coordinates.  That formula looks even worse
than Equation (8).  However when we apply the curl in
cylindrical  coordinates to a problem with cylindrical
symmetry, we end up with a simple, easily applied
formula (which we will see in Equation 58).

θ

C = A   B C = AB(sinθ)

C = A   B

B

B

A

A

Figure 1
Right hand rule for the cross product.
(Discussed in Physics 2000, page 2-15.)
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As we have mentioned several times now, to deter-
mine a vector field we need formulas for the surface
integral and the line integral.  In the last chapter we
saw that when we go to the small scale limit, the
volume integral becomes a divergence.  An example
was Gauss' law which in the integral form was

  E ⋅ dA =
Qin
ε0 (9)

It became the differential equation

  ∇ ⋅ E =
ρ
ε0

(10)

In this chapter we will see that the differential limit of
the line integral is the curl.  We will see, for example,
that the old form of Ampere's law (when   ∂E/∂t = 0 )

  B ⋅ d = µ0iin (11)

becomes the differential equation

  ∇ × B = µ0 i (x,y,z) (12)

where  i (x,y,z)  is the current density.

In our discussion of divergence, one of the important
results was the divergence theorem

   E ⋅ dA

S

= ∇ ⋅ E d3V

V

divergence
theorem (13)

where V is the volume bounded by a closed surface
S and  d3V = dxdydz .  The divergence theorem
allowed us to immediately go back and forth be-
tween surface integrals and volume integrals.

An important result of this chapter is what one could
call the curl theorem, but which is known as Stokes'
law. It is

   
B⋅d

around
closed path

= (∇ × B)⋅dA
area of
closed path

Stokes'
law (14)

which relates the line integral of  B  around a closed path
to an integral of the curl of  B  over any area bounded
by the closed path. An example of a closed path is the
wire loop shown in Figure (2). One of the areas
bounded by this closed path is that of the soap film.

Our discussion of the curl will proceed through the
remaining chapters of the text.  In this chapter we
will focus on deriving Stokes' theorem and applying

that theorem to the theory of electricity and magne-
tism.  This allows us to finish translating Maxwell's
equations from the integral to the differential form.

In Chapter 9 we derive a set of equations called vector
identities that simplify working with formulas involv-
ing the curl.  We will use the vector identities to show
that Maxwell's equations in empty space become the
wave equations for electromagnetic fields.

In Chapter 11 we find that the wave equation for
electromagnetic fields in the presence of electric charge
and current is considerably simplified by expressing
the magnetic field as the curl of a new kind of a vector
field called the vector potential  A .  This is a rather
technical subject, the study of which can be put off for
a while.  We placed this material where we did so that
you could see what happens to the electromagnetic
wave equation when sources are present.

In Chapter 12 we apply the curl to the velocity field v .
It is in that chapter where you can develop the best
intuitive picture of the curl.  If you want to put off  for
a while studying the wave equation for electromagnetic
fields, you can go directly from this chapter to Chapter
12 and build your intuition for curl.

In case you were wondering about Chapter 10, it deals
with the extension of the continuity equation to handle
compressible conserved flows, like the flow of electric
charge.  We discover from this work a rather remark-
able result, namely that Maxwell's equations require
that electric charge be conserved.  This is one of the
first completely new physical predictions we get by
going to the differential form of Maxwell's equations.

Figure 2
Example of a surface bounded
by a closed path (wire loop).
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STOKES' LAW
As we noted, Stokes' law, Equation (14) allows us to
convert from a line integral around a closed path to
a surface integral over the area bounded by the path.
Once we have derived Stokes' law, it will be quite
easy to use it to convert to differential equations the
two Maxwell equations involving path integrals.

To derive Stokes' law, we begin by calculating the
path integral of some vector field  B  around a small
rectangular path of sides   ∆x  and   ∆y  shown in
Figure (3). Our arguments will be somewhat similar
to those we used to derive the divergence theorem.

The line integral around the rectangle   ∆x∆y  can be
written as the four integrals

  
B ⋅d

around
∆x∆y

= B ⋅ d
1

2
+ B ⋅ d

2

3

+ B ⋅ d
3

4
+ B ⋅ d

4

1 (15)

Along the path from point (1) to point (2), along the
bottom of the rectangle, we are integrating in the x
direction, thus

  
B ⋅d

1

2
= Bxd x

1

2
(16)

The integral of  Bxd x  over the bottom side can be
written as

  
Bxd x

1

2
= Bx(x,y–∆y/2)∆x (17)

where   Bx(x,y–∆y/2)  is the average value of  Bx
along the lower edge, a  distance   ∆y/2  below the
center (x,y) of the rectangle.

The integral up the right hand side becomes

  
B ⋅d

2

3
= Byd y

2

3

= By(x+∆x/2,y)∆y
(18)

where   By(x+∆x/2,y)  is the average value of  By  along
the right side, out at a distance   ∆x/2 from the center.

On the top side, we are integrating in the –x direc-
tion, the dot product   B ⋅ d  is negative, and we get

  
B ⋅d

3

4
= –Bxd x

3

4

= –Bx(x,y+∆y/2)∆x
(19)

where   Bx(x,y+∆y/2)  is the average value of  Bx  on
the top edge.

Going back down from point (4) to point (1) we are
going in the –y direction,   B ⋅ d = – Byd y  and we
get

  
B ⋅d

4

1
= –Byd y

4

1

= –By(x–∆x/2,y)∆y
(20)

Using Equations (17) through (20) in (15) gives,
after some rearranging

  
B ⋅d

around
∆x∆y

=
By(x+∆x/2,y) – By(x–∆x/2,y)

∆x
∆x∆y

–
Bx(x,y+∆y/2) – Bx(x,y–∆y/2)

∆y
∆x∆y

(21)
As a first approximation to Equation (21), we could
replace the average values of  Bx ,  By  on the four
sides by the actual values of  Bx ,  By  at the center of
each side.  For example, since the center of the side
from (2) to (3) is at the point   (x+∆x/2,y) , we would
be making the substitution for that side of

  By(x+∆x/2,y) → By(x+∆x/2,y) (22)

I.e., we would be removing the bars over the values
of B in Equation (21).

∆x

∆y

(1) (2)

(3)(4)

B(x,y)

Figure 3
Calculating the integral of       B ⋅⋅dl around a small
rectangular path centered at the point (x,y).
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When we remove the bars and then take the limit as
  ∆x → 0  and   ∆y → 0 , the first square bracket in

Equation (21) becomes the partial derivative of  By
with respect to x

  
limit
∆x→0

By(x+∆x/2,y) – By(x–∆x/2,y)
∆x

=
∂By

∂x

(23)
and the second square bracket in Equation (21)
becomes   ∂Bx/∂y. In this approximation, Equation
(21) becomes

  
B ⋅d

around
∆x∆y

=
∂By

∂x
–

∂Bx

∂y
(∆x∆y) (24)

The approximation we made to get Equation (24),
which was replacing the average value of B  along a
line by the value at the center of the line, assumes
that variations along the line (e.g. changes in  Bx in
the x direction) are not as important as variations
perpendicular to the line (e.g. changes in  Bx in the
y direction).  This is somewhat similar to the situa-
tion we had in our derivation of the divergence
theorem where changes in the field were important
in one direction and not in the other.

In the appendix to Chapter 7 we used a Taylor series
expansion to show that as   ∆x ,   ∆y  or   ∆z  went to
zero, the variations we ignored went to zero faster
than the variations we kept.  They were proportional
to a higher power of   ∆x ,   ∆y or   ∆z , and therefore did
not contribute in the calculus limit.

We leave it as an exercise for the ambitious reader to
show, using arguments similar to those made in the
appendix to Chapter 7, that by replacing average
values  Bx  and  By  by center values  Bx  and  By , we
are making errors that go to zero faster than the terms
we keep. I.e., show that the errors are of the order

  ∆x ,   ∆y  or   ∆z  smaller than the terms we keep.

With Equation (24), we have the formula for the line
integral around one small rectangle lying in the xy
plane.  We can generalize this result by turning the
area element   (∆x∆y)  into a vector   ∆A .  An area
vector   ∆A  is perpendicular to the surface as shown
in Figure (4).  In this case, where the surface is in the
xy plane, we see that   ∆A  is purely z directed, and we

can write   ∆x∆y = (∆A)z .  With this notation Equa-
tion (24) becomes

  
B ⋅d

around
∆A

=
∂By

∂x –
∂Bx
∂y (∆A)z (25)

Next, we notice that the z component of the curl of
 B  is given by Equation (8) as

  
(∇ × B)z = (∇ xBy – ∇ yBx) =

∂By

∂x
–

∂Bx

∂y
(26)

so that Equation (25) becomes

  B⋅d
around

∆A

= (∇ × B)z(∆A)z (27)

The obvious extension of Equation (27) to the case
where our area   ∆A  does not happen to lie in the xy
plane, where the vector   ∆A  has components other
than   (∆A)z , is to recognize that in Equation (27) we
are looking at one term in the vector dot product

  B ⋅d
around

∆A

= (∇ × B)⋅∆A (28)

Exercise 1
Suppose we have an area

  ∆y∆z  as shown in Figure (5).
Write out the formula for

  B ⋅ d  around this area
(i.e., repeat the steps in
Equations 15-27 for this area).

∆x

∆y

∆A

Figure 4
Turning the area element      (∆∆x∆∆y)  into a vector      ∆∆A

∆z
∆y

∆A

Figure 5
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With Equation (28), we have the formula for the line
integral around a small rectangular area   ∆A  of any
orientation.  The final step is to determine the line
integral around a finite loop like the wire loop with
the soap film across it, shown in Figure (1).

The way we can do this is to conceptually cut the
soap film up into many tiny rectangles as shown in
Figure (6).  Think of the soap film as being replaced
by a window screen, with the rectangles being the
holes in the window screen.

At each hole, each rectangle, we have a vector   ∆Ai
that is oriented perpendicular to the surface as shown
in Figure (7).  The positive direction is determined
by noting which way we are going around the loop,
and then using the right hand rule.  For Figure (6), the
positive direction is up out of the paper.

Next we note that when two rectangles touch each
other, the part of the line integrals on the touching
sides cancel, and we are left with a line integral
around the perimeter of the two rectangles as shown
in Figure (8).

Applying this argument to all rectangles in Figure
(6), we see that when we add up the line integrals for
all the rectangles, we end up with the line integral
around the outside perimeter of the surface.  Math-
ematically we can write this as

  
B ⋅d

around
whole
surface

=
sum of the line
integrals around
each small
area ∆Ai

(29)

Using Equation (28) for the line integral around   ∆Ai
we get

  B ⋅d
around
whole
surface

= (∇ × B)Σ
i

⋅∆Ai (30)

Taking the limit as the   ∆Ai  goes to zero turns this
sum into an integral, giving

   
B⋅d

around
perimeterof
a surface S

= (∇ × B)⋅dA
over the
surface S

Stokes' law

(31)
which is Stokes' law.  It says that we get the line
integral of any vector field  B  around the perimeter
of a surface S by integrating the flux of   (∇ × B) out
through the surface.

Figure 6
Break the surface across
the closed loop into many
small surface areas, like
the holes in a window
screen.

∆Ai

Figure 7
Each small surface
area is described by
an area vector       ∆∆A i

=

Figure 8
When two rectangles touch, the line integrals on the
paths between them cancel, leaving a line integral
around the perimeter of the two rectangles.
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In the future we will shorten our notation by letting
C be some closed path, and the surface S be a surface
like our soap film, that is bounded by the path.  Then
we simply write

   
B⋅d

C

= (∇ ×B)⋅dA

S

Stokes' law

(31a)
Our use of the soap film analogy for the surface S is
important for it emphasizes the fact that there is no
one correct surface.  Just as you can change the shape
of a soap film by gently blowing on it (don't blow a
bubble), you can use different surfaces S as long as
they are bounded by the same circuit C.

We also want to emphasize that the quantity   (∇ ×B)
is itself a vector field, and that the integral of

  (∇ ×B) ⋅dA  over a surface is the flux of   (∇ ×B)
through that surface.  Thus, we should remember
Stokes' law as telling us that the line integral of  B
around the circuit C is equal to the flux of       ( ∇∇ ×× B)
through the circuit C.

AMPERE'S LAW
The original form of Ampere's law, before Maxwell's
addition of the   ∂ΦE/∂t  term, was given in Chapter
29 of the Physics text as

  B ⋅d
any closed
path

= µ0Ienclosed (29-26)

It says that the line integral of  B  around any closed
path is equal to   µ0  times the total current flowing
through that path.  Since Stokes' law tells us that the
line integral of  B  around any closed path is equal to
the total flux of   (∇ ×B)  through that path, there must
be a close relationship between the vector field

  (∇ ×B)  and the electric current.  That is the relation-
ship we want to establish.

The first step is to express the total current i through
a closed path in terms of the current density  i (x,y,z) .
The current density  i (x,y,z)  is a vector field whose
direction at each point in space is the direction of
flow on the electric current i  there, and whose
magnitude is equal to the density of current, which
has the dimensions of the number of amperes per
square meter.

Calculating the electric current through a small area
element   ∆A  is analogous to calculating the flux of
water through an area element   ∆A , a calculation we
did in Equation (3) of Chapter 29 of the Physics text.
From Figure (9), you can see that the current through

  ∆A  will be a maximum, will have the value
  i (x,y,z)∆A  when the area   ∆A  is perpendicular to

the flow.  This is when the vector   ∆A  is parallel to
 i (x,y,z) .  For any other orientation of   ∆A , the

current   ∆I  through   ∆A  will be equal to
  i (x,y,z)∆Acosθ  which is equal to the dot product

of the vectors  i (x,y,z)  and   ∆A .  Thus

  ∆I = i(x,y,z) ⋅ ∆A = current through an
area element ∆A

(32)

∆A

i(x,y,z)
θ

Figure 9
When the current flows at an angle θθ  as shown,
the total current through      ∆∆A is       i(x,y,z) ∆∆A cosθθ .
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To calculate the total current  Ienclosed  through an
entire surface S, we break the surface up into small
areas   ∆Ai  as we did in Figure (6), calculate the
current   ∆Ii  through each   ∆Ai , and add up all the   ∆Ii
to get the total.

  Ienclosed = ∆IiΣ
i

= i (xi,yi,zi)⋅∆AiΣ
i

(33)

Taking the limit as the   ∆Ai  go to zero size gives us
the surface integral

   
Ienclosed = i(x,y,z)⋅dA

surface
bounded
by path C

total current
through a
closed path C

(34)

Using our new formula for  Ienclosed  in Ampere's law,
Equation (29-26), gives

  B⋅d
any
closed
path

= µ0 i (x,y,z)⋅dA
over the area
bounded by
the closed path

(35)

Following a procedure similar to the one we used in
our discussion of Gauss' law in Chapter 7, we will
use Stokes' law to convert the line integral of  B  to a
surface integral, so that both terms in Ampere's law
are surface integrals.  With

  B⋅d
C

= (∇ ×B)⋅dA

S
(31) repeated

Equation (35) becomes

  (∇ × B)⋅dA
surface
S

= µ0 i (x,y,z)⋅dA
surface
S

(36)

where we took the constant   µ0  inside the integral.
The surfaces for the two integrals only have to have
the same perimeter C, but we are free to choose
identical surfaces, and thus combine the two inte-
grals into one giving

  
(∇ × B) – µ0 i (x,y,z) ⋅dA

any
surface
S

= 0 (37)

We then argue that  if Equation (37) is to hold for any
surface S, the only way for that to happen is to set the
integrand, the stuff in the square brackets, equal to
zero, giving

  
∇ ×B = µ0 i (x,y,z) (38)

Equation (38) is the differential form of the original
Ampere's law

  B ⋅ d = µ0Ienclosed (29-26) repeated

In Chapter 32 of the Physics text we explained why
Maxwell added a term to Ampere's law to get

  
B ⋅d

around a
closed
circuit C

= µ0Ienclosed + µ0ε0
dΦE
dt

(32-11)

where   ΦE , the electric flux through the closed
circuit is given by

  ΦE = E⋅dA
S

(39)

and S is any surface bounded by the closed circuit C.

To include the   dΦE/dt  term in our differential form
of Ampere's law, we need to evaluate

  d
dt

ΦE(t) = d
dt

E(x,y,z,t)⋅dA
S

(40)

where the field E is not only a function of space
(x,y,z) but also of time (t).

On the left side of Equation (40) we have   dΦE(t)/dt
which is simply the time derivative of some function

  ΦE(t)  of time.  That is a straightforward derivative.
On the right, we have the derivative of the integral of
a quantity  E(x,y,z,t)  which is a function of four
variables.  What we are going to do this one time, is
to be very careful about how we bring the time
derivative inside the integral, and see what we get
when we do.
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Our first step will be to write the integral over the
surface as the sum over many small but finite areas

  ∆Ai

  dΦE

dt
= d

dt
E(xi,yi,zi,t) ⋅ ∆AiΣ

i
(41)

where  (xi,yi,zi)  is the coordinate of the area element
  ∆Ai.  By working with a sum of finite terms, we can

see that the change in time of the sum will be the sum
of the changes in each term

  dΦE

dt
= d

dt
E(xi,yi,zi,t)⋅∆AiΣ

i
(42)

During this calculation, we are keeping the surface
S and all the   ∆Ai fixed. At any given   ∆Ai the only
thing that is allowed to change is the field  E  at the
point  (xi,yi,zi) .  Thus we have

  dΦE

dt
=

dE(xi,yi,zi,t)

dt
⋅∆AiΣ

i
(43)

The term in the square brackets is the change in the
variable  E(x,y,z,t)  as we change the time (t) while
holding the other three variables constant at  x = xi ,

 y = yi ,  z = zi .  This is precisely what we mean by the
partial derivative of  E(x,y,z,t)  with respect to (t).

  d
dt

E(xi,yi,zi,t) =
∂E(x,y,z,t)

∂t x = xi
y = yi
z = zi

(44)

Thus we have

  dΦE

dt
=

∂E(x,y,z,t)

∂t
x = xi
y = yi
z = zi

⋅∆AiΣ
i

(45)

We can now go back to the limit as    ∆Ai goes to zero,
giving

  dΦE

dt
=

∂E(x,y,z,t)

∂t
S

⋅dA
(46)

Writing   dΦE/dt  in Equation (46) as an integral gives

  
d

dt
E(x,y,z,t)⋅dA

fixed
surface
S

=
∂E(x,y,z,t)

∂t
⋅dA

fixed
surface
S (47)

In writing Equation (47) we placed special emphasis
on the fact that the surface S (and also the   ∆Ai's )
were fixed, did not change with time.  Later, in the
first fluid dynamics chapter, we will want to calcu-
late the rate of change of flux through a moving
surface.  (In that case it will be a surface that moves
with the fluid particles.)  When we allow the surface
S to move, then in going from Equation (42) to (43),
we get more terms representing changes in the   ∆Ai.

But with the fixed surface, Equation (47) tells us that
we can bring the time derivative inside the integral
if we change the derivative to a partial derivative
with respect to time.

Exercise 2
Start from the integral form of Ampere's law

  B ⋅ d = µ0Ienclosed + µ0ε0
dΦE
dt (32-11)

Using Equation (39) for   ΦE, and using Equation (47),
show that the corresponding differential equation is

   
∇ × B = µ0 i + µ0ε0

∂E
∂t (48)

Exercise 3
As a review, start with all of Maxwell's equations in
integral form, as summarized in Equation (32-19) of the
Physics text

   E ⋅ dA
closed surface

=
Qin
ε0

Gauss' law

B ⋅ dA
closed surface

= 0 no monopole

B ⋅ d = µ0I + µ0ε0
dΦE
dt Ampere's law

E ⋅ d =
– dΦB

dt Faraday's law

(32-19)

and show that in differential form, the equations are

   ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ ×B = µ0 i + µ0ε0
∂E
∂t Ampere's law

∇ ×E = –
∂B
∂t Faraday's law

(49)
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CURL OF THE MAGNETIC FIELD OF A WIRE

In the section after this, we will discuss the formula
for the curl in cylindrical coordinates, a rather formi-
dable looking formula. We will then apply it to the
calculation of the curl   ∇ ×B  of the magnetic field of
a straight wire.  A lot of terms are involved but, most
of them go to zero and we are left with what appears
to be a surprisingly simple result.  The result should
be no surprise however, if we first look at Ampere's
law in differential form, as applied to the field of a
wire.

The magnetic field produced by a steady current in
a wire was shown in Figure (28-14) in Chapter 28 of
the Physics text.  The current (i) is confined to the
wire, and the magnetic field travels in circles around
the wire.  If the current density is more or less
uniform in the wire, then we have a circular mag-
netic field inside the wire also (a field you calculated
in Exercise 4 of Chapter 29). The result is sketched
in Figure (10).

For a steady current, where   ∂E ∂t∂E ∂t = 0 , Ampere's
law in differential form is simply

  ∇ ×B = µ0 i (x,y,z) (38) repeated

The first thing to note about Equation (38) is that in
all places where the current density  i (x,y,z)  is zero,
the curl   ∇ ×B  must also be zero.  Since the current
is confined to the wire,   ∇ ×B  must be confined there,
and the curl of the magnetic field outside the wire
must be zero.  It will take us several pages to obtain the
same result using the formulas for the curl.

Next we note that the current density  i (x,y,z)  is not
only confined to the wire, but also directed along the
wire.  Thus   ∇ ×B  must not only be confined to the
wire, but also directed along the wire as shown in
Figure (11).  As a result we know what   ∇ ×B  must
look like before we do any calculations.

In the next sections we will go through the calculation
of the curl of this magnetic field.  When we finally get
the simple results described above, you can look upon
that as a check that the formulas for curl are correct after
all.i(x,y,z)

B

B

Figure 10
The magnetic field inside and outside
a wire carrying a uniform current.

Figure 11
The curl of that magnetic field,
determined by       ∇∇ ××B = µµ0 i (x,y,z) .
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CURL IN CYLINDRICAL COORDINATES
In our study of the gradient in Chapter 3 and of
Schrödinger's equation in Chapter 6, we saw that
when a problem had cylindrical or spherical symme-
try, there was a considerable advantage to using the
formulas in cylindrical or spherical coordinates.
Very often problems involving the curl, like the mag-
netic field of the current in a straight wire, have a
cylindrical symmetry.  For such problems it is much
easier to work with the curl in cylindrical coordinates.

Deriving formulas for curl   ∇ ×B and divergence
  ∇ ⋅E  in cylindrical or spherical coordinates is made

difficult  because of the unit vectors.  In Cartesian
coordinates, the unit vectors are constant. But in
other coordinate systems the unit vectors change as
we move around in space. When we take the partial
derivative of a vector,  we also have to include the
effects of changes in the unit vectors.

In the appendix to Chapter 4, where we calculated
  ∇ ⋅ (∇ f) = ∇ 2f  in spherical polar coordinates, most of

the calculation dealt with the changing unit vectors. In
a more closely related example, suppose we have the
vector  B  expressed in cylindrical coordinates as

  B = r Br + θBθ + zBz

where the unit vectors r , θ , and z  are shown in
Figure (12). If we make a change in the angle θ  from
θ  to   θ+∆θ , the unit vectors r  and θ  change
directions by an angle  ∆θ  as shown in Figure (13).

x

y

z

r

r

z

θ

θ

x

∆θ

y

(1)

(2)

θ

r

r '
θ

θ'

Figure 12
The unit vectors in cylindrical coordinates. Figure 13

We see that the unit vectors r  and φφ change direction
when we change the angle θθ  by      ∆∆θθ .

When we calculate the partial derivative of the
vector  B , as we change the angle θ from θ  to

  θ+∆θ , we not only have to include the change in the
value of  B  as we move from points (1) to (2) in
Figure (11), we also have to account for the fact that
the unit vectors r  and θ  have also changed. This
change mixes up the components of  B .

It is not impossible to work out the formulas for the
divergence or curl of a vector in cylindrical or
spherical coordinates, but one is not likely to do it on
the back of an envelope and get the right answer.
Any practicing physicist or engineer, who needs to use
these formulas, looks them up in a reliable reference.

What we will do is simply state the formula for curl in
cylindrical coordinates, and then check that the for-
mula gives the simple results we discussed in the last
section for the case of the magnetic field of a wire.  At
the end of this text, in the Formulary,  we summarize
all the formulas for gradient, divergence and curl, in
Cartesian, cylindrical and spherical coordinates.  Such
a summary can be a very useful thing to have.

Given a field  B  expressed in cylindrical coordinates as

  B = r Br + θBθ + zBz (50)

the formula for the curl is
  

(∇ × B)r = 1
r

∂Bz

∂θ
–

∂Bθ

∂z

(∇ × B)θ =
∂Br

∂z
–

∂Bz

∂r

(∇ × B)z = 1
r

∂
∂r

(rBθ) – 1
r

∂Br

∂θ

(51)
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CALCULATING THE CURL OF THE
MAGNETIC FIELD OF A WIRE
While Equation (51) for   ∇ × B  in cylindrical coor-
dinates looks worse than the curl in Cartesian coor-
dinates, you will see a major simplification when
applied to a problem with cylindrical symmetry.
The magnetic field of a wire travels in circles about
the wire as shown in Figure (14).  We see that  B  has
only a θ  component   Bθ .  In addition, the value of

  Bθ  does not depend on, i.e., change with, the height
z  or the angle θ . Thus we can write  B  as

   
B = θBθ(r) magnetic field of

a straight wire (52)

where the only variable   Bθ  depends upon is the radius.

Outside the wire
We will first calculate  B  using the integral form of
Gauss' law, and then see what happens when we
apply the curl formula, Equation (51) to  B .  Integrat-
ing  B  around the circular path of radius r, shown by
the dotted circle in Figure (12) gives

  B ⋅ d = µ0i enclosed

  Bθ(r) × 2πr = µ0itot

  
Bθ(r) =

µ0itot

2πr (53) also (28-18)

This is the result we saw in Chapter 28 of the Physics
text.  Here  i enclosed  is equal to the total current  itot
because our path goes around the wire.

We are now ready to plug in the values

 Br = 0

  
Bθ =

µ0itot

2πr

 Bz = 0 (54)

into Equation (51) to get the value of the curl

  ∇ ×B = r (∇ ×B)r +θ(∇ ×B)θ +z(∇ ×B)z (55)

Because  Br  and  Bz  are zero, a lot of the terms in the
formula for   ∇ ×B vanish, and we are left with

  
(∇ ×B)r = –

∂Bθ

∂z

  (∇ ×B)θ = 0

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ) (56)

You should check for yourself that this is all that is
left of   ∇ ×B for the  B  of Equation (54).

We now note that   Bθ(r) = µ0itot 2πrµ0itot 2πr depends only
on the variable r and has no z dependence.  Thus

  ∂Bθ(r)

∂z
= 0 (57)

and all we are left with for the curl is

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ)

(58)

Equation (58) applies to any vector field that looks
like the magnetic field in Figure (12).  It applies to
any vector field of the form

  B = θf(r) (59)

where f(r) is any function of r.  These are the kinds
of fields we are most likely to deal with in a discus-
sion of the curl, in which case we can use the much
simpler Equation (58).

i

B

x

y

z

r

r

z

θ

θ

tot

r

Figure 14
Magnetic field of
a straight current.
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Applying Equation (58) to our special value
  Bφ = µ0itot/2πr , we get

  
∇ ×B

z
= 1

r
∂
∂r

rBθ

= 1
r

∂
∂r

r
µ0itot

2πr
(60)

Notice that the r's in the square bracket cancel,
leaving us with

  
∇ ×B

z
= 1

r
∂
∂r

µ0itot

2π
(61)

We see that   µ0itot/2π  is a constant and the derivative
of a constant is zero

  ∂
∂r

µ0itot

2π
= 0 (62)

Thus we end up with the simple result

  
∇ ×B = 0 for Bθ =

µ0itot
2πr

(63)

This is what we expected from our earlier discussion
of  Ampere's law in differential form. Neglecting the

  ∂E/∂t  term, the law is

  ∇ ×B = µ0 i(x,y,z) (38) repeated

where the vector  i (x,y,z)  is the current density.
Since the current is confined to the wire, the curl

  ∇ ×B  must also be confined to the wire, and be zero
outside.

Inside the Wire
What about inside the wire where the current density
is not zero?  Equation (53) does not apply there
because the formula   Bθ = µ0itot 2πrµ0itot 2πr applies only
outside the wire.

To calculate the magnetic field inside the wire, we
have to know something about the current density.
Let us assume that we have a uniform current inside
a wire of radius R.  We will apply Ampere's law to
a circular path of radius  r  as shown in the end view
of the wire in Figure (15).

The amount of current enclosed by our path of radius
r  is, for a uniform current, simply the total current

 itot  times the ratio of the area   πr2  of the path, to the
area   πR2  of the wire

  
i enclosed = itotal

πr2

πR2 = itot
r2

R2 (64)

Using this value in Ampere's law, we get for the
magnetic field inside the wire

  B ⋅ d = µ0i enclosed

  
Bθ × 2πr = µ0itot

r2

R2 (65)

One of the r's cancels, and we are left with

  
Bθ(r) =

µ0itotal

2πR2 r (66)

where everything in the square brackets is a con-
stant.  You derived this result in Exercise (29-4) of
the Physics text.

B

B

r

R

circular
Magnetic
Field 

circular
Path of
radius r

Figure 15
Calculating the magnetic field inside the wire,
assuming a uniform current density.
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Repeating Equation (66), we had for the field inside
the wire

  
Bθ(r) =

µ0itotal

2πR2 r (66)

We see that   Bθ  increases linearly with r  until we
reach the surface of the wire at r = R, as shown in Figure
(16).  Then outside the wire,   Bθ  drops off as 1/r.

To simplify the formulas, let us write   Bθ  inside the
wire as

   Bθ(r) = kr inside
wire (66a)

where

  
k =

µ0itotal

2πR2 (66b)

The curl of this value of   Bθ is given by Equation (58)
as

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ)

= 1
r

∂
∂r

(rkr)

= k
r

∂
∂r

(r2)

(67)

Since   ∂(r2) ∂r∂(r2) ∂r = 2r , we get

  (∇ ×B)z = k
r (2r) = 2k (68)

R

B(r)

r

r
r
12πR

µ i0 tot

Figure 16
The magnetic field inside and outside the wire,
for a uniform current density inside the wire.

Putting back our value for   k = µ0itot/2πR2  we get

  
(∇ ×B)z = µ0

itot

πR2 (69)

Now   itot/πR2  is the total current in the wire divided
by the area of the wire, which is the current density
i(x,y,z).  Since the current is z  directed, we can write
the current density as

  
i (x,y,z) = z

itot

πR2 (70)

and Equation (70) can be written as the vector
equation

  ∇ ×B = µ0 i (x,y,z) (38) repeated

which is the differential form of Ampere's law (for
  ∂E/∂t = 0 ).

This is the result we expected in the first place. The
fact that we got back to Ampere's law serves as a
check that the formulas for the curl in cylindrical
coordinates are working.

  ∇ ×B = µ0 i   ∇ ×B = 0
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Calculus 2000-Chapter 9
Electromagnetic Waves
CHAPTER 9 ELECTROMAGNETIC
WAVES

In the Physics text we had some difficulty showing
that Maxwell's equations led to the prediction of the
existence of electromagnetic  radiation.  The prob-
lem was that the integral form of Maxwell's equa-
tions are not particularly well suited for the deriva-
tion.  The best we could do was to show that the wave
pulse, shown in Figure (32-16) reproduced here,
travels out at a speed   v = 1/ µ0ε0  which turns out
to be the speed of light.

EE

B

vv
vv

λ
One wavelength l = the distance between similar crests

Electric
field

Magnetic
field

a) Electric and magnetic fields produced 
    by abruptly switching the antenna current.

b) Electric and magnetic fields produced 
    by smoothly switching the antenna current.

E

B

c c

cc

x

y

z

In discussing light waves, we made the argument
that if we started with a series of wave pulses shown
in Figure (32-23a) and smoothed them out, we could
get the sinusoidal pulse shown in (32-23b).  We
never did show that the smoothed out version was
actually a solution of Maxwell's equations, or that
the sinusoidal structure traveled at a speed

  c = 1/ µ0ε0 .  With the differential form of Maxwell's
equations, we can now do that.

Figure 32-23
Structure of electric and magnetic
fields in light and radio waves.

Figure  32-16
Electromagnetic pulse
produced by turning the
current on and then
quickly off. We will see
that this structure agrees
with Maxwell's
equations.
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VECTOR IDENTITIES
To use the differential forms of Maxwell's equa-
tions, it is convenient to first develop three formulas
known as vector identities.  These are mathematical
relationships involving curls that apply to any vector
field.  We will state these identities first and then
spend the rest of the section deriving them.  You
should go through these derivations at least once to
get a feeling for how they work and how general they
are.

Identity 1
The curl of a gradient   ∇ f  is zero for any scalar field
f(x,y,z).

  
∇ ×(∇ f) = 0

(1)

Identity 2
The divergence of a curl is zero.  That is, for any
vector field  A(x,y,z)

  
∇ ⋅ (∇ ×A) = 0

(2)

Identity 3
This identity gives us a formula for the curl of a curl.
The formula is

  ∇ ×(∇ × A) = – (∇ ⋅∇ )A + ∇ (∇ ⋅A) (3)

where   ∇ ⋅ ∇ = ∇ x∇ x + ∇ y∇ y + ∇ z∇ z  is the
Laplacian operator discussed in Chapter 4.  We will
often use the notation

  ∇ ⋅∇ ≡ ∇ 2 = ∇ x∇ x + ∇ y∇ y + ∇ z∇ z (4)

so that the vector identity can be written as

  
∇ ×(∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A)

(5)

In the special case that  A  has zero divergence, if
  ∇ ⋅A = 0 , then we get

   
∇ ×(∇ ×A) = – ∇ 2A

if ∇ ⋅A
is zero

(5a)

Proof of Identity 1
The proof of these identities relies on the fact that we
can interchange the order of partial differentiation, a
result we prove in the appendix to this chapter.  As
an example of how this is used, consider one compo-
nent of the first identity.  Using the cross product
formula

  (A × B)x = AyBz – AzBy (6)

we get

  ∇ ×(∇ f)
x

= ∇ y(∇ zf) – ∇ z(∇ yf)

= ∇ y∇ zf – ∇ z∇ yf
(7)

Interchanging   ∇ y∇ z  to get   ∇ y∇ zf = ∇ z∇ yf  imme-
diately makes this component zero.  The same thing
happens to the  y and z components of   ∇ ×(∇ f) , thus
the entire expression is zero.
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Proof of Identity 2
To prove the second identity   ∇ ⋅(∇ ×A) = 0 , we
start with the components of   ∇ × A , which are

  (∇ ×A)x = ∇ yAz – ∇ zAy

  (∇ ×A)y = ∇ zAx – ∇ xAz

  (∇ ×A)z = ∇ xAy – ∇ yAx (8)

Note that to get all three components of   ∇ × A , you do
not have to memorize all three equations.  If you
memorize only the first   (∇ ×A)x = ∇ yAz – ∇ zAy
you can get the other  two by using cyclic permutations.
That means, start with   (∇ ×A)x = ∇ yAz – ∇ zAy , and
replace the subscripts cyclically, letting

  x → y ,   y → z , and z → x .  That gives you
  (∇ ×A)y = ∇ zAx – ∇ xAz .  Do the cyclic permutation

again and you get   (∇ ×A)z = ∇ xAy – ∇ yAx  which is
the third equation.)

Now take the dot product of  ∇  with   ∇ × A  to get

  ∇ ⋅ (∇ ×A)

= ∇ x(∇ ×A)x + ∇ y(∇ ×A)y + ∇ z(∇ ×A)z

= ∇ x∇ yAz – ∇ x∇ zAy

+ ∇ y∇ zAx – ∇ y∇ xAz

+ ∇ z∇ xAy – ∇ z∇ yAx (9)

Exercise 1

Show that all the terms in Equation (9) cancel, giving
  ∇ ⋅ (∇ × A) = 0 for any A .

Proof of Identity 3
The third vector identity

  ∇ × (∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A) (5) repeat

looks worse but is not that hard to prove.  We will
start with the x  component of   ∇ × (∇ ×A)  which is

  ∇ × (∇ ×A)
x

= ∇ y(∇ ×A)z – ∇ z(∇ ×A)y

= ∇ y(∇ xAy – ∇ yAx) – ∇ z(∇ zAx – ∇ xAz)

= – ∇ y∇ yAx – ∇ z∇ zAx + ∇ x∇ yAy + ∇ x∇ zAz

(10)
where we changed the order of differentiation in the
last two terms. The trick is to add and then subtract

  ∇ x∇ xAx  to Equation (10), giving

  ∇ × (∇ ×A)
x

= – ∇ x∇ xAx – ∇ y∇ yAx – ∇ z∇ zAx

+ ∇ x∇ xAx + ∇ x∇ yAy + ∇ x∇ zAz

= – (∇ x∇ x + ∇ y∇ y + ∇ z∇ z)Ax

+ ∇ x(∇ xAx + ∇ yAy + ∇ zAz)

= – ∇ 2Ax + ∇ x(∇ ⋅A)

(11)

This is just the x component of Equation (5).  Similar
derivations verify the  y and z components of that
vector identity.
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DERIVATION OF THE WAVE EQUATION
We are now in a position to derive the wave equation
for electromagnetic waves, starting from Maxwell's
equations.  We will use Maxwell's equations for
empty space, because Maxwell's major discovery
was that electric and magnetic fields could propa-
gate through empty space in a wavelike manner, and
that these waves were light waves.

Maxwell's equations in differential form are, from
Equations (8-49) of Chapter 8

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(12)

Maxwell's Equations

where   ρ(x,y,z)  is the electric charge density in
coulombs per cubic meter, and  i (x,y,z)  is the elec-
tric current density in amperes per square meter.

In empty space, where the charge density   ρ(x,y,z)
and the current density  i (x,y,z)  are zero, we get

   ∇ ⋅E = 0 Gauss' law (13a)

    ∇ ⋅B = 0 no monopole (13b)

    
∇ × B = µ0ε0

∂E
∂t

Ampere's law (13c)

    
∇ × E = –

∂B
∂t

Faraday's law (13d)

Maxwell's Equations in Empty Space

In our discussion of vector fields in the Physics text,
we pointed out that a vector field is uniquely deter-
mined if we have general formulas for the volume
and line integrals of that field.  Now, working with
differential equations, that statement becomes the
rule that a vector field like  E  is determined if we
know the divergence    ∇ ⋅ E  and the curl    ∇ × E  at
every point in space*.  There are four Maxwell
equations because we have to specify both the diver-
gence and the curl of both  E  and  B .

Equation (10) tells us that in empty space, neither  E
nor  B  have a divergence    (∇ ⋅E = ∇ ⋅B = 0) , and
we only have to deal with the curls of these fields.

The trick we use to get a wave equation from
Equations (13) is to take the curl of Equations (13c)
and (13d).  This gives us

   
∇ × (∇ × B) = µ0ε0∇ ×

∂E
∂t (14a)

   
∇ × (∇ × E) = – ∇ ×

∂B
∂t (14b)

where we took the constants   µ0  and   ε0  outside the
derivative in Equation (14a).

*(If we have a field known only in some region of
space, like the velocity field of a fluid in a section of
pipe, we can uniquely determine the field if we know
the divergence and curl within that region, and also
the normal components of the field at the region's
surface.)
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The next step is to use the fact that we can inter-
change the order of partial differentiation to get

   
∇ ×

∂E(x,y,z,t)
∂t = ∂

∂t ∇ × E(x,y,z,t) (15)

and a similar result for    ∇ × (∂B/∂t)  to give

   ∇ × (∇ × B) = µ0ε0
∂
∂t (∇ × E) (16a)

   
∇ × (∇ × E) = –

∂
∂t (∇ × B) (16b)

Notice that the right hand sides of Equations (16)
involve    (∇ × E)  and    (∇ × B)  which are given by
Maxwell's Equations (13c) and (13d) as

   
∇ × E = –

∂B
∂t (13d) repeated

   
∇ × B = µ0ε0

∂E
∂t (13c) repeated

Thus Equations (16) can be written as

   
∇ × (∇ × B) = µ0ε0

∂
∂t –

∂B
∂t

= – µ0ε0
∂2B
∂t2

(17a)

   
∇ × (∇ × E) = –

∂
∂t µ0ε0

∂E
∂t

= – µ0ε0
∂2E
∂t2

(17b)

Notice that at this point  E  and  B  obey exactly the
same differential equation.

The final step is to use the vector identity

  ∇ × (∇ × A) = – ∇ 2A + ∇ (∇ ⋅ A) (5) repeat

Since both    ∇ ⋅ E  and    ∇ ⋅ B  are zero in empty space,
we have

   ∇ × (∇ × B) = – ∇ 2B (18)

and the same for    ∇ × (∇ × E)  to give us

  
– ∇ 2E = – µ0ε0

∂2E
∂t2 (19a)

  
– ∇ 2B = – µ0ε0

∂2B
∂t2 (19b)

Dividing through by   µ0ε0  gives

  
1

µ0ε0
∇ 2E = ∂2E

∂t2 (20a)

  
1

µ0ε0
∇ 2B = ∂2B

∂t2 (20b)
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PLANE WAVE SOLUTION
Repeating Equations (20), we have

  1
µ0ε0

∇ 2E = ∂2E
∂t2 (20a)

  1
µ0ε0

∇ 2B = ∂2B
∂t2 (20b)

To interpret these equations, let us assume that  E
and  B  have the shape more or less like that shown in
Figure (32-23b) reproduced here again.  All we need
from that picture is that both  E  and  B  vary only in
the direction of motion (call this the x direction) and
in time.  There is no change of  E  and  B  in the y and
z  directions.  Such a wave is called a plane wave,
because there are no variations within a plane.

Using the coordinate system added to Figure (32-
23b), we see that  E  is y directed (we would call this
y polarized radiation) and  B  is z  directed.  The
formulas for  E  and  B  can thus be written for this z
directed plane wave

 E = yEy(x,t) (21a)

 B = zBz(x,t) (21b)

where Equations (21a) and (21b) remind us that we are
dealing with a plane wave with no x or y dependence.

As a result

  
∇ yE = y

∂E(x,t)

∂y
= 0

and the same for   ∇ zE ,   ∇ yB  and   ∇ zB .  Thus

  ∇ 2E = (∇ x∇ xE + ∇ y∇ yE + ∇ z∇ zE)

= ∇ x∇ xE = y
∂2Ey

∂x2

(22a)

and

  
∇ 2B = z

∂2Bz

∂x2
(22b)

The time derivatives of the plane wave fields of
Equations (21) are

  ∂2E
∂t2

= y
∂2Ey(x,t)

∂t2
(23a)

  ∂2B
∂t2

= z
∂2Bz(x,t)

∂t2
(23b)

λ
One wavelength l = the distance between similar crests

Electric
field

Magnetic
field

a) Electric and magnetic fields produced 
    by abruptly switching the antenna current.

b) Electric and magnetic fields produced 
    by smoothly switching the antenna current.

E

B

c c

cc

x

y

z

Figure 32-23
Structure of electric
and magnetic fields in
light and radio waves.
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When we use Equation (22a) for   ∇ 2E  and (23a) for
  ∂2E/∂t2  in Equation (20a), the unit vectors y cancel

and we are left with

  1
µ0ε0

∂2Ey(x,t)

∂x2
=

∂2Ey(x,t)

∂t2
(24a)

We get a similar equation for  Bz , namely

  1
µ0ε0

∂2Bz(x,t)

∂x2
=

∂2Bz(x,t)

∂t2
(24b)

In our discussion of the one dimensional wave
equation in Chapter 2 of this text we had as the
formula for the wave equation

   
vwave

2 ∂2y(x,t)

∂x2
=

∂2y(x,t)

∂t2

one
dimensional
wave
equation

(2-73)

Comparing this wave equation with Equation (24),
we see that the plane wave of Figure (32-23b) obeys
the one dimensional wave equation with

  vwave
2 = 1

µ0ε0

  
vwave = 1

µ0ε0

(25)

From the wave equation alone we immediately find
that the speed of the wave is   1/ µ0ε0  which is the
speed of light.  We get this result without going
through all the calculations we did in the Physics text
to derive the speed of the electromagnetic pulse.

What we have shown in addition is that the speed of
the wave does not depend on its shape.  All we used
was that E = E(x,t) without saying what the x
dependence was.  Thus both the series of pulses in
Figure (32-23a) and the sinusoidal wave in (32-23b)
should have the same speed   1/ µ0ε0 .  This we were
not able to show using the integral form of Maxwell's
equations.

THE THREE DIMENSIONAL
WAVE EQUATION
We have seen that if  E  and  B  are plane waves, i.e.,
vector fields that vary in time and only one dimen-
sion, then Equations (20a) and (20b) become the one
dimensional wave equation for  E  and  B .  Since
Equations (20) do not single out any one direction as
being special, we would get a wave equation for a
plane wave moving in any direction, and we see that
Equations (20) are three dimensional wave equa-
tions for waves traveling at a speed   vwave

2 = 1/ µ0ε0 .
Rewriting these equations in terms of  vwave  rather
than   µ0ε0  gives us the general form of the three
dimensional wave equation

  
vwave

2 ∇ 2E = ∂2E
∂t2 (26)

and the same for  B .

The form we will generally recognize as being the
three dimensional wave equation is the trivial rear-
rangement of Equation (26),

   
1

vwave
2

∂2E
∂t2

– ∇ 2E = 0
three dimensional
wave equation
applied to E

(27)
Equation (27) is the way the wave equation is
usually written in textbooks.

So far we have only shown that plane waves are a
solution to the three dimensional wave equation.
For now that is enough.  Solutions to the wave
equation can become quite complex in three dimen-
sions, and we do not yet have to deal with these
complications.
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APPENDIX: ORDER OF PARTIAL
DIFFERENTIATION
It is worth while to show once and for all that you can
interchange the order of partial differentiation.  We
do this by going back to the limiting process, where

  ∂f(x,y)

∂x
= limit

∆x→0
f(x+∆x,y) – f(x,y)

∆x
(A-1)

and a similar formula for   ∂f/∂y .  For the second
derivative we have

  
∇ x∇ yf(x,y) = ∂

∂x
∂f(x,y)

∂y
(A-2)

Let us temporarily introduce the notation

  
fy
′ (x,y) =

∂f(x,y)

∂y
(A-3)

so that Equation (A-2) becomes

  ∇ x∇ yf(x,y) = ∂
∂x

fy
′ (x,y)

= limit
∆x→0

fy
′ (x+∆x,y) – fy

′ (x,y)

∆x

(A-4)
Now in Equation (A-4) make the substitution

  
fy
′ (x,y) = limit

∆y → 0
f(x,y+∆y) – f(x,y)

∆y
(A-5)

  
fy
′ (x+∆x,y) = limit

∆y→0
f(x+∆x,y+∆y) – f(x+∆x,y)

∆y

(A-6)
Using Equations (A-5) and (A-6) in (A-4) gives

  
∇ x∇ yf(x,y) =

limit
∆x→0
∆y→0

f(x+∆x,y+∆y) + f(x,y) – f(x+∆x,y) – f(x,y+∆y)

∆x∆y

(A-7)

Exercise 1

Show that you get exactly the same result for   ∇ y∇ xf(x,y).

You can see that our result, Equation (A-7) is com-
pletely symmetric between x and y, thus it should be
obvious that we should get the same result by revers-
ing the order of differentiation.

The only possible fly in the ointment is the order in
which we take the limits as   ∆x → 0  and   ∆y → 0 .
As long as f(x,y) is smooth enough so that f(x,y) and
its first and second derivatives are continuous, then
the order in which we take the limit makes no
difference.
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Calculus 2000-Chapter 10
Conservation of Electric Charge

CHAPTER 10 CONSERVATION OF
ELECTRIC CHARGE

In this short chapter, we obtain a very important
result.  We will see that Maxwell's equations them-
selves imply that electric charge is conserved.  In
our development of Maxwell's equations, our atten-
tion was on the kind of electric and magnetic fields
that were produced by electric charges and cur-
rents.  We said, for example, that given some electric
charge, Gauss' law would tell us what electric field
it would produce. Or given an electric current,
Ampere's law would tell us what magnetic field
would result.

Then later on, we found out that for mathematical
consistency, a changing electric field would create
a magnetic field and vice versa.  All this was summa-
rized in Maxwell's equations, which we repeat here

  ∇ ⋅ E = ρ/ε0

∇ ⋅ B = 0

∇ × E = – ∂B/∂t

∇ × B = µ0 i + µ0ε0∂E/∂t

(1)

What we did not notice in this development of the
equations for  E  and  B  is that the equations place a
fundamental restriction on the sources ρ  and i  of
the fields.  As we will now see, the restriction is that
the electric charge, which is responsible for the
charge density ρ  and current i , must be conserved.
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THE CONTINUITY EQUATION
We began our discussion of fluid dynamics in Chap-
ter 23 of the Physics text, by introducing the conti-
nuity equation for an incompressible  fluid.  For a
tube with an entrance cross sectional area  A1  and
exit area  A2 , the equation was

  v1A1 = v2A2
continuity
equation (23-3)

which says that the same volume of fluid per second
flowing into the entrance flows out of the exit.  Later
this statement that the fluid is incompressible (or
does not get lost or created) became

   v
closed
surface

⋅dA = 0 incompressible
fluid (2)

The differential form of Equation (2) is

   ∇ ⋅v = 0 incompressible
fluid (3)

as we showed in our initial discussion of divergence.
All three equations, (23-3), (2) and (3) are saying the
same thing in a progressively more detailed way.

Equation (3) is not the most general statement of a
continuity equation.  It is the statement of the conser-
vation of an incompressible fluid, but you can have
flows of  a compressible nature where something
like mass or charge is still conserved.  A more
general form of the continuity equation allows for
the conservation of these quantities.  We will now
see that this more general form of the continuity
equation naturally arises from Maxwell's equations.

CONTINUITY EQUATION FROM
MAXWELL'S EQUATIONS
To derive the continuity equation for electric charge,
we start by taking the divergence of the generalized
form of Ampere's law

  
∇ ⋅ ∇ ×B = µ0 i + µ0ε0

∂E
∂t

(4)

which becomes

  
∇ ⋅ (∇ ×B) = µ0∇ ⋅ i + µ0ε0∇ ⋅ ∂E

∂t
(5)

Using the fact that the divergence of a curl is iden-
tically zero,   ∇ ⋅ (∇ × B) = 0 , and the fact that we can
interchange the order of differentiation, we get

  0 = µ0∇ ⋅ i + µ0ε0
∂
∂t (∇ ⋅E) (6)

Divide Equation (6) through by   µ0 , and use Gauss'
law

  ∇ ⋅E =
ρ
ε0

to get

  ∇ ⋅ i + ε0
∂
∂t

ρ
ε0

= 0 (7)

The   ε0's  cancel and we are left with

   ∂ρ
∂t

+ ∇ ⋅ i = 0 continuity equation
for electric charge (8)

Equation (8) is the continuity equation for electric
charge.

You can immediately see from Equation (8) that if
the electric charge density ρ  were unchanging in
time, if   ∂ρ/∂t = 0 , then we would have   ∇ ⋅ i = 0  and
the electric current would flow as an incompressible
fluid.  The fact that a   ∂ρ/∂t  term appears in Equation
(8) is telling us what happens when ρ  changes, for
example, if we compress the charge into a smaller
region.
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Integral Form of Continuity Equation
The way to interpret Equation (8) is to convert the
equation to its integral form.  We do this by integrat-
ing the equation over some volume V bounded by a
closed surface S.  We have

  ∂ρ
∂t

V

dV + ∇ ⋅ i

V

dV = 0 (9)

Using the divergence theorem to convert the volume
integral of   ∇ ⋅ i  to a surface integral gives

  ∇ ⋅ i

volume
V

dV = i

S (surface
of V)

⋅dA (10)

Using Equation (10) in (9) we get

   
i

closed
surface S

⋅dA = –
∂ρ
∂t

volume
V inside S

dV
integral form
of continuity
equation

(11)
On the left side of Equation (11) we have the term
representing the net flow of electric current out
through the surface S.  It represents the total amount
of electric charge per second leaving through the
surface.  On the right side we have an integral
representing the rate at which the amount of charge
remaining inside the volume V is decreasing (the –
sign).  Thus Equation (38) is telling us that the rate
at which charge is flowing out through any closed
surface S is equal to the rate at which the amount of
charge remaining inside the surface is decreasing.
This can be true for any surface S only if electric
charge is everywhere conserved.

The fact that the continuity equation was a conse-
quence of Maxwell's equation tells us that if we do
have the correct equations for electric and magnetic
fields, then the source of these fields, which is
electric charge and current, must be a conserved
source.  Later, when we discuss the process of
constructing theories of fields, we will see in more
detail how conservation laws and theories of fields
are closely related.  Basically for every fundamental
conservation law there is a field associated with the
law.  In this case the law is the conservation of
electric charge and the associated field is the electro-
magnetic field.  It turns out that the law of conserva-
tion of energy is associated with the gravitational
field.
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Calculus 2000-Chapter 11
Scalar And Vector Potentials
CHAPTER 11 SCALAR AND VEC-
TOR POTENTIALS

In our first  experiment on electricity in the Physics
text we studied the relationship between voltage on
electric fields.  We constructed the lines of constant
voltage, the equipotential lines, and then constructed
the perpendicular electric field lines.  In Chapter 3
of the Calculus text we developed the more detailed
relationship that the electric field  E  was equal to
minus the gradient of the voltage

   E(x,y,z) = – ∇ V(x,y,z) (3-19)

As you study more advanced topics in science, you
sometimes encounter situations where the name or
symbol used to describe some quantity is different in
the advanced texts than in the introductory ones.
Various historical accidents are often responsible
for this change.

In introductory texts and in the laboratory we talk
about the voltage V which we measure with a volt-
meter.  The first hint that we would use a different
name for voltage was when we called the lines of
constant voltage equipotential lines, or lines of
constant potential.  Advanced texts, particularly
those with a theoretical emphasis, use the name
potential rather than voltage, and typically use the
symbol    φ(x,y,z) rather than V(x,y,z).  In this nota-
tion, Equation (3-19) becomes

   E(x,y,z) = – ∇ φ(x,y,z) (1)

This is how we left the relationship between E  and
φ in Chapter 3 on gradients.

From our discussion of divergence and curl, it does
not take long to see that there is a problem with
Equation  (1) .  If we take the curl of both sides of this
equation, we get

   ∇ × E = – ∇ × (∇ φ) (2)

However our first vector identity, Equation (9-1)
was that the curl of a divergence was identically
zero.

   ∇ × (∇ φ) = 0 (3)

Thus Equation  (1)  implies that the field  E  has zero
curl

   ∇ × E = 0 as a consequence
of Equation (1)

(4)

which is not consistent with Maxwell's equations.  In
particular, Faraday's law says that

   
∇ × E = – ∂B

∂t
Faraday's law (5)

Thus Equation  (1)  cannot be true, or at least cannot
be the whole story, when changing magnetic fields
are present, when    ∂B/∂t  is not zero.  If we only have
static charges, or even stationary currents so that  B
is zero or constant in time, then Faraday's law
becomes

   
∇ × E = 0

when
∂B/dt = 0 (6)

and then  E  can be described completely as the gradi-
ent of a voltage V or potential φ.
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Since the curl is the line integral on an infinitesimal
scale, Equation (6) is equivalent to the statement
that the line integral of  E  is zero everywhere

   
E ⋅d = 0

when
∂B/dt = 0 (6a)

In our initial discussion of the line integral in Chap-
ter 28 of the Physics text (pages 28-5,6), we pointed
out that Equation (6a) was the condition for what we
called a conservative force, a force that could be
described in terms of potential energy.  The equation

   E = – ∇ φ  (or    – ∇ V ) does exactly that, since V or
φ  is the potential energy of a unit test charge.

What we are seeing now is that for static fields,
where    ∂B/∂t  is zero,  E  is a conservative field that
can be described as the gradient of a potential
energy φ .  However when changing magnetic fields
are present, the curl of  E  is no longer zero and  E
has a component that cannot be described as the
gradient of a potential energy.

We will see in this chapter that  E  and  B  can both be
described in terms of potentials by introducing a
new kind of potential called the vector potential

  A(x,y,z) .  When combined with what we will now
call the scalar potential       φφ(x,y,z) , we not only have
complete formulas for  E  and  B , but also end up
simplifying the electromagnetic wave equation for
the case that sources like charge density ρ and
current density i are present.

The topic of the vector potential   A(x,y,z)  is often left
to later advanced physics courses, sometimes intro-
duced at the graduate course level.  There is no need
to wait; the introduction of the vector potential
provides good practice with curl and divergence.
What we will not cover in this chapter are the ways
the vector potential is used to solve complex radia-
tion problems.  That can wait.  What we will focus on
is how the vector potential can be used to simplify the
structure of Maxwell's equations.  In addition we
need the vector potential to handle the concept of
voltage when changing magnetic fields are present.

THE VECTOR POTENTIAL
It seems to be becoming a tradition in this text to
begin each chapter with a repeat of Maxwell's equa-
tions.  In order not to break the tradition, we do it
again.

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(7)

Let us now set the magnetic field  B(x,y,z)  equal to
the curl of some new vector field  A(x,y,z) .  That is,

   
B(x,y,z) ≡ ∇ ×A(x,y,z)

introducing
the vector
potential A

(8)

Equation (7) is the beginning of our definition of
what we will call the vector potential  A x,y,z .  To
begin to see why we introduced the vector potential,
take the divergence of both sides of Equation (8).
We get

  ∇ ⋅B = ∇ ⋅ (∇ ×A) = 0 (9)

This is zero because of the second vector identity
studied in Chapter 9, Equation (9-2).  There we
showed that the divergence of the curl   ∇ ⋅ (∇ × A)
was identically zero for any vector field A.

Thus if we define B as the curl of some new  vector
field A, then one of Maxwell's equations,   ∇ ⋅B = 0
is automatically satisfied.



Calculus  2000 - Chapter 11      Scalar and Vector Potentials       Cal 11-3

Our next step is to see what happens when we
introduce the vector potential into the other Max-
well equations.  Let us start with Faraday's law

  ∇ × E = – ∂B
∂t

(10)

If we replace B with   ∇ × A we get

  ∇ ×E = – ∂
∂t

(∇ ×A) (11)

Using the fact that we can change the order of partial
differentiation, and remembering that the curl is just
a lot of partial derivatives, we get

   
∇ ×E = ∇ × – ∂A

∂t
Faraday's law

in terms of A
(12)

We see that Equation (12) would be satisfied if we
could set   E = – ∂A/∂t  on the left side.

We cannot do that, however, because we already
know that for static charges,   E = – ∇ φ.  But see what
happens if we try the combination

   
E = – ∇ φ – ∂A

∂t

electric field
in terms of
potentials
φ and A

(13)

Taking the curl of Equation (7) gives

  ∇ ×E = – ∇ ×(∇ φ) – ∇ × ∂A
∂t (14)

Since   ∇ ×(∇ φ) = 0  because the curl of a gradient is
identically zero, we get

  ∇ ×E = – ∇ × ∂A
∂t

(15)

Next interchange the order of partial differentiation
to get

  ∇ ×E = – ∂
∂t

(∇ ×A) = – ∂B
∂t

(16)

which is Faraday's law.

Thus when we define the electric and magnetic
fields E and B in terms of the potentials φ and A by

  B = ∇ ×A (8) repeated

  E = – ∇ φ– ∂A/∂t (13) repeated

then two of Maxwell's equations

   ∇ ⋅B = 0 no monopole

   ∇ × E = – ∂B
∂t

Faraday's law

are automatically satisfied.

You can now see how we handle potentials or
voltages when changing magnetic fields are present.
For the field of static charges, we have   E = – ∇ φ as
before.  When changing magnetic fields are present,
we get an additional contribution to E due to the –

  ∂A/∂t term.

In Maxwell's theory of electric and magnetic fields,
in what is often called the classical theory of electro-
magnetism, you can solve all problems by using
Maxwell's equations as shown in Equation (7) and
never bother with introducing the vector potential
A.  In the classical theory, the potentials are more of
a mathematical convenience, trimming the number
of Maxwell's equations from four to two because
two of them are automatically handled by the defi-
nition of the potentials.

Things are different in quantum theory.  There are
experiments involving the wave nature of the elec-
tron that detect the vector potential A directly.
These experiments cannot be explained by the fields
E and B alone.  It turns out in quantum mechanics
that the potentials φ and A are the fundamental
quantities and E and B are derived concepts, con-
cepts derived from the equations   B = ∇ × A and

  E = – ∇ φ – ∂A ∂t∂A ∂t .
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WAVE EQUATIONS FOR φφ AND  A

The other two Maxwell's equations turn out to be
wave equations for φ and A.  There is one surprise
in store.  So far we have defined only the curl of A
through the equation   B = ∇ × A.  In general a vector
field like A can have both a divergent part  Adiv and
a solenoidal part  Asol where

 A = Adiv + Asol (17)

where the divergent part has no curl and the solenoi-
dal part has no divergence

  ∇ × Adiv = 0 (18a)

  ∇ ⋅ Asol = 0 (18b)

We saw this kind of separation in the case of electric
fields.  When the electric field was created by static
electric charges it was purely divergent, i.e., had
zero curl.  An electric field created by a changing
magnetic field is purely solenoidal, with zero diver-
gence.

As a result  our equation   B = ∇ ×A  defines only the
solenoidal part of A, namely  Asol.  We are still free
to choose  Adiv, which has not been specified yet.
We will see that we can choose  Adiv or   ∇ ⋅A in such
a way that considerably simplifies the wave equa-
tions for φ and A.  This choice is not essential, only
convenient.  Sometimes, in fact, it is more conve-
nient not to specify any choice for  Adiv, and to work
with the more general but messier wave equations.

For very obscure historical reasons, the choice of a
special value for   ∇ ⋅A is called a choice of gauge.  In
a later chapter we will look very carefully at what it
means to make different choices for   ∇ ⋅A.  We will
see that there are no physical predictions affected in
any way by changing our choice for   ∇ ⋅A.  As a
result the theory of electromagnetism is said to be
invariant under different choices of gauge, or gauge
invariant.  This feature of electromagnetism will
turn out to have extremely important implications,
particularly in the quantum theory.  For now, how-
ever, we will simply make a special choice of   ∇ ⋅A
that simplifies the form of Maxwell's equations for
φ and A.

The two Maxwell's equations that are not automati-
cally satisfied by   B = ∇ × A and   E = – ∇ φ– ∂A/∂t
are

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

Making the substitutions   E = – ∇ φ– ∂A/∂t  in
Gauss's law gives

  
∇ ⋅E = ∇ ⋅ –∇ φ– ∂A

∂t
=

ρ
ε0

(19)

Noting that   ∇ ⋅ ∂A/∂t = ∂(∇ ⋅A)/∂t  because we can
change the order of partial differentiation, and that

  ∇ ⋅ (∇ φ) = ∇ 2φ , we get

  
–∇ 2φ–

∂(∇ ⋅A)

∂t
=

ρ
ε0

  
–∇ 2φ =

ρ
ε0

+
∂(∇ ⋅A)

∂t
(20)

You can see the divergence of A, namely   ∇ ⋅A
appearing in the equation for φ.

Making the substitutions in Ampere's law gives

  
∇ × B = ∇ × (∇ ×A) = µ0 i + µ0ε0

∂E

∂t

= µ0 i + µ0ε0
∂
∂t

– ∇ φ–
∂A

∂t
(21)

Using the third vector identity of Chapter 9, namely

  ∇ × (∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A) (9-3)

Equation 21 becomes

  – ∇ 2A + ∇ (∇ ⋅A)

= µ0 i – µ0ε0
∂(∇ φ)

∂t
– µ0ε0

∂2A

∂t2

(22)
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Writing   ∂(∇ φ)/∂t = ∇ (∂φ/∂t)  and moving the
  ∂2(A)/∂t2  term to the left and   ∇ (∇ ⋅A)  to the right

gives
  

– ∇ 2A + µ0ε0
∂2(A)

∂t2

= µ0 i – ∇ µ0ε0
∂φ
∂t

– ∇ (∇ ⋅A) (23)

In Equation (23) we see the wave equation for A
appearing on the left side, but we have some weird
stuff involving   ∇ ⋅A  and   ∂φ/∂t on the right.  We can
simplify things a bit by noting that both of these
terms have a factor of ∇  and writing

   
– ∇ 2A + 1

c2
∂2(A)

∂t2

= µ0 i – ∇ ∇ ⋅A + 1
c2

∂φ
∂t

Ampere's
law

(24)

where we have replaced   µ0ε0 by  1/c2, c being the
speed of light.

Equation (24) is beginning to look like a wave
equation with some peculiar terms on the right hand
side.  Equation (20) for φ does not, at least now, look
like a wave equation.  However we can make it look
like a wave equation by adding the term

  (1/c2)(∂2φ/∂t2)  to both sides, giving

  
– ∇ 2φ+ 1

c2
∂2(φ)

∂t2

=
ρ
ε0

+ 1
c2

∂2(φ)

∂t2 +
∂(∇ ⋅A)

∂t (25)

We can factor out a   ∂/∂t in the last two terms on the
right side of Equation (25) giving us

   
– ∇ 2φ+ 1

c2
∂2(φ)

∂t2

=
ρ
ε0

+ ∂
∂t

∇ ⋅A + 1
c2

∂φ
∂t

Gauss'
law

(26)

The rather messy looking Equations (24) and (26)
are Ampere's law and Gauss' law written in terms of
the scalar and vector potentials φ and A.

On the left side of each we have the beginning of a
wave equation, but somewhat of a mess on the right.
However we see that the term

  ∇ ⋅A + 1
c2

∂φ
∂t

(27)

is common to both equations.  If we could find some
way to get rid of this term, there would be a consid-
erable simplification.

We have, however, not yet specified what the value
of   ∇ ⋅A  should be.  We have only specified

  ∇ × A = B.  If we make the choice

   
∇ ⋅A = – 1

c2
∂φ
∂t

special
choice
of gauge

(28)

then the term (27) goes to zero.  Making a choice for
  ∇ ⋅A is called making a choice of gauge, and this

particular choice leads to the much simpler equa-
tions

   
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

Gauss' law (29)

   
– ∇ 2A + 1

c2
∂2A

∂t2 = µ0 i Ampere's law (30)

We get the rather elegant result that both potentials,
the scalar potential φ and vector potential A, obey
wave equations with source terms on the right hand
side.  The source for the scalar potential is the charge
density   ρ/ε0, and the source for the vector potential
is the current density   µ0 i .
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Exercise 1
The choice of gauge we made to get Equations (29) and
(30) was    ∇ ⋅A = – (1/c2)∂φ/∂t .  This gave us simple wave
equations which are convenient if we are working with
electromagnetic waves.  Sometimes another choice of
gauge is more convenient.  Derive Gauss' law and
Ampere's law in terms of φ and A, using the choice of
gauge

   ∇ ⋅A = 0 Coulomb
gauge (31)

which is called the Coulomb gauge.

Do this derivation two ways.  One by starting from
Maxwell's equations in terms of E and B, and secondly,
starting from Equations (24) and (26) where we made no
special choice of gauge.

Exercise 2
This exercise is optional, but should give some very
good practice with Maxwell's equations.  In Chapter 9
we derived the wave equation for electromagnetic
waves in empty space by first writing Maxwell's equa-
tions for empty space, Equations (9-12), and then taking
the curl of Ampere's and Faraday's law.  The results
were

   
– ∇ 2E + 1

c2
∂2E
∂t2

= 0

    
– ∇ 2B + 1

c2
∂2B
∂t2

= 0 wave equations
in empty space (9-20)

Now repeat these calculations for the case that the
charge and current densities ρ and i are not zero.  Show
that you get the following wave equations for E and B

   
– ∇ 2E + 1

c2
∂2E
∂t2

= – ∇ ρ
ε0

– µ0
∂ i
∂t (32)

   
– ∇ 2B + 1

c2
∂2B
∂t2

= µ0∇ × i (33)

You can see that we still get wave equations for E and
B, but the source terms, the stuff on the right hand side,
are much more complex than the source terms for the
wave equations for φ and A.  For example, the source
term for the A wave is simply   µ0 i , while the source term
for a B wave is the    µ0∇ × i . It is even worse for the E field.
Instead of the source term    ρ/ε0 for the φ field, we have

   (– ∇ρ /ε0 – µ0∂ i /∂t)  as a source for the E wave.

Summary
Here we collect in one place, all the forms of
Maxwell's equations.

(a) Maxwell's equations in terms of E and B

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(b) Wave equations for E and B

  
– ∇ 2E + 1

c2
∂2E
∂t2 = –

∇ ρ
ε0

– µ0
∂ i
∂t

  
– ∇ 2B + 1

c2
∂2B
∂t2 = µ0∇ × i

For the wave equations in empty space, set   ρ = 0 and
 i = 0.

(c) Scalar and vector potentials φ and A

  B = ∇ × A

  E = – ∇ φ– ∂A/∂t

These automatically satisfy

  ∇ ⋅ B = 0

  ∇ × E = – ∂B/∂t

The remaining two Maxwell's equations become

  
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

+ ∂
∂t

∇ ⋅A + 1
c2

∂φ
∂t

  
– ∇ 2A + 1

c2
∂2A
∂t2 = µ0 i – ∇ ∇ ⋅A + 1

c2
∂φ
∂t
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The terms in the square brackets can be set to zero
with the choice of gauge

   ∇ ⋅A = – 1
c2

∂φ
∂t

special choice
of ∇ ⋅ A

With this choice of gauge, Maxwell's equations
reduce to

   
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

– ∇ 2A + 1
c2

∂2A
∂t2 = µ0 i

all that is left of
Maxwell's equations



CHAPTER 12 VORTICITY

Calculus 2000-Chapter 12
Vorticity

At the beginning of Part II of the Physics text, we
used the velocity field to introduce the concept of a
vector field. It is easier to picture velocity vectors
attached to water molecules in a flowing stream
than to visualize a vector at each point in space. We
could  introduce Gauss’ law as a conservation law
for an incompressible fluid, and then show that the
electric field behaved in a similar way.

Since that early introduction, we have come a long
way in our study of the mathematical behavior of
vector fields. In this and the next chapter, we will
turn the tables on our earlier approach and apply to
the velocity field the techniques and insights we have
gained in our study of electric and magnetic fields.
This will lead to a much deeper understanding of the
behavior of fluids than we got in our old discussion
of Bernoulli’s equation.

The most important concept that carries us beyond
Bernoulli’s equation is vorticity, which is the curl of
the velocity field. Vorticity is important not only in
the study of vortex structures like vortex rings and
tornadoes, it plays a fundamental role in all aspects
of fluid motion.  In this chapter, we will develop an
intuitive picture of vorticity. In the next chapter, we
focus on its dynamic behavior.

These two chapters are designed to be an introduc-
tion to the basic concepts of fluid dynamics.  For
most of the past century, this subject has been
eliminated from the undergraduate physics curricu-
lum, despite exciting advances in the understanding
of the behavior of superfluids. One of our aims with
these chapters is to bring this subject back.
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DIVERGENCE FREE FIELDS
In the Physics text, we have often noted the similar-
ity between the magnetic field and the velocity field.
The fact that there are no magnetic charges led to the
equation

   
B ⋅dA

S

= 0 for any closed
surface S (1)

For an incompressible fluid like water, the continu-
ity equation, i.e., the fact that we cannot create or
destroy water molecules, leads to the equation

   
v ⋅dA

S

= 0 for any closed
surface S (2)

With the introduction of our differential notation, we
saw that Equation (1) for the magnetic field became

  ∇ ⋅B = 0 (1a)

The same mathematics leads to the equation for the
velocity field

   
∇ ⋅ v = 0

continuity equation
for an
incompressible fluid

(2a)

Thus we see that both the magnetic field, and the
velocity field of an incompressible fluid, are diver-
gence free fields.

Another way to see the same result is to look at the
form of the continuity equation we discussed a short
while ago in Chapter 10. We saw how Maxwell’s
equations automatically led to a continuity equation
for electric charge. That equation was

   ∂ρ
∂t + ∇ ⋅ i = 0 continuity equation

for electric charge (Cal 10-8)

When applied to a fluid of mass density ρ  and mass
current density   ρv  the continuity equation  for mass
becomes

   ∂ρ
∂t + ∇ ⋅ (ρv) = 0

continuity equation
for a fluid of
mass density ρ

(3)

If the fluid density ρ  is constant, then   ∂ρ/∂t = 0 and
  ∇ ρ = 0 .This leads to   ∇ ⋅(ρv) = ρ∇ ⋅v = 0  and we

are left with

  ∇ ⋅ v = 0 (2a) repeated

as the continuity equation for a constant density fluid.

THE VORTICITY FIELD
When we were discussing electric and magnetic
fields in the Physics text, we found that we needed
equations for both the surface integral and the line
integral in order to specify the field.  That is why we
ended up with four Maxwell’s equations in order to
describe the two fields E  and B.  In the Calculus text,
we have shrunk the surface and line integrals down to
infinitesimal size where they become the divergence
and the curl.  Thus to specify a field, we now need
equations for both the divergence and curl of the field.

As we mentioned in Chapter 9, if we have a field known
only in some limited volume of space, like the velocity
field of a fluid within a section of pipe,  then in order
to uniquely determine the field, we must know not
only the divergence and curl within that volume, but
also the perpendicular components of the field at the
volume’s surface. It is the perpendicular components
of the velocity field at the volume’s surface that tell us
how the fluid is flowing in and out.

For a constant density or incompressible fluid, we
already know that the divergence is zero.  Thus if we
know how the fluid is flowing into and out of a volume,
the only other thing we need to specify is its curl   ∇ ×v
inside.  From this point of view we see that the curl

  ∇ ×v  plays a key role in determining the nature of fluid
flows.  It should thus not be too surprising that most of
this chapter is devoted to understanding the nature and
behavior of the curl   ∇ × v.

Our first step will be to give the curl   ∇ × v a name.
We will call it vorticity and designate it by the Greek
letter  ω (omega).

   
ω ≡ ∇ × v vorticity (4)

At this point, we have a slight problem with notation.
In the Physics text we used the symbol  ω to designate
angular velocity   dθ/dt .  While there is some relation-
ship between angular velocity   dθ/dt  and vorticity

  ω = ∇ ×v, they are different quantities.  Worse yet, in
one important example, namely the rotation of a solid
body, they differ by exactly a factor of 2.  To avoid
ambiguity, we will in this chapter use  ω for vorticity

  ∇ × v, and the symbol   ωrot for angular velocity.

   
ωrot ≡ dθ

dt
angular velocity (5)
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POTENTIAL FLOW
In the next few sections, we will develop an intuition
for the concept of vorticity by considering various
examples.  We will start with the simplest example,
namely flow with no vorticity, i.e., when   ∇ × v = 0 .
Such flows are called potential flows.  The reason
for the name is as follows.

In our early discussion of electric fields, we pointed out
that both the gravitational field, and the electric field of
stationary point charges were conservative fields.  A
conservative field was defined as one where the total
work done by the field acting on a mass or charge was
zero if we carried the particle around and came back
to the original starting point. (See page 25-5 of the
Physics text.)  For the work done by an electric field
on a unit test charge, this statement took the form

   
E⋅d = 0 condition that E

is a conservative field (6)

In our differential notation, Equation (6) becomes

   ∇ × E = 0 condition that E
is a conservative field (7)

You will recall that when E  was a conservative
field, we could introduce a unique potential energy
provided we defined the zero of potential energy.
We called the potential energy of a unit test charge
electric voltage or electric potential.

When we got to Faraday’s law, we had some problems
with the concept of electric voltage.  In our discussion
of the betatron where electrons are circling a region of
changing magnetic flux, the electrons gained voltage
each time they went around the circle.  When a chang-
ing magnetic field or magnetic flux   ΦB is present, the
voltage or electric potential is not unique because
the electric field is no longer a conservative field.
Faraday’s law in integral and differential form is

  
E ⋅d = –

dΦB
dt

(Physics 32-19)

  ∇ × E = – dB
dt (8-49)

and we see that   ∇ × E  is no longer zero.

When   ∇ × E  is zero we have a unique electric
voltage (once we have defined the zero of voltage),
and we can use the concept of the gradient, discussed
in the Calculus Chapter 3, to calculate the electric
field from the voltage.  The formula we had was

  E = – ∇ V(x, y, z) (3-19)

where  V(x, y, z)  is the voltage.

By similar arguments, if we have a conservative
velocity field v, one obeying the condition

   ∇ × v = 0 conservative
velocity field (8)

then we can introduce potential   ϕ (x, y, z)  that is
analogous to the voltage  V(x, y, z)  for the electric
field.  In terms of the potential ϕ , the velocity field
v would be given by

   
v = – ∇ ϕ velocity field derived

from a potential (9)

Because such a velocity field is derived from a
potential ϕ , the flow field is called potential flow.

As a quick check that our formulas are working
correctly, suppose we start with some potential flow

  v = – ∇ ϕ  and ask what its curl is.  We have

  ∇ ×v = ∇ × (–∇ϕ ) (10)

One of the vector identities, from Calculus Chapter
9 was

  ∇ ×(∇ f) = 0 (9-1)

where f is any scalar function.  Thus   ∇ ×(∇ ϕ )  is
identically zero, and any flow derived from a poten-
tial ϕ  has to have zero curl, or no vorticity.
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Examples of Potential Flow
If we combine the equation   v = –∇ ϕ for potential
flow with the divergence free condition   ∇ ⋅v = 0  we
get

  ∇ ⋅v = ∇ ⋅ (–∇ ϕ ) = 0
or

  ∇ 2ϕ = 0 (11)

The operator   ∇ 2 is the Laplacian operator we dis-
cussed in detail in Chapter 4. Equation (11) itself is
known as Poisson’s equation.

To find examples of potential flow, one can use
Equation (11) subject to the boundary conditions on
the velocity field at the walls of the container.  A
number of techniques have been developed to solve
this problem, both approximation techniques for
analytical solutions and numerical techniques for
computer solutions.  We are not going to discuss
these techniques because the work is hard and the
results are not particularly applicable to real fluid
flows.  We will see that almost all fluid flows involve
vorticity, and our interest in this chapter will be the
behavior of the vorticity.  When we need a potential
flow solution, we will either choose one simple
enough to guess the shape or rely on someone else’s
solution.

Potential Flow in a Sealed Container
As our first example, suppose we have a constant
density fluid in a completely sealed container.  That
means that no fluid is flowing in or out.  Now
suppose the fluid has no vorticity, that   ∇ × v = 0
inside.  The resulting flow then must be a potential
flow.

One possible solution for   ∇ × v = 0  is that the fluid
inside is at rest (assuming that the container walls are
at rest). That is,

  
v = 0

a potential flow
solution for a
sealed container

(12)

This solution clearly obeys the condition   ∇ × v = 0
and   ∇ ⋅ v = 0 , and has no normal flow at the
boundary walls.

What other potential flow solutions are there?
NONE.  Our mathematical theorem given at the
beginning of the chapter states that the vector field
v is uniquely determined if we specify   ∇ ⋅v  and

  ∇ × v within a closed volume V and the normal
components of v at the surface of V.  We have done
that.  Thus the solution  v = 0  is unique, and there is
no other potential flow solution.

This solution emphasizes the importance of vortic-
ity in the study of fluid flows.  If we have a sealed
container filled with a constant density fluid, there
can be no flow without vorticity.  In this case, the
source of all fluid motion must be vorticity.  This is
why it is so important in the study of fluid behavior
to understand the role and behavior of vorticity.
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Potential Flow in a Straight Pipe
We began our discussion of fluid motion in Chapter
23 of the Physics text, with the example of a fluid
entering a pipe at a velocity  v 1  and exiting at a
velocity  v 2  as shown in Figure (1).  We assumed
that  v 1  was uniform over the entire inlet and  v 2
over the entire exit.  The continuity equation gave

 v 1A 1 = v 2A 2 .  If the pipe is uniform, so that
 A 1 = A 2 , we get  v 1 = v 2 .

What is the potential flow solution for the uniform
pipe of Figure (1)?  One possible answer is shown in
Figure (2), namely that the velocity field is a con-
stant throughout the pipe.

  
v = v1 = constant potential

flow solution (13)

Let us check that  v = v 1 = constant  is a potential
flow solution.  It is clear that the divergence   ∇ ⋅v1
and the curl   ∇ × v 1  are both zero for a constant
vector field  v 1 .  Thus the flow  v = v 1  is potential
flow.  The solution  v = v 1  also has the correct
normal components, being  v 1  at the entrance and
exit, and no normal flow at the pipe walls.  Thus
Figure (2), with  v = v 1 = constant , is our unique
solution for potential flow in a straight pipe with
uniform entrance and exit velocities.  As we said, in
some cases we can guess the potential flow solu-
tions.

The problem with the potential flow solution of Figure
(2) is that a fluid like water cannot flow that way.  In
Figure (2), the fluid is slipping at the pipe walls.  The
first layer of atoms next to the walls is moving just as
fast as the atoms in the center of the flow.  For all normal
fluids the first layer of atoms is stuck to the wall by
molecular forces, and due to viscous effects, the fluid
velocity has to increase gradually as we go into the
fluid.  There is no potential flow solution for pipe flow
that has this property, thus all flows of normal fluids in
a pipe must involve vorticity.

A1

v1 v2

A  =2 A1

Figure 1

A fluid enters a uniform pipe at a velocity  v1 .

Figure 2
One possible solution to the potential flow problem. If
we have a uniform pipe, with a uniform inlet and
outflow velocities as shown in Figure (1), then this is
the only solution.

v1 v1 v1 v1 v1
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SUPERFLUIDS
Normal fluids like water cannot slip along the sur-
face of a pipe, but superfluids, which have zero
viscosity, can.  As a result a superfluid can have a
potential flow pattern like that shown in Figure (2).
We have good experimental evidence that in a
number of examples superfluid helium does flow
that way.

In the 1940s, the Russian physicist Lev Landau
made the prediction, based on his wave equation for
the atoms in a superfluid, that superfluid helium had
to flow without vorticity, that   ∇ × v = 0  and only
potential flow solutions would be possible.  This was
a prediction that was fairly easy to check by the
following experiment.

If you place a glass of water on a spinning turntable
and wait until the water rotates with the glass, the
surface of the water will be slightly curved, as the
water is pushed to the outside by “centrifugal forces”.
(If you choose a coordinate system that is rotating
with the glass, then in this rotating coordinate sys-
tem there is an outward centrifugal pseudo force.)
The shape of the surface of the water turns out to be
a parabola.  In fact, large modern telescopes are now
made by cooling the molten glass in a rotating
container so that the rough parabolic shape is al-
ready there when the glass hardens.

Now consider how superfluid helium should behave
when in such a rotating container.  If the container is
circular, like a drinking glass, and centered on the
axis of rotation, the container can rotate without
forcing the fluid to have any sideways motion.  Also
no fluid is flowing into or out of the bottom or top.
Thus the normal or perpendicular component of
flow is zero all around the fluid.

Superfluid helium is essentially a constant density
fluid, thus   ∇ ⋅ v = 0 within the fluid.  If Landau were
right, then   ∇ × v should also be zero inside the fluid,
and we would have to have potential flow.

We have already discussed the potential flow solu-
tion for this case.  If there is no normal flow through
the fixed boundaries of the fluid, the unique poten-

tial flow solution for a constant density fluid is
 v = 0 .  The fluid cannot rotate with the bucket.  It

cannot move at all!  We get the unique prediction
that the fluid must be at rest, and as a result the
surface of the fluid must be flat.  This prediction is
easy to test;  rotate a bucket of superfluid helium and
see if the surface is flat or parabolic.

There are a few complications to the experiment.
Above a temperature of 2.17 kelvins, liquid helium
is a normal fluid with viscosity like other fluids with
which we are familiar.  When helium is cooled to just
below 2.17 kelvins, superfluidity sets in, but in a
rather peculiar way.  The best way to understand the
properties of liquid helium below 2.17 k is to think
of it as a mixture of two fluids, a normal fluid with
viscosity and a superfluid with no viscosity.  At the
temperature 2.17 k, the helium is almost all normal
fluid.  As we cool further, we get more superfluid
and less normal fluid.  Down at a temperature of 1
kelvin, which is quite easy to reach experimentally,
almost all the normal fluid is gone and we have
essentially pure superfluid.

In Landau’s picture, the normal fluid below 2.17 k
has viscosity, is not bound by the condition   ∇ × v = 0 ,
and thus can rotate.  Only the superfluid component
must have   ∇ × v = 0  and undergo only potential
flow.  Thus if we have a rotating bucket of superfluid
helium at just below 2.17 k, it should be mostly
normal fluid and eventually start rotating with the
bucket.  We should expect to see a parabolic surface,
and that is what is seen experimentally.

However, as we cool the helium from just below
2.17 k down to 1 k, the normal fluid turns to super-
fluid.  If Landau were right, the flow should go over
to a potential flow and the surface of the liquid
should become flat even though the container keeps
rotating.  This does not happen, and something has
to be wrong with Landau’s prediction.  The curved
surface at 1 k indicates that the superfluid is moving,
and thus must contain some vorticity.  In a later
section we will see how Feynman was able to
explain the parabolic surface, while still obeying
Landau’s condition   ∇ × v = 0  almost everywhere in
the fluid.
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VORTICITY AS A SOURCE
OF FLUID MOTION
In our discussion of potential flow of a constant
density fluid in a sealed container, we saw that there
could be no flow without vorticity.  Vorticity must
be the source of any flow found there.  In this section,
we will illustrate the idea that vorticity is the source
of fluid motion by comparing the velocity field with
the magnetic field of electric currents. We will see
that vorticity is a source of the velocity field in much
the same way that an electric current is a source of
the magnetic field.

In our discussion of magnetic fields, it was clear that
magnetic fields are created by electric currents.
Before we learned about Maxwell’s correction to
Ampere’s law, the relationship between the mag-
netic field B and the current i was

   B ⋅ d = µ0i old Ampere's law (29-18)

where i was the total electric current flowing through
the closed integration loop.  Shrinking the integra-
tion loop down to infinitesimal size, i.e., going to our
differential notation, we get

  ∇ × B = µ 0 i (14)

where i  is the electric current density.  Equation
(14), which is missing the   ∂E/∂t  term of Maxwell’s
equation, applies if we can neglect changing electric
flux.

In the Physics text, we used the old form of Ampere’s
law to calculate the magnetic field of a straight wire and
of a solenoid.  In these examples it was clear that the
current i in the wire was the source of the magnetic
field.

Let us now compare the equations we have for the
magnetic field B (neglecting   ∂E/∂t  terms) and for
the velocity field v of a constant density fluid.  We
have

Velocity Field of
Magnetic field Constant Density Fluid

  ∇ ⋅B = 0   ∇ ⋅v = 0

  ∇ × B = µ 0 i   ∇ × v = ω (15)

where  ω is the vorticity field of the fluid.  If we can
interpret   µ 0 i  as the source of the magnetic field in
the equation   ∇ × B = µ 0 i , then by analogy we
should be able to interpret the vorticity  ω as the
source of the velocity field in the equation

  ∇ × v = ω.

To be more precise, we will see that the vorticity  ω
can be interpreted as the source of any additional
velocity beyond the simple potential flow we dis-
cussed earlier.  If boundary layers, vortices, turbu-
lence, or other derivations from potential flow are
present, we can say that vorticity is responsible.
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Picturing Vorticity
When we discussed the magnetic field of a current, the
current itself was quite easy to picture.  It was the flow
of electrons along the wire, and for a straight wire this
flow of charge produced a circular magnetic field
around the wire as shown in Figure (3).  We also found
from Ampere’s law that the strength of the circular
magnetic field dropped off as 1/r as we went out from
the wire.

In Figure (4) we have drawn a picture of the velocity
field of a straight vortex like the one pictured in Figure
(23-25) of the Physics text.  We observed that the fluid
travels in circles around the vortex core.  In our funnel
vortex we made the core hollow by letting fluid flow
out of the funnel, but initially the core contained fluid.
We also saw that the fluid flowed faster near the core
than far away.  The tendency for a fluid vortex is for the
velocity field to drop off as 1/r out from the core.

Since the circular velocity field of a straight vortex is
similar to the circular magnetic field of a current in a
straight wire, we should expect that both fields have
similar sources.  In Figure (3) the source of the mag-
netic field is an upward directed current density i  in the
wire.  We therefore expect that the source of the vortex
velocity field in Figure (4) should be an upward di-
rected vorticity  ω in the center of the vortex.

Outside the wire, the circular magnetic field drops off
as 1/r and has zero curl.  If the circular velocity field of
the vortex drops off as 1/r outside the core, it must have

zero curl there also.  Thus a vortex with a 1/r velocity
field outside the core must have all the vorticity  ω
concentrated inside the core, just as the current produc-
ing the magnetic field is confined to the wire.  The
vorticity must run up the core as shown in Figure (5).
We are beginning to see how the vorticity acts as a
source of the velocity field in the same way currents are
the source of magnetic fields.

i i i

i i i

i i i

B

B

B

Figure 3
A current in a straight wire produces a
circular magnetic field around the wire.

Figure 4
Circular
velocity field
around a
vortex core.

Figure 5

Vorticity field ωω  producing a circular velocity field.

ωωω

ωωω

ωωω v

v

v

v

v

v

core

Figure 23-25
Hollow core
vortex in a
funnel.

  ∇ × B = µ 0 i   ∇ × v = ω
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SOLID BODY ROTATION
Enough of analogies, it is now time to actually
calculate the vorticity field   ω = ∇ × v  of a flow
pattern.  Our example will be to calculate  ω when v
is the velocity field of a solid rotating object.

As an explicit example, imagine that you are looking
at the end of a rotating shaft shown in Figure (6).  If
the shaft has an angular velocity   ωrot , so that

  dθ
dt

= ωrot (16)

then at a point p, out at a distance r from the axis of
rotation, the velocity is in the θ  direction and given
by the formula

  v = θrωrot (17)

where the unit vectors r , θ  and z  are for a cylindri-
cal coordinate system are shown in Figure (7).

In Chapter 8 of the Calculus text, we wrote down the
formula for the curl in cylindrical coordinates. (It
can also be found in the Formulary at the end of this
text.)  Applied to the velocity field v, given by

  v = r vr + θvθ + zvz (18)

the result is

  (∇ ×v)r = 1
r

∂vz
∂θ –

∂vθ
∂z (19a)

  (∇ ×v)θ =
∂vr
∂z –

∂vz
∂r (19b)

  (∇ ×v)z = 1
r

∂
∂r (rvθ) – 1

r
∂vr
∂θ (19c)

In our example of solid body rotation, v has only a
θ  component, and this component   vθ(r)  depends
only upon the distance r out from the axis of rotation.
Thus  v r ,  v z, and   ∂vθ/∂θ  and   ∂vθ/∂z  are all zero
and we are  left with only the term

  (∇ ×v)z = 1
r

∂
∂r (rvθ) (20)

You can see that the use of cylindrical coordinates
when we have cylindrical symmetry eliminates many
terms in the formula for the curl.

Exercise 1
In the last section, we noted that the circular velocity
field of a vortex had zero curl if the velocity drops off as
1/r.  This corresponds to a velocity

  vθ = constant
r ; vr = vz = 0 (21)

Use Equation (19) or (20) to show that   ∇ × v = 0 for this
vortex velocity field.

Figure 6

End of a shaft rotating with an angular velocity      ωωrot .

Figure 7
Unit vectors for a cylindrical coordinate system.

θ

ω

v

p

rot

r

x

y

z directed up

r
θ
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For solid body rotation, we use   vθ = rωrot  to get

  (∇ ×vsolid body)
z

= 1
r

∂
∂r (rvθ)

= 1
r

∂
∂r (r2ωrot)

= 1
r (2rωrot)

  
(∇ ×vsolid body)

z
= 2ωrot

(22)

Using our notation   ∇ × vsolid body ≡ ωsolid body , we get

  (ωsolid body)
z

= 2ωrot (22a)

This is the example we mentioned earlier where the
vorticity  ω has a magnitude of exactly twice the
rotational velocity   ωrot .

(It is a challenge to find an intuitive explanation for the
factor of 2 difference between the vorticity   ω = ∇ × v
and the rotational velocity   ωrot.  The analogy is even
closer, because when we turned   ωrot into the vector

  ωrot in our discussion of gyroscopes,   ωrot pointed
down the rotational axis just as   ω = ∇ × v  does.  I have
not met this challenge. After much thought, I have
found no satisfactory intuitive explanation for the
factor of 2.  It came in when we differentiated  r2 , but
that is not good enough.)

The main result from our calculation of the curl for
solid body rotation is that the curl points along the
axis of rotation, and has the constant magnitude

      2 ωωrot  across the entire rotating surface.

Vortex Core
With our results for the vorticity of solid body
rotation, we can see an even closer analogy between
the magnetic field of a wire and the vorticity field of
a fluid core vortex.  The corresponding formulas and
field diagrams are shown again in Figure (8).

At the end of Calculus Chapter 8 we studied the
magnetic field produced by a uniform current in a wire.
We got as the formula for the field inside the wire

   B(r) = θkr inside
wire (8-66a)

where k was the collection of constants given by

  
k =

µ0itotal

2πR2 (8-66b)

Exercise 2

Show that B  in Equation (8-66) above obeys the
relationship   ∇ × B = µ 0i .

The magnetic field in Equation (8-66) has the same
form as the velocity field for solid body rotation,

  vθ = rωrot  or

   vsolid body rotation = θ(ωrot)r (23)

Thus there will be a complete analogy between the
magnetic field of a wire, and a fluid core vortex, if
the wire carries a uniform current density i and the
vortex core consists of fluid undergoing solid body
rotation.  In the magnetic field case, the source of the
magnetic field is the uniform current in the wire.  For
the fluid core vortex, the source of the velocity field
is the uniform vorticity in the solid body rotating
core.  Outside the wire and outside the core, both the
magnetic field and the velocity field are θ  directed
and drop off as 1/r, a field pattern that has zero curl.

Figure 8
Comparison of the magnetic field of a current in a wire
with the velocity field of a fluid core vortex.

i(x,y,z)

B

ω(x,y,z)

V
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STOKES’ LAW REVISITED
For quite a while now we have seen that there are
basically two kinds of vector fields.  There is what
we can call the divergent kind like the electric field
of stationary charges that has zero curl.  And then
there is the rotational kind like the magnetic field
and the velocity field of a constant density fluid that
has zero divergence.  Just as Gauss’ law played an
important role in determining the behavior of diver-
gent fields, we will see that Stokes’ law has an
equally important role in determining the shape and
behavior of the rotational kind of vector field.  In this
section we will take a closer look at Stokes’ law,
giving it a more physical interpretation than you will
find in the mathematics textbooks.

We introduced Stokes’ law in Chapter 8 of this text,
writing it essentially in the form

   v⋅d
C

= (∇ ×v)

S

⋅dA Stokes′ law (8-14)

where v is a vector field, C is some closed contour,
and S is the surface bounded by the contour C.  We
asked you to picture the contour C as being made up
of a wire loop, and S the surface of a soap film
stretched across the loop.  The point was that if you
gently blow on a soap film, it can take on various
shapes, and Stokes’ law applies no matter which
shape you consider.

Total Circulation and
Density of Circulation
Because we are going to make extensive use of
Stokes’ law, we will give special names to the terms
in the law.  The names are chosen to particularly
apply to a velocity field, but can be used in general.
First, we will call the line integral of v around a
closed path the total circulation for the path.

  
total circulation ≡ v⋅d

C

(24)

In addition, we will refer to the vorticity   ∇ × v as the
density of circulation

  
density of circulation ≡ ∇ ×v (25)

Then Stokes’ law

  v⋅d
C

= (∇ ×v)

S

⋅dA

can be stated in words that the total circulation of
the fluid around a closed path C is equal to the
density of circulation integrated over any surface
bounded by the path.

We are using the same terminology one would use in
describing a current in a wire.  You would say that
the total current carried by a wire is equal to the
current density integrated over some cross-sectional
area of the wire.  Why we have introduced this
terminology for the velocity field will become clear
as we discuss a few examples.

Figure 8-2 (repeated)
Example of a surface bounded
by a closed path (wire loop).
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Velocity Field of a
Rotating Shaft, Again
As our first example, let us apply Stokes’ law to the
velocity field of a rotating shaft, shown in Figure (6)
repeated here.  Over the area of the end of the shaft
we have solid body rotation where the velocity field
is θ  directed

  v = θrωrot (17) repeated

and the vorticity   ω ≡ ∇ × v  is directed up the axis of
the shaft and of magnitude   2ωrot

  ω = ∇ ×v = z2ωrot (22) repeated

To apply Stokes’ theorem, let the circuit C be the
circuit of radius R around the perimeter of the shaft.
We then get

  v ⋅ d

C

= vθ(d )θ (26)

At the perimeter,   vθ = Rωrot , and   (d )θ = Rdθ , to
give

  
v ⋅ d = (Rωrot)(Rdθ)

0

2π

= R2ωrot dθ
0

2π

= 2πR2ωrot

Thus the total circulation of the shaft is given by

  
total circulation
of the shaft

= πR2(2ωrot)
(27)

Stokes’ theorem states that this total circulation
should be equal to the density of circulation   ∇ × v
integrated over the area of the shaft.  We know that
for solid body rotation

  density of
circulation

= ∇ × v = ω = z2ωrot (28)

This density, of magnitude   ωz = 2ωrot , is constant
over the area of the shaft, thus the integral of the density
is simply

  
(∇ × v)⋅dA

S

= ωzdAz

S

= ωz dAz

S

= ωzπR2

= πR2(2ωrot)

(29)

Comparing Equations (27) and (29), we see that the
total circulation is, as expected, equal to the density
integrated over the area of the shaft.

Wheel on Fixed Axle
Before you think everything is too obvious, let us
consider a more challenging example.  Suppose we
have a wheel of radius R, rotating on a fixed axle of
radius  Raxle , as shown in Figure (9).  The velocity
field for this example is

  v = 0 r < Raxle

v = θrωrot Raxle < r < R
(30)

Figure 6 (repeated)
End of a shaft rotating with an angular velocity      ωωrot .

θ

ω

v

p

rot

r
ωrot

R

stationary
axle

R

axle

Figure 9
Wheel rotating on a stationary axle.
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To apply Stokes’ law again, let C be a circuit of
radius R about the perimeter of the wheel.  The total
circulation is the same as before, namely

  total
circulation

= v ⋅ d

C

= (Rωrot)(2πR)

= πR2(2ωrot)
(31)

When we measure the total circulation around the
wheel, the result is uniquely determined by the value
of v out at the circuit C.  It makes no difference
whatever whether the axle inside is turning or not.

But when we integrate the density of circulation
  ∇ ×v  over the area of the wheel, we have a problem.

Over the wheel   ∇ ×v = z 2ωrot  as  before, but
  ∇ ×v = 0  over the axle.  It appears that we have lost

an amount of circulation (   2ωrot )(   πRaxle
2 ), and that

Stokes’ law fails.

Mathematics textbooks would say that we did not
apply Stokes’ law correctly.  You will find statements
like “Stokes’ law applies only to singly connected
surfaces” or “you have to add a cut”.  Don’t believe it!
Stokes’ law applies quite generally, and you do not
need so called cuts.  What went wrong in this example
is not Stokes’ law, it is that we did not look carefully
enough.

Suppose Figure (9) represented the wheel on a
railroad car.  Look carefully at the boundary be-
tween the wheel and the axle and what do you find?
Roller bearings!  As the wheel rotates on the axle, the
roller bearings really spin.  The circulation that we lost
in the axle is now located in the roller bearings, and in
the velocity field of the oil lubricating the bearings.

You might be a bit worried about this explanation.
After all, a fixed amount of circulation, namely
(   2ωrot )(   πRaxle

2 ) was lost when we stopped the axle
from rotating.  But the space where the roller bear-
ings reside, between the axle and the wheel can be
made as thin as we want, reducing the area of the
bearings that we integrate   ∇ × v over.  If we make
the area of the bearings go to zero, can we still get a
finite amount of circulation (   2ωrot )(   πRaxle

2 ) when
we integrate over this vanishing area?

The answer is yes.  Look what happens to roller
bearings as we make the diameter of the bearings
smaller and smaller.  They have to spin faster and
faster so that they roll smoothly between the axle and
the wheel.  As we decrease the thickness of the
bearings, we increase the vorticity   ∇ × v in the
bearings in just such a way that the integral of   ∇ × v
over the bearings remains constant.  In the math-
ematical limit that the thickness of the bearings goes
to zero, we end up with a delta function of vorticity
spread around the perimeter of the axle.  This delta
function of vorticity is called a vortex sheet.  When
you correctly account for vortex sheets, you can
always make sense of Stokes’ law without caveats
relating to singly connected surfaces or cuts.

A Conservation Law for Vorticity
Imagine that our solid shaft of Figure (6) represented
a wheel and axle where the axle was rotating with the
wheel.  Then the axle would have vorticity of mag-
nitude   2ωrot  just like the wheel.  Now suppose we
grab hold of the axle to stop it from rotating, giving
us the velocity field shown in Figure (9).  By stop-
ping the axle from rotating, we did not destroy the
vorticity, we just moved it out to the roller bearings
or vortex sheet.  For a given total circulation
around the rim of the wheel, we cannot create or
destroy vorticity within, only move it around.  With
a given total circulation, we have a conserved amount
of vorticity within.  In this sense, Stokes’ law pro-
vides us with a conservation law for vorticity. (In
Appendix 2 of Chapter 13, we show you a more
general, three dimensional law for the conservation
of vorticity.)

ωrot
R

stationary
axlel

roller
bearings

R

axle

Figure 9a
Wheel with roller bearings rotating on a stationary axle.
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CIRCULATION OF A VORTEX
In an ideal straight vortex like the one we pictured in
Figure (8) more or less redrawn here as Figure (10),
the vorticity is concentrated in the core and we have
a curl free 1/r velocity field outside the core.  It is
traditional to use the Greek letter κ  (kappa) to
designate the total circulation of the vortex.

   
v ⋅ d

over any area
that includes
the vortex core

= κ
total circulation
or strength
of a vortex (32)

Evaluating the integral around a circle outside the
core gives

  v ⋅d = 2πr vθ = κ

   
vθ = κ

2πr

velocity field
of a
straight vortex

(33)

This is the formula for the velocity field of a straight
vortex, outside the core.  For shorthand, we some-
times use   κ = κ /2π just as we used   h = h/2π in
quantum mechanics, giving

   
vθ = κ

r

velocity field
of a
straight vortex

(33a)

Note that talking about the total circulation κ  of a
vortex, we know that when there is cylindrical
symmetry, the velocity field   vθ  outside the core is

  κ/r  independent of the structure of the core.  The
core can be a fluid core with solid body rotating fluid
inside, or be a hollow core vortex like the funnel
vortex of Figure (23-25).  With a solid body rotating
core the vorticity  ω is spread uniformly across the
core.  With a hollow core vortex, we can think of the
vorticity as being in a vortex sheet around the core.

We have a similar situation for the magnetic field of
a straight wire.  In a normal wire, there is a more or
less uniform current density in the wire which pro-
duces a magnetic field of strength   B θ = µ 0I total/2πr
outside.  In some superconducting wires, those made
from the so called type 1 superconductors like lead
and tin, the electric current flows very near the
surface of the wire with no current farther inside.
This surface sheet of current still produces the same
magnetic field   B θ = µ 0I total/2πr  outside.

v

vortex

κ

B

current

itot

Figure 10
The total circulation κκ of the vortex is related to
the velocity field v  the same way the total current

 i tot  is related to the magnetic field  B . (For
straight vortices, we often think of κκ  as a vector
pointing in the direction of ωω , as shown above.)
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QUANTUM VORTICES
We are now ready to deal with the failure of Landau’s
prediction that superfluid helium could only un-
dergo potential flow, with the consequence that
helium in a bucket could not rotate.  The appearance
of a parabolic surface on a rotating bucket of super-
fluid helium is experimental evidence that vorticity
is present in the fluid despite Landau’s prediction.

Feynman solved the problem by proposing that most
of the fluid in a rotating bucket of superfluid helium
was in fact undergoing potential flow, and that all
the vorticity that was responsible for the curved
surface was contained in little quantized vortices.

As we have mentioned in the Physics text, a single
quantized vortex can be pictured as a giant Bohr
atom where all the superfluid atoms taking part in
the vortex flow have one unit of angular momentum
h about the vortex core.  The angular momentum of
an atom out at a distance r from the core, moving at
a speed  vθ , is

  
L angular

momentum = mHevθr (34)

where  mHe  is the mass of a helium atom.  If we set
the angular momentum L equal to Planck’s constant
h, and solve for   vθ , we get

  L = h = mHevθr

  
vθ = h

mHer
(35)

We immediately see that the velocity field outside
the core drops off as 1/r which is potential flow.

V

helium 
atoms

vortex
core

θ

Figure 11
Each atom in a quantum vortex has one unit
of angular momentum about the vortex core.

The 1/r velocity field cannot continue in to r = 0;
there has to be a core that is not potential flow.  There
are two questions that need to be settled by experi-
ment.  One is how big is the core radius  r core , and the
second is whether the core is hollow, or filled with
rotating fluid.  The answer to the first question is
rather amazing.  Under most circumstances the core
is about as small as it can get, about one atomic
diameter.  That makes it difficult to answer the
second question; it is hard to tell what is inside a tube
only one atomic diameter across.

Circulation of a Quantum Vortex
One thing we can do immediately from Equation
(35) is to calculate the total circulation κ  of a
quantum vortex.  Remembering that   h = h/2π we
have

  vθ = h
mHer

= h
(2πr)mHe

  (2πr)vθ = h
mHe

But   2πrvθ  is simply the integral of   vθ  around a
circle centered on the core.  Thus we have

  v ⋅d = 2πrvθ = κ

   
κ = h

mHe

circulation of a
quantum vortex in
superfluid helium

(36)



Cal 12-16      Calculus  2000 - Chapter 12      Vorticity

Rotating Bucket of Superfluid Helium
If you have a rotating bucket of normal fluid, the
fluid will end up rotating with solid body rotation
with constant vorticity   ω = z2ωrot .  The total circu-
lation   κ total  of all the fluid in the bucket will be

  total circulation of
fluid in rotating
bucket

= (∇ ×v) ⋅dA
bucket
surface

  κ total = (2ωrot)(πR2
bucket) (37)

For solid body rotation, this vorticity is spread
uniformly across the bucket.

Feynman proposed that a rotating bucket of super-
fluid helium would have the same total circulation

  κ total, but that the vorticity, instead of being spread
throughout the fluid, would be contained in a bundle
of quantized vortex cores.  This difference between
the classical and quantum picture is indicated in
Figure (12).

Because the core of a quantum vortex is so small,
and because all the fluid between the cores is under-
going potential flow, you can see that Landau was
almost right.  But the quantum cores allow vorticity
to be spread throughout the bucket, roughly imitat-
ing solid body rotation, and give rise to a nearly
parabolic surface.

We can easily calculate the number of quantized
vortices required to imitate solid body rotation.
From Equation (37), we saw that the total circulation
of the bucket was   κ total = (2ωrot)(πR2

bucket) .  Each
quantum vortex supplies a circulation  h/mHe .  If we
have N quantum vortices, their total circulation will
be N  h/mHe .  Equating these two numbers gives

  κ total = (2ωrot)πR2
bucket = N h

mHe

Solving for N, and then dividing by the area of the
bucket, gives us the number n of quantized vortices
per unit area.

  
n = N

πR2
bucket

=
2ωrotmHe

h

(38)

To see what the density is of quantized vortices
needed to imitate solid body rotation, let us use CGS
units where the unit area is  1cm2, and solve for an
angular velocity   ωrot  of one radian/second which is
about 1/6 of a revolution per second.  We have

  ωrot = 1

   mHe = 4 × 1.67 × 10– 24gm 4 proton masses

  h = 6.62 × 10– 27

We get for the vortex density n

  
n =

2ωrotmHe
h

= 2 × 4 × 1.67 × 10– 24

6.62 × 10– 27

= 2020 lines/cm2

If these lines were in a rectangular array, there would
be  n  lines on each side of a square centimeter

 n = 45 lines /cm

The spacing between lines would be  1 n

 1 n = .022 cm/line

= .22 millimeters /line (39)

Thus to imitate solid body rotation with an array of
quantized vortices in superfluid helium, the quan-
tum vortices have to be .22 millimeters apart when
the rotational velocity is 1 radian per second.

solid body rotation bundle of quantum
vortices

rotω = z 2ω

κ = h
Hem

Figure 12
Comparison of solid body rotation with a bundle of
quantized vortices. (We have not tried to reproduce the
exact shape of the surface when vortices are present.)
Between the vortices the flow is potential, but the
rough shape of the surface is parabolic.
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For a number of years after Feynman’s explanation
of the curved surface on a bucket of superfluid
helium, there was a considerable effort to see if
quantum vortices really exist in the superfluid.  The
most conclusive evidence for their existence, with
the predicted circulation   κ = h/m He , came from
experiments by Rayfield and Reif using charged
vortex rings.  A few years later Richard Packard at
Berkeley succeeded in actually photographing the
vortices in a rotating bucket of helium.  He did this
by loading up the vortex lines with electrons, and
then firing the electrons into a film placed at the
surface of the liquid.  The result is shown in Figure
(13) for various rotational speeds.

What Feynman and others have shown is that the
flow pattern with quantized vortices is a wave pat-
tern for the helium atoms in the bucket.  It is the
lowest energy solution of a wave equation, subject to
the boundary condition that the atoms near the
surface of the bucket are moving with a velocity
nearly equal to the velocity of the bucket.  Although
we have used the terminology of classical fluid
dynamics, we are describing a quantum mechanical
phenomenon.  What is remarkable is that we are
seeing quantum mechanical phenomena on a large
human scale, not just an atomic scale.  You can see
a separation of .22 millimeters without the use of a
microscope.

Exercise 3 - A Superfluid Gyroscope

Counting vortices in a bucket of superfluid helium can
be a sensitive way of detecting rotation.  Suppose a
bucket of helium were placed at the North Pole.  How
many vortices per  cm2  would there be in the bucket due
to the rotation of the earth?

Figure 13
Packard’s photograph of vortex lines in rotating
superfluid helium. As the rotational speed is
increased, more quantum vortices appear. Angular
velocities range up to half a radian per second. (The
camera was rotated with the helium and many
exposures were taken to build up the image. The
slight jiggling of the vortices between exposures
spread the vortex images out a bit.)
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 THE VORTICITY FIELD
So far we have described vorticity as something we
look for in a vortex core or something that character-
izes solid body rotation.  In this section we will treat
the vorticity   ω = ∇ × v  as a dynamic field that has
field lines and can behave much like the other vector
fields we have been discussing.

The singular property of vorticity is that it always
has identically zero divergence

  ∇ ⋅ω = ∇ ⋅ (∇ ×v) ≡ 0 (40)

because the divergence of a curl is identically zero.
(See the vector identities.)  This means that vorticity
is always a solenoidal field without sources or sinks.

We defined a field line of the velocity field as a small
flow tube, like those seen in Figure (23-3) repro-
duced below. Similarly, we define a vortex line as a
small flow tube of vorticity.  The total flux of
vorticity in the flow tube is by definition, the circu-
lation κ  of that tube.  As a reminder, this comes from
Stokes’ law

  flux of ω
in a vortex
tube

= ω⋅dA
surface
across
tube

= (∇ ×v) ⋅dA

S

= v⋅ d
around
tube

= κ tube
(41)

Because the vorticity  ω is solenoidal, the flux tubes
or lines of  ω cannot start or stop inside the fluid.
Vortex lines can only start or stop on the fluid
boundaries, or close on themselves within the fluid.
Two examples are the straight vortices we have been
discussing which run from the bottom of a container
to the top , and a vortex ring where the vortex lines
go around and close on themselves like the magnetic
field lines around a wire.  A smoke ring is the classic
example of a vortex ring.

Bose-Einstein Condensates
Since 1995, it has been possible to create a new kind
of superfluid, consisting of a small drop of gas
cooled to temperatures in the range of a millionth of
a kelvin. What happens to the gas atoms at these
temperatures is that they can come together and
“condense” into a single quantum mechanical wave
pattern. The process is not unlike photons condens-
ing into a single wave pattern in a laser beam. For the
gas atoms the result is a liquid-like drop with super-
fluid properties.

It is called Bose-Einstein con-
densation because back in the
1920’s, Einstein predicted this
effect, basing his ideas on the
work of the Indian physicist
Nath Bose. It turns out that at-
oms or objects that have integer
spin like to congregate into a
single quantum wave pattern if
the temperature is low enough,
i.e., if the pattern is not dis-
turbed by thermal effects. Ex-
amples of integer or zero spin
objects that do this are photons
that form laser beams, Helium
4 atoms that form superfluid
helium, and electron pairs that
become a superconductor.

In 1999, a group at the École
Normale Supérieure in Paris
succeeded in rotating a drop of
rubidium atoms and photo-
graphing the quantized vortices
as they appeared. Due to the
weak attraction between the
rubidium atoms, the vortex
cores are some 5000 times big-
ger than the core of a superfluid
helium vortex, but have the
same circulation  h/matom. Pho-
tographs of the drop, with 0, 1,
8, and 13 vortices are seen in
Figure  (14). Figure (15) is a
computer simulation of the vor-
tex core structure of a drop with
four vortices passing through the
drop, and two forming at the edge.

Figure 23-3
Flow tubes bounded by
streamlines. We define a
field line as a small flow
tube.Figure 15

Figure 14
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Figure 16
Velocity fields of two oppositely
oriented straight vortices.

κ 

κ 

d

v

v

HELMHOLTZ THEOREM
In 1858 Heinrich Helmholtz discovered a remark-
able theorem related to vortex motion.  He discov-
ered that when all the forces acting on fluid par-
ticles are conservative forces, i.e., force fields that
have zero curl, vortex lines move with the fluid
particles.  Gravity is an example of a conservative
force, viscous forces are not.  If viscosity can be
neglected and only gravity is acting on the fluid,
vortex lines and fluid particles move together.

To emphasize this point, in the absence of non
conservative forces, we can say that the fluid par-
ticles become trapped on vortex lines, or we can say
that vortex lines become stuck on and have to move
with the fluid particles.  To move vorticity onto or
off a fluid particle requires a non conservative
force like viscosity.

The Two Dimensional “Vortex Ring”
The simplest illustration of Helmholtz’s theorem is
the behavior of a vortex ring where the vortex lines
go around a circle and close on themselves.  The
most well known example of a vortex ring is the
smoke ring.

Before we discuss circular vortex rings, we will con-
sider the simpler example of two oppositely oriented
straight vortices which form what is often called a two
dimensional (2D) vortex ring.  A view down upon the
two vortices, showing their independent velocity fields,
is shown in Figure (16).  The total velocity field of these
two vortices is the vector sum of the fields from each
vortex.

Notice that the upper vortex has a forward velocity
field at the lower vortex core.  If Helmholtz’s theo-
rem is obeyed, then this upper velocity field must be
moving the vortex lines in the lower core forward.
Likewise the velocity field of the lower vortex must
move the core of the upper vortex forward.  As a
result this two dimensional vortex configuration is a
self propelled, forward moving object.

We can easily calculate the forward speed of our 2D
vortex ring.  The velocity field of a vortex of circu-
lation κ  was given by Equation (33a) as

  
vθ = κ

r ; κ = κ
2π (33) repeated

If the separation of the vortices is d, then the speed
of the fluid at the opposite core, and therefore the
speed of the ring will be

   
v2d ring = κ

d

speed of a pair
of oppositely
oriented vortices

(40)

You can see that the ring moves faster (1) if the
circulation κ  is increased, or (2) if the vortices are
closer together.
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The Circular Vortex Ring
For a circular, or 3D vortex ring, the vortex core has
the shape of a doughnut.  If we look at the velocity
field in a plane that slices through the doughnut, as
shown in Figure (17), the result is in many ways
similar to the velocity field of the 2D vortex in
Figure (16).  In particular the velocity field of the top
part of the ring moves the bottom part of the ring
forward, while the field of the bottom of the ring
moves the top forward.

In addition, the smaller the ring, the faster it moves.
If the ring has a circulation κ  and diameter d, the
speed of the ring is approximately given by the same
equation   vring = κ /d  that applied to the 2D vortex.

The actual velocity field of a vortex ring has the
same shape as the magnetic field of a circular current
loop, (provided the current density in the wire has
the same shape as the vorticity in the vortex core).  It
is a classic and rather nasty problem to calculate the
precise shape of this field.  When we get a more
accurate answer for the speed of the ring, we end up
with additional terms, one of which involves the
logarithm of the core radius.  This logarithm would
go to infinity if we tried to make the core radius zero,
but the term becomes small for reasonable core radii.
We do not need to worry about these small addi-
tional terms now.  The analogy to the behavior of the
two dimensional ring is good enough.

Smoke Rings
In several ways the smoke ring provides a superb
illustration of Helmholtz’s theorem.  In the days
when smoking was popular and thought to be harm-
less, it was a common stunt to blow a smoke ring.
Today we would rather create smoke rings using the
apparatus shown in Figure (18).  The apparatus is
simple, and the rings are better.

Start with a cardboard box, cut a fairly large hole in
the front as shown, and replace the back side with a
rubber sheet.  Fill the box with smoke, and hit the
rubber sheet with your hand.  A beautiful ring will
emerge, like the one shown in Figure (19).

(If titanium tetrachloride solution available, you can
get a denser smoke ring by squirting this liquid
around the perimeter of the hole in the box.  The
titanium tetrachloride quickly turns to titanium di-
oxide smoke and hydrochloric acid.  The titanium
dioxide is a coloring agent for white paint, and the
hydrochloric acid is obnoxious to deal with, but the
resulting rings are quite good.)

Figure 18 a,b
Front and back of apparatus for creating smoke rings.

Figure 18 c
Smoke at hole due to titanium tetrachloride.

Figure 17
Velocity field in a slice through a vortex ring.
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Figure 19
Two smoke rings after they have collided.

The most impressive feature of the smoke rings
created by our box is how stable they are.  They
move in a straight line, at constant speed, without
changing their shape, just as predicted by our analy-
sis of the two and three dimensional vortex rings.  If
you hit the rubber sheet harder, you add more circu-
lation κ  to the rings, and they travel faster.  You can
experiment with different size holes in the box,
seeing that smaller rings travel faster than larger
ones.

One of the interesting predictions that you can think
about and try to observe is the following.  If a faster
ring approaches a slower one in front of it, the
velocity field of the front ring will tend to make the
back ring smaller and thus move still faster.  Con-
versely, the velocity fields of the back ring should
expand the front ring making it move more slowly.
(Sketch the velocity fields yourself to check this
prediction.)  As a result, if the back ring is aimed
right at the front one, the smaller back ring should
shoot through the larger front ring, becoming itself
the front ring. If the rings have not bumped into each
other, tangled and destroyed themselves (the usual
case), then the new back ring will be squeezed in
size, the front ring expanded, and the process re-
peated.  This is a famous prediction, but I have not
seen it carried out very well.

While the motion of a smoke ring represents a
successful prediction of Helmholtz’s theorem, the
fact that the smoke ring is so sharply defined, escap-

ing from the amorphous cloud of smoke around the
cardboard box, is an even more dramatic prediction
of the theorem.  When we hit the back of the box to
create the ring, air was expelled out through the hole
in the front.  The vortex ring was created at the
perimeter of the hole from air that contained smoke
particles.  These smoke particles in the vortex core
become attached to the vortex lines in the core and
have to move with the core.  As the vortex ring moves
out of the box, it carries the trapped smoke particles in
its core and leaves the rest of the smoke behind.

Creating the Smoke Ring
    The reason why is as follows.  Before we hit the
rubber sheet at the back of the box, all the air in the
box was at rest and contained no vorticity.  If
Helmholtz’s theorem strictly applied, then a vortex
line could not move onto fluid particle that initially
had no vorticity.

As we mentioned earlier, Helmholtz’s theorem ap-
plied  if only conservative forces (like gravity) were
acting on the fluid.  But gravity is not the only force
acting on the particles of air in our smoke ring
apparatus.  Air is a slightly viscous fluid, and viscous
forces in a fluid are not curl free conservative forces.
Viscous forces move a vortex line onto fluid particle
and create a vortex core.
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Calculus 2000-Chapter 13
Introduction to
Fluid Dynamics

CHAPTER 13 INTRODUCTION TO FLUID
DYNAMICS

One should think of this chapter as an introduction
to fluid dynamics. In it we derive the basic equations
for the behavior of the velocity field v  and the
vorticity field  ω in a constant density fluid.  We
begin by applying Newton's second law to a fluid
particle to obtain what is known as the Navier-
Stokes equation.  This equation for the velocity field
v  serves as the fundamental equation of fluid dy-
namics.

Taking the curl of the Navier-Stokes equation gives
us the basic equation for the dynamics of the vortic-
ity field  ω.  From that equation we derive the
Helmholtz theorem, and an extension of the Helmholtz
theorem that deals with the effect of non potential
forces acting on fluid cores.  The extended Helmholtz
theorem is used in the analysis of the experiments of
Rayfield and Reif who first measured the circulation
κ  and core radius (a) of a quantized vortex in
superfluid helium.  We end the regular part of the
chapter with a discussion of the Magnus effect and
the pseudo force called the Magnus force that
appears in all the vortex dynamics literature.

There are two major appendices to this chapter.
Appendix 1 deals with the use of component notation
in vector equations. This includes the Einstein sum-
mation convention, and emphasizes the use of the
permutation tensor   εijk  for calculating vector cross
products. There we show you an easy way to derive
vector identities involving cross products.

The second appendix shows how you can interpret
the dynamical behavior of the vorticity field as a
conserved two dimensional flow of vorticity. Appen-
dix 2 begins with an intuitive derivation of that
result, a derivation that requires little mathematical
background. (It can be explained at dinner parties.)
However deriving the formula for the conserved
vortex current requires the use of the permutation
tensor   εijk , which is why we delayed this discussion
until after Appendix 1.

The use of vortex currents turns out to be a particu-
larly effective way to handle vortex motion. We use
it, for example, to derive the Magnus force equation
for curved fluid core vortices, a result that has not
been obtained any other way.
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THE NAVIER-STOKES EQUATION
When we apply Newton's second law  F = dp/dt  to a
particle like a baseball, the analysis is fairly simple.
With  p = mv for the baseball, if m is constant, the result
is  F = mdv/dt .  In particular, if  v = constant , then

 dv/dt = 0 and  F = 0 .

Applying Newton's second law to a fluid is more
complicated.  Even if we have a steady flow where

 v = constant , the fluid particles themselves will be
accelerating when the streamlines go around a corner
or the flow tubes become narrower or wider.  Some net
force acting on the fluid particles is required to
produce this acceleration.  If the flow is not steady, if

  ∂v/∂t  is not zero, an additional force is required to
produce this change in the velocity field.  The first
problem you encounter in the study of fluid mechanics
is to correctly evaluate the acceleration of the fluid
particles taking both of these effects into account.

What we will do is to consider a volume V of fluid
bounded by a closed surface  S ′ .  The surface  S ′  is
special in that it moves with the fluid particles.  As
a result the same fluid particles remain inside V as
the fluid moves about.  We will then calculate the
rate of change of the total momentum of these fluid
particles and equate that to the total force acting on
the particles within V.  Following this procedure we
will end up with a differential equation called the
Navier-Stokes equation which is very successful in
describing the behavior of fluids.

(In most textbooks you will find what looks to be a
simpler derivation of the Navier-Stokes equation.
Our derivation involves volume and surface inte-
grals, while the textbooks make what looks like
simpler arguments using what is called a substan-
tive derivative.  When the textbook arguments are
applied to non constant density fluids, you also find
some talk about what should be included inside the
substantive derivative and what should not.  It
almost seems that one  includes only those terms that
give the right answer.

By using surface and volume integrals, our focus
remains on the application of Newton's second law
to the fluid particles with no ambiguities of interpre-
tation.)

Rate of Change of Momentum
As we mentioned, we will consider a volume V of
fluid whose surface  S ′  moves with the fluid par-
ticles.  As a result the same particles remain inside
the volume V.  We then equate the rate of change of
the total momentum of these particles to the total
force acting on them.  The main problem involves
calculating the rate of change of the momentum of
the particles in a volume whose surface is moving.

Suppose we have a volume V(t) that is now, at time
(t), bounded by a surface   S ′(t) ( shown in Figure 1).
If the fluid has a density ρ  and the velocity field of
the fluid is v then the total momentum  PV(t) of the
fluid in V(t) is

  PV(t) = p( x,t)d3V

V(t)

; p = ρv (1)

At this point we are even allowing the density to vary,
so that both ρ  and v can be functions of space and time.

A short time  δt  later, the surface will have moved to
  S ′(t +δt)  and the volume becomes   V(t+δt)  as

shown in Figure (2).

At this later time, the momentum of the fluid particles
will be

surface S'(t)

volume V(t)

Figure 1
The volume V bounded by the surface  S ′  at time (t).

Figure 2
The volume V a short time  δδt  later.

S'(t+δt) 

V(t+δt) 

V(t) 

S'(t) 
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  PV(t+δt) = p(t+δt)d3V

V(t+δt)

(2)

The change   δP V  in momentum of the fluid particles as
time goes from (t) to   (t+δt)  is

  δPV = PV(t+δt) – PV(t)

= p(t+δt)d3V

V(t+δt)

– p(t)d3V

V(t)

(3)

We can do a Taylor series expansion of   p(t+δt)  to get

  
p(t+δt) = p(t) +

∂p
∂t δt + 0(δt2) (4)

This gives

  
δPV = p(t)d3V

V(t+δt)

– p(t)d3V

V(t)

+ δt
∂p
∂t d3V + 0(δt2)

V(t+δt)

(5)

From Figure (2), we see that much of the same
volume is included in both   V(t+δt)  and V(t).  Thus,
in the square brackets in Equation (5), the integral of

 p(t)  over the common volume cancels, and what we
want is an integral of  p(t)  over the volume that the
fluid has entered during the time  δt , minus the
integral of  p(t)  over the volume the fluid has left
during  δt .

In Figure (3a) we show part of the region between
  S ′(t)  and   S ′(t +δt)  where the fluid has entered

during  δt .  Consider a particle at point (1) at time t,
moving at a velocity  v1 .  In the short time  δt  it
moves a distance   v1δt  as shown.

Now let  dA1  be an element of the surface   S ′(t)  at
point (1).  The standard convention is that a surface
element  dA points perpendicularly out of a closed
surface.  Thus  dA1  points out of surface   S ′(t)  as
shown.

A time  δt  later, the surface element  dA1  will have
moved out to the surface   S ′(t +δt) , sweeping out a
volume   δV1   given by

  δV1 = (v1δt) ⋅dA1 (6)

You can see that the dot product is appropriate, for
if  v1  and  dA1  are parallel, we have a right circular
cylinder of volume   ( v1δt dA1 ) .  The volume is zero
if  v1  and  dA1 are perpendicular, and negative if
oppositely oriented.

In Figure (3b) we show part of the region between
  S ′(t)  and   S ′(t +δt)  where the fluid in   S ′(t)  has left

during the time  δt .  The diagram is the same as
Figure (3a) except that the vector  dA2  pointing out
of   S ′(t)  is pointing essentially opposite to the vector

 v 2 .  In the formula   δV2 = (v2δt) ⋅dA2 , the dot
product   v2 ⋅dA2  and therefore   δV2  is negative in the
region where the fluid is leaving.

As a result, if we calculate the integral of   p(t)δV
over both the volumes in Figures (3a) and (3b), we
get an integral of  p(t)  over the region the fluid is
entering, minus the integral of  p(t)  over the region
the fluid is leaving.  This just gives us the quantity in
the square brackets in Equation (5)

(1)

S'(t) dA1
v 1

S'(t+δt)

region fluid entering

v δt1

S'(t+δt) 

S'(t) 

region fluid leaving
(2)

dA
2

v 2

v δt2

Figure 3a
The volume element       δδV1 = vδδt ⋅⋅dA1
into which the fluid is flowing.

Figure 3b
The volume element       δδV2 = vδδt ⋅⋅dA2
out of which the fluid is flowing.
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We get

  
p(t)d3V –

V(t+δt)

p(t)d3V

V(t)

= p(t)(δV)
over entering
and leaving
regions

= p(t)(δt v⋅dA)

S′(t)

(6)

By integrating over the entire area   S ′(t)  we have
included both the entering and leaving regions.

Using Equation (6) for the square brackets in Equa-
tion (5) gives

  δPV = δt p(t)(v⋅dA)

S′(t)

+δt
∂p(t)

∂t
d3V

V(t+δt)
(7)

plus terms of the order   δt2 .  At this point, we have
everything expressed at the time (t) except the vol-
ume of integration in the   ∂p/∂t  term.  If we inte-
grated over the volume V(t) instead of   V(t + δt) , we
would be incorrectly handling the integral of   ∂p/∂t
over the narrow difference volume of thickness   vδt .
Since the   ∂p/∂t  term already has a factor  δt , this would
lead to an error of order   δt2  which we can ignore.

Replacing   V(t + δt)  by V(t) in the volume integral,
and dividing through by  δt  gives

  δPV

δt
=

∂p
∂t d3V

V(t)

+ p(t)(v⋅dA)

S′(t)

(8)

We now have all quantities in our formula for
  δP V/δt  expressed at the time (t).

We have one more step before we are finished with
the   δP V/δt  term.  We want to convert the surface
integral to a volume integral.

We have already had some experience converting
surface to volume integrals back in Chapter 7 on
divergence.  There we derived the divergence theorem

  E⋅dA
S

= ∇ ⋅Ed3V
V

(7-21)

where E  is any vector field, and the surface S bounds
the volume V.

In Equation (8), we have something that looks more
complex than the surface integral in (7-21), because
of the presence of the extra vector p.  To handle this
let us define three fields  E 1,  E 2 and  E 3 by

 E 1 = p xv ; E 2 = p yv ; E 3 = p zv (9)

Then we get

  p(v⋅dA)
S

= x pxv⋅dA +
S

y pyv⋅dA +
S

z pzv⋅dA
S

= x E1⋅dA +
S

y E2⋅dA +
S

z E3⋅dA
S (10)

Now we can use the divergence theorem on the three
quantities  E 1,  E 2 and  E 3 to get

  
p(v⋅dA)

S

= x ∇ ⋅E1d3V +
V

y ∇ ⋅E2d3V +
V

z ∇ ⋅E3d3V
V

= x ∇ ⋅(pxv)d3V +
V

y ∇ ⋅(pyv)d3V
V

+ z ∇ ⋅(pzv)d3V
V

(11)

(A quantity like  E1 = pxv  is not really a vector field
because it does not transform like a vector when we
rotate the coordinate system. But if no rotations are
involved,  px acts like a scalar field p, and  pxv  acts
like a vector field  j = pv  in the divergence theo-
rem.)
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Einstein Summation Convention
In Equation (11) we have some fairly mixed up
vector components like

  x ∇ ⋅(pxv) = x[∇ x(pxvx) + ∇ y(pxvy) + ∇ z(pxvz)]

(12)
There is a notation, credited to Einstein, that makes it
easy to handle such terms. In Equations (13), we write
the dot product of two vectors in three different ways.

  
a ⋅b = axbx + ayby + azbz

= aib iΣ
i = x,y,z

= aib i

 (13a)

(13b)

(13c)

In (13a) we see the usual definition of the dot product
of two vectors.  In (13b), we used the index (i) to
represent the subscripts x, y, z and included a summa-
tion sign to show we are adding up the three terms.
Supposedly Einstein got tired of writing  summation
signs and introduced the notation in (13c).  He said
that if the index appears twice, then automatically
take a sum.  As an example, if you encounter  aibj ci
you would sum over the repeated index (i) to get

  aibj ci = aibjciΣ
i = x,y,z

= axbjcx + aybjcy + azb jcz

(14)

Since the index (j) is not summed over, it remains the
same index throughout.  We would say that  a ib j c i
is the (j)th component of the vector  a ib c i .

Using this notation in Equation (12), we have

  x [∇ x(pxvx) + ∇ y(pxvy) + ∇ z(pxvz)]

= x[∇ i(pxvi)] = ∇ i([ xpx]vi)
(15)

and Equation (11) can be written as

  p(v ⋅dA)

S
  = ∇ i ([xpx + ypy + zpz]vi)d3V

V

  = ∇ i(pvi)d3V

V
(16)

Using Equation (16) in Equation (8) gives

  
δPV
δt

=
∂p
∂t + ∇ i(pvi)

V(t)

d3V
(17)

This is the formula for the rate of change of the
momentum of the fluid particles inside the volume V
that moves with the particles.  It is all expressed in terms
of variables at the time (t).

Mass Continuity Equation
When we substitute   p = ρv into Equation (17) we
end up with quite a few terms.  The result can be
simplified by using the equation for the conserva-
tion of mass during the flow.  The derivation, which
is worth repeating, is similar to our derivation in
Chapter 10 of the conservation of electric charge.

Consider a volume V bounded by a fixed surface S in
a fluid of density ρ .  The rate at which mass is flowing
out of V (the mass flux) is given by the integral over S

   
– dM

dt
= (ρv)⋅dA

rate at which
mass is flowing
out across S

S

(18)

where   ρv  is the mass current.  We can use the
divergence theorem to convert this surface integral
to a volume integral, giving

  – dM
dt

= ∇ ⋅ (ρv)d3V
V

(19)

If mass is flowing out of V, there must be a decrease
in the density ρ  inside.  The rate at which the total
mass inside is decreasing is related to the change in
density ρ  by

  – dM
dt

= –
∂ρ
dt

d3V
V

(20)

Equating our two formulas for  – dM/dt  gives

  ∇ ⋅ (ρv)d3V

V

= –
∂ρ
∂t

V

d3V (21)

The two volume integrals can be combined to give

  ∂ρ
∂t + ∇ ⋅ (ρv) d3V = 0 (22)
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Since Equation (22) must hold for any volume V or
fixed surface S we can construct, the terms in the
square brackets must be zero, giving

   ∂ρ
∂t + ∇ ⋅ (ρv) = 0 mass continuity

equation (23)

Rate of Change of Momentum
when Mass is Conserved
With the continuity equation written down, let us
return to our formula for the rate of change of the
momentum of the fluid particles, replacing the mo-
mentum density p by   ρv  to get

  δPV
δt

=
∂(ρv)

∂t + ∇ i(ρvvi)

V

d3V (24)

The terms in the square bracket become

  
=

∂ρ
∂t v + ρ

∂v
∂t + v ∇ i(ρvi) + ρvi∇ iv

= ρ
∂v
∂t + vi∇ iv + v

∂ρ
∂t + ∇ ⋅ (ρv)

(25)

where we wrote   ∇ i(ρvi) = ∇ ⋅ (ρv) .

We immediately see that the second bracket is zero
by the mass continuity equation, and we are left with
our final result

  
δPV
δt

= ρ ∂v
∂t + (v⋅∇ )v

V

d3V (26)

Equation (26) holds even when the density of the
fluid is changing.

Newton's Second Law
We are now in a position to apply Newton's second
law to the fluid in our volume V.  Equation (26) gives
us the total rate of change of the momentum of the
particles within V.  We now want to equate that to the
total force  F tot  acting on the particles.  We will
calculate that by adding up the individual forces per
unit volume, which are the pressure force, the vis-
cous force, and the other forces.  Then we integrate
the sum over the volume V.

In View 3 of Chapter 3 on divergence, we found that
the pressure force per unit volume was

  f p = – ∇ p (3.3-2)

In Chapter 4 we found that the viscous force per unit
volume for a constant density Newtonian fluid was

  fν = µ∇ 2v (4-19)

Letting  f other represent all other forces per unit
volume, we get for the total force  F tot  acting on the
fluid within V

  
Ftot = –∇ p + µ∇ 2v + fother d2V

V

(27)

Equating the total force  F tot  to the rate of change of
momentum   δP V/δt , Equations (27) and (26), gives

  
F tot =

δP V
δt

  
Ftot = –∇ p + µ∇ 2v + fother d3V

V

= ρ ∂v
∂t + (v⋅∇ )v d3V

V
(28)

Putting everything under a single integral sign gives us

  
ρ∂v

∂t + ρ(v⋅∇ )v + ∇ p – µ∇ 2v – fother d3V

V

= 0 (29)
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Next we have our usual argument that Equation (29)
must hold for any volume V.  The only way we can
always get the answer zero for the integral is for the
integrand, the stuff in the square brackets, to be zero.
Thus we end up with the equation

  
ρ ∂v

∂t + (v⋅∇ )v = – ∇ p + µ∇ 2v + fother

(30)
This is one form of the Navier-Stokes equation.

It is usually more convenient to divide through by ρ ,
using

   
ν =

µ
ρ

kinematic
viscosity
coeffienct

(4-41)

where ν  is the so called kinematic viscosity de-
scribed in the pipe flow experiment of Chapter 4
(page Cal 4-9).  We will also define  g other by

   
g other =

f other
ρ

other forces
per unit mass (31)

which represents all other forces, but now as force
per unit mass, since we have divided by mass per
unit volume ρ .  We get

  
∂v
∂t + (v⋅∇ )v =

–∇ p
ρ + ν∇ 2v + gother

Navier-Stokes Equation

(32)

Equation (32) is the form of the Navier-Stokes equation
you are likely to find in the textbooks.  It represents the
basic starting point for fluid dynamics theory.

Equation (32) is quite general.  Only in the formula
  ν∇ 2v  for the viscous force have we made any

assumptions about the density being constant
(i.e.,   ∇ ⋅v = 0 ), and that the coefficient of viscosity
ν  is constant.  If we have a non constant density
fluid, or non constant coefficient of viscosity,  all we
have to do is correct the viscosity term.

In Chapter 23 of the Physics text, we began our
discussion of vector fields with the velocity field.  We
made this choice because it is easier to picture a velocity
field than an electric field, and we could immediately
derive Bernoulli's equation from some simple energy
arguments.  How things have changed in this chapter!
The derivation of the Navier-Stokes equation for the
velocity field was harder to do than deriving the wave
equations for E  and B, and the result is more complex.
We have seen terms that resemble   ν∇ 2v  and   ∂v/∂t  in
our discussion of wave equations, but we have not
encountered a term that looks anything like   (v⋅∇ )v .

Not only does   (v⋅∇ )v  have a peculiar combination of
components, it is essentially proportional to the square
of the velocity field, which makes the Navier-Stokes
equation a non linear equation.  What that means is as
follows.  The equations we have studied so far, the
wave equations for E  and B, and Schrödinger's equa-
tion for  ψ, are linear equations. This means that there
are no terms involving the square of E , B or  ψ , and as
a result we have the rule that waves add.  What this
implies is that if you have two solutions to a wave
equation, the sum of these two solutions is also a
solution.  For a non linear equation, the sum of two
solutions is not necessarily a solution.

In the case of water waves, if the amplitudes of the
waves are small, the   (v⋅∇ )v  term is not important
and waves add, as we saw in the ripple tank experi-
ments.  However, if the amplitudes become large,
the   (v⋅∇ )v  term, being proportional to  v2 , be-
comes large and we get non linear effects like the
breakers we see when ocean waves come up to the
beach.  There is no way you can get the solution
describing a breaking wave from adding up the
solutions for many small amplitude waves.  The non
linear term brings in completely new physics.

Despite the apparent complexity of the Navier-
Stokes equation, some fairly simple results can be
derived from it.  One is Bernoulli's equation which
we will discuss in the next section, the other is a
generalized Helmholtz theorem which we will de-
rive after that.  In our discussion of Bernoulli's
equation we learn more than we did in the Physics
text.  Here we will determine the conditions when
Bernoulli's equation applies, and when it does not.
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BERNOULLI'S EQUATION
There is a vector identity which allows us to change
the form of the Navier-Stokes equation so that the
terms in Bernoulli's equation begin to appear.  The
vector identity is

  
(v⋅∇ )v = ∇

v2

2
– v×(∇ ×v ) (33)

In Appendix 1 of this chapter we show you a rela-
tively easy way to derive vector identities involving
the curl.  Equation (33) is the explicit example we use.

Noting that   ∇ ×v  is the vorticity  ω, we can write
Equation (33) as

  
(v⋅∇ )v = ∇

v2

2
– v×ω (33a)

Using Equation (33a) for the   (v⋅∇ )v  term in the
Navier-Stokes equation (32) gives

  ∂v
∂t – v×ω = – ∇

v2

2 –
∇ p
ρ + ν∇ 2v + gother

(34)
Our next step is to extract the gravitational force
from   g other and display it explicitly.  The gravita-
tional force per unit volume of fluid  fg  is

   fg = ρg = ρ(– ∇ gy) (35)

where y is the upward directed coordinate and g the
acceleration due to gravity.  (Take a break and show
that   – ∇ (gy)  is equal to g, a vector of magnitude g
pointing down.)

The force terms in Equation (32) are forces per unit
mass.  We get the gravitational force per unit mass,

 g gravity  by dividing  f g  by the density ρ .

  
ggravity =

fg
ρ = – ∇ (gy) (36)

The force  g other becomes

  gother = – ∇ (gy) + g ′other (36a)

where   g ′other  represents other forces not including
gravity.

Using Equation (36a) in Equation (34) gives

  ∂v
∂t – v×ω

= – ∇
v2

2 + gy –
∇ p
ρ + ν∇ 2v + gother

′ (37)

Up to this point the only place we assumed that ρ  was
constant was in the viscosity term   ν∇ 2v . But for the
remainder of this chapter we will assume that ρ  is
constant and use that to simplify other terms. For
example, we can pull a constant ρ  inside the gradient,
giving

   
–

∇ p
ρ = –∇ p

ρ
if ρ is
constant (38)

Using Equation (38) in Equation (37) gives

  
∂v
∂t – v×ω = –∇ p

ρ +
v2

2 +gy +ν∇ 2v +g ′other

constant density fluids

(39)
It is in Equation (39) we see the Bernoulli terms

  (p/ρ + v2/2 + gy) . We can now use the equation
both to derive Bernoulli's equation and to state the
conditions under which it applies.

Suppose we have the following four conditions:
(1) constant density, (2) a steady flow so that

  ∂v/∂t = 0 , (3) that viscosity is not important so that
we can neglect the viscosity term   ν∇ 2v , and (4) that
there are no forces other than pressure and gravity
acting on the fluid so that we can set   g ′other = 0 .
These conditions are

   ρ = constant

∂v
∂t = 0 steady flow

ν∇ 2v = 0 neglect viscosity

g ′other = 0 no other forces

(40)

Under conditions (40) the Navier-Stokes equation
becomes

  

v×ω = ∇ p
ρ +

v2

2
+ gy (41)
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Applies Along a Streamline
In Chapter 23 of the Physics text, we called the
collection of Bernoulli terms the hydrodynamic
voltage.  Labeling their sum by   φH , we have

   
φH ≡ p

ρ +
v2

2
+ gy hydrodynamic

voltage (42)

With this notation, Equation (41) becomes

  v×ω = ∇ φH (43)

We used the name hydrodynamic voltage for   φH  to
stress the similarity between hydrodynamic volt-
age-drops in a fluid circuit and electric voltage-
drops in an electric circuit.

Later in the Physics text, in our discussion of electric
voltage in Chapter 25, we changed the name from
voltage to potential, and started constructing con-
tour maps of the potential φ.  Our main example was
the map of the electric potential produced by charges
+3 and –1 shown in Figure (25-15) reproduced again
here.  The lines of constant potential are the contour
lines, and the lines of steepest descent are the field lines.

In our discussion of gradient in this text, we saw that
the gradient vector  ∇ φ pointed along the field lines.
Or to say it another way, the gradient  ∇ φ was a
maximum in the direction where the slope is the
steepest, and was zero in the direction of a contour
line where the value of φ remains constant.

Our Equation (43),   v×ω = ∇ φH , is an equation
relating the gradient of the potential   φH  to what at
first looks like a rather complicated term

  v×ω= v×(∇ × v) .  But there is one thing that is
simple about   v×ω .  Because of the cross product,

  v×ω  is always perpendicular to v , i.e., always zero
in the direction of v.

In a fluid flow, the streamlines follow in the direc-
tion of the velocity field v.  Thus if we move in the
direction of a streamline, we are moving in a direc-
tion where   v×ω  and thus   ∇ φH  is zero.  But if we
move in a direction where the gradient of   φH  is zero,
we must be moving along a contour line of   φH , and
the value of   φH  must be constant.  Thus the physical
content of the equation   ∇ φH = v×ω  is that   φH  is
constant along a streamline.  Re-expressing   φH  as

  p/ρ + v2/2 + gy , we get the result
  
p
ρ + v2

2
+ gy =

constant along
a streamline (44)

when conditions (40) are obeyed.

Equation (44), with the associated conditions, is our
precise statement of Bernoulli's equation.  It tells us
both when Bernoulli's equation can be used, and
why it should be applied along a streamline.  In the
special case of potential flow where   ω = ∇ × v  is
zero everywhere, then Equation (41) becomes   ∇ φH =
0, which implies   ∇ φH =   p/ρ + v2/2 + gy = constant
throughout the fluid.  For potential flow we do not
have to apply Bernoulli's equation only along a
streamline.

Figure 25-15 (repeated)
The lines of equal height, the contour lines, are the
lines along which the potential φφφφφ is constant.
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The Viscosity Term
Although the Navier-Stokes equation is a rather
formidable equation, we are beginning to see some
fairly simple or recognizable results emerge.  A lot
can be learned by studying the nature of the terms in
the equation.  Here we will see that the viscous force
term   ν∇ 2v  can be re-expressed in a form that gives
one a better understanding of the nature of vortices.

Back in Chapter 8 on the curl, we proved the vector
identity

  ∇ ×(∇ ×A ) = –∇ 2A + ∇ (∇ ⋅A) (8-5)

If we apply this to the velocity field v  of a constant
density fluid where   ∇ ⋅v = 0 , we get

  ∇ 2v = –∇ ×(∇ ×v ) = –∇ ×ω (45)

Where   ω = ∇ ×v .  Thus the viscous force term in the
Navier-Stokes equation can be written as

   
ν∇ 2v = –ν∇ ×ω viscous force

per unit mass (46)

From Equation (46) we see that there are no viscous
forces where the vorticity  ω is zero, or even when  ω
is constant as in solid body rotation.

In our discussion of vortices in the last chapter, we
pictured an ideal vortex as one whose velocity field
v was analogous to the magnetic field of a current in
a straight wire.  If the current in the wire is uniform,
then   ∇ ×B = µ0 i  is a constant inside the wire and
zero outside.  Thus in our ideal vortex,   ω = ∇ ×v  is
uniform inside the core (representing a solid body
rotation of the fluid there), and   ω = 0  outside where
we have the θ  directed 1/r velocity field.

With our new formula   –ν∇ ×ω for the viscous
force, we see that there is no viscous force acting
inside the core where   ω = constant .  What is surpris-
ing is that there is also no viscous force acting
outside the core in the 1/r circular velocity field.  The
only place where viscous forces act in an ideal
vortex is at the boundary between the core and the
fluid outside.  The fact that viscous forces do not act
either inside or outside the core of an ideal vortex is
one reason for the permanence of the vortex structure.

Because the velocity field of a vortex ring is analo-
gous to the magnetic field of a current loop, the fact
that   ∇ ×B = µ0 i  is zero outside the wire loop,
implies that the vorticity   ω = ∇ ×v  is zero outside
the core of a vortex ring.  Thus in a vortex ring or a
smoke ring, viscous forces do not act on the fluid
outside the core.

  Fmagnus = –ρVrel×κ   acting on that vortex.  But there
is no extra mass associated with a fluid core vortex,
so one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero.  That means that there must be an external
force  Fexternal acting on the vortex to cancel the
Magnus lift force.  That is, one must have

 Fexternal + Fmagnus = 0 (108)
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THE HELMHOLTZ THEOREM
While Bernoulli's theorem may be the most famous
theorem of fluid dynamics, Helmholtz's theorem is
perhaps the most dramatic.  To see a smoke ring
emerge from an amorphous cloud of smoke and
travel across a room in a straight line has to be one
of the impressive phenomena of physics.  Yet we saw
that it was explained by Helmholtz's theorem that in the
absence of non potential forces, the fluid particles
become trapped on, and move with, the vortex lines.

In this section we will derive Helmholtz's theorem
from the Navier-Stokes equation.  As a result, all the
phenomena we have seen that are explained by
Helmholtz's theorem can be viewed as being a
consequence of the Navier-Stokes equation.

Equation for Vorticity
The first step in deriving Helmholtz's theorem is to
turn the Navier-Stokes equation into an equation for
the vorticity field  ω.  We do this by taking the curl
of both sides of Equation (39).  We have

  
∇ × ∂v

∂t – v×ω

= ∇ × – ∇ p
ρ + v2

2 + gy – ν∇ ×ω+ g ′other
(47)

where we used Equation (46) to replace   ν∇ 2v  by
  –ν∇ ×ω .

At this point you might be  discouraged by the
number of cross products that appear in Equation
(47).  But immediately there is noticeable simplifica-
tion.  Recall that the curl of a gradient is identically zero,

   ∇ ×∇ φ ≡ 0 any φ (48)

Thus the Bernoulli terms all go out in Equation (47)

  
∇ ×∇ p

ρ + v2

2 + gy = 0 (49)

which considerably shortens the equation.

Next, we note that because we can interchange the
order of partial differentiation, we get

  ∇ × ∂v
∂t = ∂

∂t (∇ ×v) = ∂ω
∂t (50)

Thus Equation (47), the curl of the Navier-Stokes
equation, becomes

  
∂ω
∂t – ∇ ×(v×ω) = ∇ ×g (51)

where g, given by

 
  

g = –ν∇ ×ω+ g ′other (52)

represents all forces per unit mass acting on the
fluid, except pressure and gravity.  Equation (51) is
the differential equation for the dynamical behavior
of the vorticity field  ω.  The only restriction is that
it applies to constant density fluids.  If we wish to
work with non constant density fluids we have to go
back and work with Equation (39) and perhaps use
a more general formula for the viscous force.

Non Potential Forces
An important simplification we obtained in going to
an equation for the vorticity field  ω was the elimi-
nation of the Bernoulli terms.  This removes the
pressure and gravitational forces from the equation
for  ω, implying that pressure and gravity have no
direct effect on the behavior of vorticity.  We saw
this result in the case of the motion of a smoke ring.
The ring moved in a straight line across the room
completely unaffected by gravity.  (Pressure and
gravity can have an indirect effect in that they affect
the velocity field v which appears in the   ∇ ×(v×ω)
term.)
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In Equation (51),

  ∂ω
∂t – ∇ ×(v×ω) = ∇ ×g (51) repeated

the only force terms that survive are those with a non
zero curl like the viscosity term.  Let us introduce the
terminology potential force   gφ  and a non potential
force  gnp .  Potential forces are those that can be
expressed as the gradient of a potential φ, and thus
have a zero curl

  gφ = –∇ φ ; ∇ ×gφ = 0 (53)

while non potential forces  gnp  have non zero curl

  ∇ ×gnp ≠ 0 (54)

and thus survive the curl in Equation (51).  As a
result we can write Equation (51) in the form

   
∂ω
∂t – ∇ ×(v×ω) = ∇ ×gnp

vortex
dynamics
equation

(55)

We will call Equation (55) the vortex dynamics
equation.

To be quite general, one might like to separate an
arbitrary force field g into its potential part   gφ  and
its non potential part  gnp , writing

  g = gφ + gnp (56)

The problem is that there is no unique separation of
an arbitrary vector field into potential and non po-
tential parts.  The only thing that is unique is the curl

  ∇ ×g = ∇ ×gnp (57)

Physically, Equation (57) is telling us that if we
accidentally included some potential terms in our
formula for  gnp , they would disappear when we
took the curl in Equation (57).

For a practical matter, the best thing to do is to
include all obviously potential forces like pressure
and gravity in   gφ , and leave all others that are not
obviously potential forces, like the viscous force

  –ν∇ ×ω , in the non potential category  gnp .

A VECTOR IDENTITY FOR A MOVING CIRCUIT

Before we obtain a really clear interpretation of the
vortex dynamics equation (55), we need a way of
understanding the impact of the rather complex look-
ing term   –∇ ×(v×ω) .  In this section, we will derive
a vector identity that will lead to a strikingly simple
interpretation of the combination of terms

  ∂ω ∂t∂ω ∂t – ∇ ×(v×ω) .  The vector identity involves the
rate of change of flux of a solenoidal field like  ω
through a circuit that moves with the fluid particles.

It takes a considerable effort to derive this vector
identity, an effort involving steps somewhat similar
to those we used to calculate the rate of linear
momentum in a moving volume.  But the resulting
simplification in the interpretation of the vortex
dynamics equation is more than worth the effort.

To emphasize the general nature of the vector iden-
tity, we will calculate the rate of change of the flux
of a vector field  A  through the circuit   C′  that moves
with the fluid particles.  The restriction on  A  will be
that it is a solenoidal field with   ∇ ⋅A = 0 .

Let the circuit   C′ (t)  shown in Figure (4) be attached
to the fluid particles through which it passes.  As
time progresses from (t) to   (t +δt) , the fluid motion
will carry the circuit from position   C′ (t)  to the
position   C′ (t +δt)  as shown.  We will also assume
that there is a divergence free vector field  A(t) in the
fluid at time (t).  At time   (t +δt)  the vector field will

have changed to   A(t +δt) .  What we wish to calcu-
late is the change in the flux of  A  through the circuit

  C′  as we go  from (t) to   (t +δt) .  We will do the

C'(t+δt) 

C'(t) 

Figure 4
The circuit C' moves with the fluid particles.
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calculation throwing out terms of order   δt2  com-
pared to  δt .

At time t, the flux   Φ(t)  of  A through   C′ (t)  is

  Φ(t) = A(t)⋅dS

S′ (t)

(58)

where  S′ is a surface bounded by   C′ (t) . At time
  (t +δt) the flux has become

  Φ(t +δt) = A(t + δt)⋅dS

S′(t+δt)

(59)

The change in flux  δΦ  during the time  δt  is

  δΦ = A(t + δt)⋅dS

S′(t+δt)

– A(t)⋅dS

S′ (t)

(60)

Using a Taylor series expansion we can write

  A(t + δt) = A(t) + ∂A
∂t δt + 0(δt2) (61)

Thus

  δΦ = A(t)⋅dS

S′(t+δt)

– A(t)⋅dS

S′ (t)

+ δt ∂A
∂t ⋅dS

S′(t+δt)

(62)
To calculate the effect of the first two terms in
Equation (62), consider the guitar shaped volume
shown in Figure (5).  The top of the volume is
bounded by the curve   C′ (t + δt) , while the bottom
by   C′ (t) .  A certain amount of flux   Φ1

  Φ1 = A(t)⋅dS

S′ (t)

(63)

enters up through the bottom of the volume.  Some
more flux,   Φ2  flows in through the sides, and an
amount   Φ3

  Φ3 = A(t)⋅dS

S′(t+δt)

((64)

flows out through the top.

Because  A(t )  is a divergence free field [   ∇ ⋅A(t) = 0],
all the flux flowing in through the bottom,   Φ1 , and the
sides,   Φ2 ,  must flow out through the top,   Φ3 , giving

  Φ3 = Φ1 + Φ2 (65)

(Any of these fluxes could be negative, indicating  A
pointing in other directions, but all signs are cor-
rectly handled by the formalism.)

Using Equations (63) and (64), our formula (62) for
 δΦ becomes

  δΦ = Φ3 – Φ1 + δt ∂A
∂t ⋅dS

S′(t+δt)

With   Φ3 = Φ1 + Φ2  we get

  δΦ = Φ2 + δt ∂A
∂t ⋅dS

S′(t+δt)

(66)

Equation (66) tells us that the change in the flux of
 A(t)  through the moving circuit   C′ (t)  is made of

two parts.  One is due to the change   ∂A(t) /∂t  of the
field itself, the other to flux coming in from the sides.

Figure 5
Volume bounded by the curves     C′ (t + δδt )  and     C′ (t ) .
The drawing shows flux entering through the bottom
and sides, and flowing out through the top.

S'(t+δt) 

C'(t+δt) 

C'(t) 
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Our problem now is to calculate the flux   Φ2  flowing
in through the sides of our volume shown in Figure
(5).  The calculation of   Φ2  turns out not to be so hard.
In Figure (6) we show a small piece of the side of our
volume.  A fluid particle that is located at position
(1) in that diagram at time (t), moves to position (2)
during the time  δt .  The distance from (1) to (2) is
described by the displacement vector   vδt  as shown.

We also mark a short length  d  of the path   C′ (t)
starting at position (1) .  If we take the cross product
of   vδt  with  d , we get a vector  dS  that points into
the volume, perpendicular to both   vδt  and  d .  The
length of  dS  is equal to the area of the parallelogram
defined by   vδt  and  d .  Thus  dS  represents the
inward area vector for the shaded area in Figure (6).
The flux   dΦ2  of  A(t)  in through this side area  dS  is

  dΦ2 = A(t)⋅dS = A(t) ⋅ [(vδt) × d ]

= δt A(t)⋅(v×d )

(67)

In the appendix to this chapter, where we show you
an easy way to handle vector identities involving
cross products, we derive the identity

  A⋅(B×C) = (A×B)⋅C (68)

Using this identity, we can write Equation (67) in the
form

  dΦ2 = δt[A(t)×v]⋅d (69)

To calculate the total flux   Φ2  in through the sides of
our volume, all we have to do is integrate the
contributions   Φ2  around the circuit   C′ (t) .We get

  Φ2 = δt [A(t)×v]⋅d
C'(t)

(70)

Stokes' law, derived in Chapter 8 relates the integral
of a vector field B around a closed path to the flux
of   ∇ ×B through the path.  We had

  B⋅d
C

= ∇ ×B⋅dS

S

(8-31)

where S is the surface bounded by the closed curve
C. If we set   B =A(t)×v ,   C = C′ (t)  and   S = S ′ (t) ,
Equation (8-31) becomes

  [A(t)×v]⋅d
C′ (t)

= ∇ × A(t)×v ⋅dS

S′ (t)

(71)

As a result, the flux   Φ2  of  A(t)  flowing in through
the sides of our volume is

  Φ2 = δt ∇ × A(t)×v ⋅dS

S′ (t)

(72)

Using this result in Equation (66) for the change in
flux   δφ through our moving circuit gives

  δΦ = Φ2 + δt ∂A
∂t ⋅dS

S′(t+δt)

(66) repeated

       
  

= δt ∇ × A(t)×v ⋅dS

S′ (t)

+ δt ∂A
∂t ⋅dS

S′(t+δt)

(73)
At this point everything is evaluated at the time (t)
except for the integral of the flux of   ∂A(t)/∂t  at the
surface   S ′(t + δt)  .Figure 6

The area element  dSon the side of our volume.

C'(t+δt)

C'(t)

d

vδt dS

(1)

(2)
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As we have just seen, the flux of any vector field
through   S ′(t + δt)  is equal to the flux through the
end   S ′(t)  plus a term like   Φ2  representing a flow in
through the sides.  Because the flux in through the
sides is of the order  δt  smaller than the flow in
through the end, and because the   ∂A/∂t  term already
has a factor of  δt , our neglect of the flux of   ∂A/∂t  in
through the sides will be an error of order   δt2   which
may be ignored.  Thus we can replace   S ′(t + δt)  by

  S ′(t)  in Equation (73).  Dividing through by  δt , and
for later convenience replacing   A(t)×v by   –v×A(t) ,
we get

  
δΦ(A)

δt
=

∂A(t)
∂t – ∇ × v × A(t) ⋅dS

S′ (t)

(74)
Equation (74) is the general formula for the rate of
change of flux of the vector  A(t)  through a circuit

  C′ (t)  that moves with the fluid particles.  The circuit
  C′ (t)  bounds the surface   S ′(t) , and it is assumed

that  A  is a solenoidal field   (∇ ⋅A = 0) .

The Integral Form of the
Vortex Dynamics Equation
Although the derivation of Equation (74) was rather
lengthy, the result can be immediately applied to our
vortex dynamics Equation (55).  If we integrate
Equation (55) over a surface   S ′(t)  bounded by a
circuit   C′ (t)  we get

  ∂ω(t)
∂t – ∇ ×(v×ω) ⋅dS

S′ (t)

= [∇ ×gnp]⋅dS

S′ (t)
(75)

Because the vorticity  ω is always a solenoidal field,
we can replace  A(t)  by   ω(t)  in Equation (74) and
immediately recognize the left side of Equation (75)
as the rate of change of the flux of  ω through the
moving circuit   C′ (t) .  Calling this rate   δΦ(ω) δtδΦ(ω) δt ,
we have

  ∂ω(t)
∂t – ∇ ×(v×ω) ⋅dS =

S′ (t)

δΦ(ω)
δt (76)

On the right side of Equation (75), we can use
Stokes' theorem to replace the surface integral of

  ∇ ×g np  over   S ′(t)  by the line integral of  g np
around   C′ (t)  giving

  [∇ ×gnp]⋅dS

S′ (t)

= gnp⋅d
C ′(t)

(77)

Combining Equations (76) and (77) gives us the
general vortex dynamics Equation (78), a result
which assumes only that ρ  is constant.

  
the rate of change of the
flux of ω through a
circuit C′(t) that moves
with the fluid particles

δΦω
δt

= gnp⋅d
C ′(t)

                                      extended Helmholtz equation

(78)
It seems rather remarkable that an equation as com-
plex looking as the Navier-Stokes equation can be
converted, by taking the curl, to something simple
enough to be described almost completely in words.
In a sense the only calculation we have to do to apply
Equation (78), is to calculate the line integral of a
non potential force  gnp around a closed path.  For
reasons that will become clear shortly, we will call
Equation (78) the extended Helmholtz equation.
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The Helmholtz Theorem
It is an immediate step to go from Equation (78) to
Helmholtz's famous theorem of 1858.  If there are no
non potential forces acting on the fluid, i.e., if  gnp= 0,
then we get the simple statement

  
If there are no non potential forces acting
on the fluid, then there is no change in the
flux of ω through any closed circuit
C ′(t) that moves with the fluid particles

                                                        Helmholtz theorem

(79)
At this point we have reduced much of fluid dynam-
ics to a simple word equation.

Equation (79) is perhaps the most precise statement
of Helmholtz's theorem, but equivalent statements
are also enlightening.  Suppose, for example, we
define a vortex line as a small unit flux tube of     ωω .
Because  ω is solenoidal, the flux tubes or vortex
lines cannot stop or start in the fluid.  Equation (79)
tells us that, in the absence of non potential forces,
the number of vortex lines threading any circuit

  C′(t), i.e., the total flux of  ω,  remains constant as the
circuit moves with the fluid particles.  This clearly will
happen if the lines themselves move with the fluid.

Equation (79) does not actually require, in all cases, that
the vortex lines must move with the fluid particles.  As
we saw back in Chapter 12, the vorticity  ω is uniform
for solid body rotation.  Thus the flux of  ω will remain
constant through any circuit   C′(t)  moving with the
fluid, whether or not we think of the vortex lines
themselves as moving with the fluid.  With a uniform

 ω, we cannot tell if the vortex lines are moving or not.

We saw, however, that the situation is very different
when dealing with a quantum fluid where the vortic-
ity  ω, although roughly imitating solid body rota-
tion, is lumped up in the vortex cores.  In this case
Equation (79) clearly requires that the separate vor-
tex cores move around with the fluid.  We can easily
tell whether lumped up vorticity is moving.

There is, however, no harm in assuming that the vortex
lines move with the fluid for solid body rotation.  This
interpretation has the advantage that if a slight perturba-
tion is introduced into the vorticity field, we can follow
the perturbation and see that the associated lines do move.

EXTENDED HELMHOLTZ THEOREM
If the Helmholtz theorem tells us that in the absence
of non potential forces, vortex lines move with the
fluid particles, then what happens when non poten-
tial forces are present?  What is the effect on vorticity
of a force   gnp ≠ 0 ?  The answer, which we obtain
from our vortex dynamics Equation (78) is quite
simple.  It is that the non potential forces  g np  cause
a relative motion of the vortex lines and the fluid
particles.

It was the study of the behavior of quantized vortices
in superfluid helium and superconductors that led to
a more complete understanding of the effect of non
potential forces on vortex motion.  One experiment
in particular, an experiment by Rayfield and Reif
involving charged vortex rings in superfluid helium,
is what initiated this detailed study.  We will use a
discussion of the Rayfield-Reif experiment to de-
velop the ideas contained in the extended Helmholtz
theorem.

The Rayfield-Reif Experiment
Rayfield and Reif were able to create their charged
vortex rings by placing a radioactive substance in a
container of superfluid helium.  The radioactive
substance emitted charged particles, either electrons
or protons, depending on the substance.  What they
found was that the charged particle, moving through
the superfluid, would create  quantized vortex rings
in the  superfluid, and then in a process still not
perfectly understood, the charged particle would
become trapped in the core of the ring it created,
producing an electrically charged vortex ring.

The interesting part about having an electrically
charged vortex ring, is that you can apply an electric
field and exert an electric force on the core of the
ring.  We will see that this electric force acting on the
core represents a non potential force acting on the
fluid in the region of the core.  As a result, Rayfield
and Reif were able to study, in detail, the effects of
non potential forces acting on vortex lines. Their
experiments provided a superb verification of Equa-
tion (78) and the interpretation that non potential
forces cause a relative motion of the vortex lines and
the fluid particles.
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To apply Equation (78) to the Rayfield-Reif experi-
ment, consider Figure (7) where we show the cross
section of a vortex core with a force density g acting
on the fluid in the core. The force g  represents the
electric force acting on the charged fluid in the core.
Outside the core there is no force where the fluid is
electrically neutral.

On Figure (7) we have drawn three contours labeled
  C′1 ,   C′2 , and   C′3 .  The primes indicate that these

paths are moving with the fluid particles, and that we
are looking at the paths now at time (t).  If we
integrate g around contour   C′1 , we get a positive
contribution along the bottom section of the path,
and no contribution from the other sections that lie
outside the core.  Thus we get

  g ⋅ d

C′1

= positive number
(80)

For the force density g to be a conservative potential
force, we would have to have   g ⋅ d = 0  for any
possible path.  Because the integral is not zero for
circuit   C′1 , Equation (80) shows that g  is a non
potential force.

To see what a localized force like g cannot do, look
at the path   C′3  that goes completely around the core
and lies completely in a region where  g = 0 .  For this
path we get

  g ⋅ d

C′3

= 0
(81)

Thus from Equation (78) we find that there is no
change in the flux of  ω through the path   C′3 .  Since

  C′3  goes around the entire core, the flux of  ω
through   C′3  is the total circulation k of the vortex.
Thus a localized non potential force, (one where we
can draw a circuit like   C′3  that is in the fluid but
outside the force) cannot change the circulation κκ
of the vortex line.

If g cannot change the circulation κ , what does it
do?  To find out we look more closely at the paths

  C′1  and   C′2  lying above and below the line.  We saw
in Equation (80) that   g ⋅ d  was a positive number
for the upper path   C′1 .  Thus g must be causing an
increase in the flux of  ω through the upper path.

When we integrate g around the lower path   C′2 , we
get zero except where the path comes back through
the core, in a direction opposite to g, making   g ⋅ d
negative there.  As a result

  g ⋅ d

C′2

= negative number
(82)

and we find that g is causing a decrease in the flux
of  ω through the lower path.

What does it mean when we see that g is causing the
flux of  ω to decrease in the lower path, increase in
the upper path, but not change the total flux of the
core? It means that g is causing the vortex line to
move upward.  Since the paths   C′1   and   C′2  are
attached to the fluid particles, the flow of  ω from the
lower path to the upper path represents an upward
motion of the vortex line relative to the fluid par-
ticles.  Thus the non potential force g causes a
relative motion of the vortex lines and the fluid
particles, a relative motion that is absent if there are
no non potential forces acting on the fluid.

x

y
C '

g

1

C '2

C '3

Figure 7
An external force g  is applied to the fluid in the core of
a vortex. We see that the        g ⋅⋅d is positive around the
upper path      C ′′1, meaning that flux of ωω  is increasing
through that path. The integral is negative through the
lower path      C ′′2 meaning that flux of ωω  is decreasing
there. This results in an upward flow of vorticity. Since

       g ⋅⋅d = 0 for the big path surrounding the entire core,
the total flux, or total circulation κκ , is unchanged.
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This relative motion of the vortex line is sketched in
Figure (8), where we designate the relative velocity
by the vector  vrel .   Note that the motion is gyroscope
like; when we push in the x direction on a z  oriented
vortex line, the line moves, not in the direction we
push, but up in the y  direction.

Exercise 1
Use Equation (78) and Figure (9) to show that the vortex
line has no relative velocity in the direction that g pushes
on the fluid.

Exercise 2

What is the direction of the relative velocity  vrel if g is x
directed as in Figure (8), but ω points in the  – z
direction?   (I.e., what happens if we reverse ω?)  Explain
using Equation (78).

Motion of Charged Vortex Rings
Now that we have some idea of the effect of a
localized force acting on a vortex line, let us return
to our discussion of the Rayfield-Reif experiment.

As we mentioned, Rayfield and Reif created charged
vortex rings in superfluid helium by placing a radio-
active substance in the superfluid that emitted charged
particles, either an electron or a proton depending on
the substance.  They ended up with charged objects
in the superfluid, objects whose motion they could
control using electric fields, and whose speed they
could measure by timing a pulse of the particles
moving between two grids.

But how could they know that the charged objects in
the superfluid were actually vortex rings?  The
objects were tiny, carrying the charge of only one
proton or one electron.  In addition the core of a
quantum vortex is of the order of an atomic diam-
eter, so that the rings they were dealing with could be
as small as only a few tens of atomic diameters.  How
could they be sure that these objects, that were much
too small to be seen, were actually vortex rings?

The answer was in the peculiar behavior of these
objects, a behavior only exhibited by vortex rings.
The more they accelerated these objects, the harder
they pushed on them, with an electric field, the
slower they went!  The reason for this behavior
follows directly from the extended Helmholtz equa-
tion, Equation (78).

Figure 8
The relative velocity   vrel  of the vortex
caused by the non potential force g .
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y

g

Vrel

g

Figure 9
Paths for determining the relative motion
of the line in the direction of the force g .
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In Figure (10) we show the cross section of a vortex
ring moving to the right, down the x axis.  This is
essentially Figure (12-15) of the last chapter, which
shows how the velocity field of the top half of the
ring pushes the bottom half forward, while the
velocity field of the bottom half pushes the top half
forward.  Because the velocity decreases as we go
away from the core, the bigger the ring becomes, the
farther the halves are apart, the slower the ring moves.

In Figure (11), we show the same vortex  ring, but
now we are assuming that there is a charged fluid in
the core, and an external x directed electric field is
pushing on this charged fluid.  It looks like we are
attempting to accelerate the ring by pushing on it in
the direction of its motion.

To see what this force does, we go back to Figure (8)
and see that the x directed force g acting on the fluid
in a  +z oriented core causes the core to move up in
the  +y   direction.  At the bottom of the ring where the
vorticity points in the opposite direction the same x
directed force causes the core to move down (see
Exercise 2).  Overall the force g is causing the entire
ring to grow in size, which results in the ring moving
more slowly.

Thus we have the peculiar phenomenon that when we
push on a ring in the direction the ring is moving, we
make the ring bigger and slow it down.  In Exercise (3),
you show that if you push opposite to the direction of
motion of the ring, you make the ring smaller and faster.

Exercise 3
Using Equation (78), show that when you push opposite
to the direction of motion of the ring you speed it up.

Conservation of Energy
At first sight you might think you have a problem
with the law of conservation of energy when it
comes to the behavior of vortex rings.  When we
push on an object in the direction that it is moving,
we are doing positive work on the object, and expect
that, in the absence of friction, the energy of the
object would increase.  But for a vortex ring, when
we push in the direction of the ring's motion the ring
slows down.  Does the ring loose energy as a result?

No.  Unlike baseballs and other objects we are familiar
with, a vortex ring's kinetic energy increases when it
slows down.  That is because its diameter increases and
thus there is more length of vortex line.  The kinetic
energy of the ring is the kinetic energy   1/2 mv2  of the
fluid particles whose motion is caused by the ring.  The
larger the ring, the more fluid involved in the vortex
motion, and the more kinetic energy associated with
the ring.  Thus pushing on a ring in the direction of
motion increases its energy, as it should.

Figure 11
An x  directed force acting on a ring moving in the
x  direction causes the ring to expand.

Figure 12
Pushing opposite to the direction
of motion of the ring.
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Figure 10
Cross section of a vortex ring. Each side of the ring
moves the other side forward. The smaller the ring, the
greater the velocity field, and the faster the ring moves.
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Measurement of the
Quantized Circulation      κκ = h/mHe
We have mentioned that Rayfield and Reif could
control and measure the behavior of their charged
vortex rings by sending pulses of the rings between
grids in the superfluid.  By timing the pulse, they
could measure the speed of the rings.  By applying
a voltage difference to the grids, they could change
the energy of the rings.  A voltage difference  V voltage
would cause an energy change of magnitude
(e  V voltage ) for each ring because each ring carried
either one proton of charge (+e)  or one electron of
charge (–e).  We will give a rough argument as to
how these two kinds of measurements allowed
Rayfield and Reif to accurately measure the quan-
tized circulation   κ = h/mHe  of the ring.

We have noted that the energy of a ring is the kinetic
energy  1/2 mv2  of the fluid particles.  Since the
velocity field of a vortex is proportional to the
vortex's circulation κ  (   v = κ /2πr  for a straight vor-
tex), the fluid kinetic energy is proportional to   κ2.
The fluid energy in a vortex ring is also proportional
to the length   2πR of line in the ring.  As a result the
fluid kinetic energy is proportional to   κ2R ring

   
Ering ∝ κ 2 Rring

kinetic energy
of a
vortex ring

(83)

Exercise 4

Show that   ρ κ2R ring has the dimensions of kinetic
energy.

We have seen that the velocity of a pair of oppositely
oriented vortices is given by the formula

  V2D ring = κ
4πRring

(12-40)

and have noted that the speed of a circular ring is
roughly the same but more complex.  In any case it
is proportional to   κ /R ring

   Vring ∝ κ
Rring

speed of
vortex ring (84)

Neither Equation (83) or (84), or an accurate calcu-
lation of these quantities, can be used to measure the
circulation κ  of the ring because you cannot see the
rings to measure their radius  R ring .  But in the

product of the two terms, the unmeasurable term
 R ring  cancels and we are left with the formula

  Ering×Vring ∝ κ 3 (85)

Equation (85) suggests that an experimental mea-
surement of   Ering×Vring  will give an experimental
value of   κ3.  A careful (and messy) calculation
shows that both  E ring and  V ring have factors of the
logarithm of the ring radius  R ring  divided by the
core diameter (a).  As a result there are factors of

 ln(Rring/a)  in a more accurate formula for the prod-
uct   Ering×Vring .  However this logarithm is quite
insensitive to the actual value of  R ring/a  (increase
the ring radius by 1000 and the logarithm  ln(Rring/a)
increases  only by an additional amount of 6.9). By
making a number of measurements of   Ering×Vring ,
Rayfield and Reif were not only able to determine κ ,
but also the core diameter (a).  That is when they
found that the core diameter was roughly the diam-
eter of a helium atom.

The Magnus Equation
In Figure (8) repeated here we show a z  directed
vortex line, subjected to an x directed force, moving
in the y direction.  This motion labeled  V rel  is the
motion of the line relative to the fluid particles due
to the non potential force g.  For the special case of
a straight vortex, it is fairly easy to calculate the
magnitude of this relative velocity  V rel .  The result
we will call the Magnus equation, named after a
person who first studied sideways motion due to
vortex effects.

x
z

y

g

Vrel

Figure 8 (repeated)
The y directed motion of a z oriented vortex
line subject to an x directed force.
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For this calculation, assume that we have a core of
diameter D, with a uniform z  directed vorticity  ω
and an x directed force inside, as shown in Figure
(13).  We have drawn two paths   C′1(t) and   C′2(t)
attached to the fluid particles. The circuits nearly
touch each other so that half of the flux of  ω goes
through   C′1  and half through   C′2  at the time (t).

A little time  δt  later, the core has moved upward a
distance   δy relative to the fluid particles as shown in
Figure (13b).  To keep the calculation simple, we
will assume that the force g is strong enough to
move the core up a reasonable distance   δy before the
fluid has moved the circuits   C′1  and   C′2  noticeably.
(The more accurate calculation in Appendix 2 does not
make this assumption, but gets the same answer.)

Because the vorticity is moving up relative to the
fluid particles, and thus up relative to the circuits

  C′1  and   C′2 , by the time   (t+δt)  we have an addi-
tional band of flux of area   (Dδy)  through circuit

  C′1 .  Thus the increase   δΦ1  of flux in circuit   C′1 ,
as we go from (t) to   (t+δt) , is

  δΦ1 = ω(Dδy) (86)

Applying our vortex dynamics Equation (78) to the
upper circuit   C′1 , we have

  δΦ1
δt

= g⋅d
C′1

rate of increase
of flux of ω
through C′1

(87)

Looking at Figure (13a) we see that the only contri-
bution we get to   g⋅d  around   C′1  is through the
center of the core, where g acts for a distance D, giving

  g⋅d
C1′

= gD
(88)

Thus

  δΦ1
δt

= gD ; δΦ1 = gDδt (89)

Equating the values of   δΦ1  from Equations (86) and
(89) gives

  δΦ1 = ωDδy = gDδt (90)

The D's cancel, and we are left with

  g = ωδy
δt

= ωVrel (91)

where  V rel  is the relative velocity of the vortex core
and the fluid particles.

Equation (91) can be put in a more useful form if we
multiply both sides by ρ , converting the force g  per
unit mass to   ρg = f , the force per unit volume.  Then
integrate f over the area of the core, giving us the
force per unit length acting on the core.  We get,
using Equation (91)   g = ωVrel ,

  
Fe = ρgdA

area of
core

= ρ (ωVrel)dA
area of
core

= ρVrel ωdA
area of
core

(92)

But the integral of ω over the area of the core is κ ,
the total circulation of the core.  Thus Equation (92)
becomes

  F e = ρκV rel (93)

The final step is to turn Equation (93) into a vector
equation. We let the vector   κ = zκ  point in the direc-
tion of the vorticity  ω.  The force  Fe  points in the x
direction and  V rel  is y directed. Using the right hand
rule, we see that the cross product   Vrel×κ  points in the
x direction like  Fe .  Thus we have the vector equation

   
Fe = ρVrel × κ Magnus

equation (94)

which is a remarkably simple result for what looked
like a complex situation.

g ω(t+δt)

δy
D

C' (t+dt)2C' (t)2

C' (t+dt)1C' (t)1

a) b)

Figure 13
As the core moves up relative to the fluid
particles, and thus up relative to the paths

  C1′  and   C2′  attached to the fluid particles,
we get at time     (t + δt )  an additional band
of flux of area       (D δδy)  in circuit   C1′ .

x
z

y
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In Appendix 2 to this chapter, we derive an equation
for the effect of non potential forces on curved fluid
core vortices.  The result looks exactly like Equation
(94), but it tells us how to define  V rel  when we have
a curved vortex.

  Fe = ρVrel × κ (94) repeated

When the exact formula is applied to a straight
vortex in a two dimensional flow, the terms in
Equation (94) have the following meaning.  If z  is
the direction perpendicular to the flow, then  Fe  is the
x-y component of the total force per unit length
acting on the fluid in the core region.  The compo-
nent  (Fe)z parallel to the vortex has no effect.  The
circulation κ  is the total flux of  ω in the core, and is
z  oriented.

The relative velocity  V rel  is given by the formula

 V rel = V vortex – V fluid (95)

where the vortex velocity  V vortex  is the velocity of
the center of mass of the vorticity   ωz , and the fluid
velocity  V fluid is the weighted average of the fluid
velocity v in the core region, given by the integral

  Vfluid = 1
κ ωzvdxdy (96)

With these definitions, Equation (94) is an exact equa-
tion for a straight fluid core vortex.  The result is
independent of the shape of the core or the force density
g, as long as both are confined to a localized region.

The derivation of the exact Magnus equation, which
we do in Appendix 2, is obtained by going back to
Equation (55) and rewriting that equation as a con-
tinuity equation for the flow of vorticity.  In some
ways the continuity equation is simpler to derive and
use than the Helmholtz theorem approach.  But the
continuity equation involves the quantity   ε ijk  which
we introduce and use in Appendix 1 to derive vari-
ous vector identities.  Thus it seemed appropriate to
delay a discussion of the continuity equation until
after the reader has studied Appendix 1.

(The beginning of Appendix 2 gives a complete
physical explanation of the continuity equation ap-
proach with virtually no mathematics and can be
read at any time.)

Figure 14

Relative directions of ωω ,  Fe, and  Vrel .

x
z

y

ω

Vrel

Fe
z



Calculus  2000 - Chapter 13      Fluid Dynamics       Cal 13-23

IMPULSE OF A VORTEX RING
Although we have discussed the Magnus equation

  F = ρV rel × κ  as applied to a straight vortex, the
same ideas can be used for a curved vortex as long
as the radius of curvature of the vortex is large
compared to the core radius.  When we apply the
Magnus equation to a vortex ring, we get a simple
formula relating the total force on the ring to the rate
of change of the area of the ring.  Introducing the
concept of the impulse of a vortex ring, we can write
this formula so that looks a lot like Newton's law for
vortex rings.

In Figure (15) we again show the cross section of a
vortex ring, now showing the force  Fe  per unit
length acting on each section of the core, and the
relative velocity  V rel  causing the ring to expand.
For simplicity let  Fe  be in the direction of the motion
of the ring, so that the Magnus equation implies

  Fe = ρκVrel (94a)

The velocity  Vrel  is just the rate  dRring/dt  that the
ring radius is increasing.  Thus Equation (94a)
becomes

  
Fe = ρκ

dRring

dt (97)

The  Fe  in Equation (97) is the force per unit length of
the ring.  The total length of the ring is its circumference

  2πRring, thus the total force  F total is   2πRringFe, giving

  
Ftotal = 2πRringFe = 2πρκ Rring

dRring

dt (98)

However

 RdR
dt

= 1
2

d
dt

(R2) (99)

Thus Equation (98) can be written in the form

  Ftotal = ρκ d
dt

(πRring
2 ) (100)

But   πRring
2  is just the area  Aring  of the ring, thus we get

  Ftotal = d
dt

(ρκAring) (101)

Let us define the vector  Aring  as a vector of magni-
tude   πRring

2 , pointing in the direction of the motion
of the ring. Then since the total force  Ftotal  also
points in the same direction, we can write Equation
(101) as the vector equation

  Ftotal = d
dt

(ρκAring) (102)

Of course we have derived Equation (102) only for
the special case that  Ftotal  points in the direction the
ring is moving.  It becomes an interesting exercise
with the vector form of the Magnus equation to show
that Equation (102) applies for any direction of  Ftotal .

Equation (102) seems to look a lot like Newton's
second law relating the total force F  acting on a
particle to the particle's momentum p

  
F =

dp
dt

Newton's second law

Equation (102) suggests that the quantity   ρκAring
plays a role for vortex rings similar to the role of
momentum for particles.  As a result it has become
traditional to give   ρκAring  a special name, the
 impulse I  of the ring

   
I ≡ ρκAring

impulse of a
vortex ring (103)

With Equation (103) the formula for  Ftotal  becomes

  Ftotal = dI
dt

impulse
equation (104)

A common error one can make is to associate the
impulse I  of a vortex ring with an actual fluid momen-
tum.  Suppose, for example, you have a vortex ring in
a sealed container.  If you integrate   ρv  for that ring over
the entire fluid, the answer is zero!  In other words
vortex rings do not carry linear momentum.  The
impulse I  is a separate quantity with its own special
properties.  One important property is that it makes it
easy to predict the behavior of a ring subject to external
forces.  But it is not the momentum of the ring.

Figure 15
An external
force pushing
on the ring in
the direction of
motion causes
the ring to
expand.
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THE AIRPLANE WING
In the fluid dynamics Chapter 23 of the Physics text, we
used Bernoulli's equation to provide a qualitative view
of why airplanes fly and sailboats can sail into the wind.
In this section we will first look at the flow pattern of the
fluid past an airplane wing, and see that for there to be
lift, there has to be a net circulation of the fluid around
the ring.  This means that there is a vortex surrounding
the wing.  We then use the Magnus equation (95) to
obtain a formula relating the weight of the airplane to
the forward speed of the airplane and the circulation κ
of the vortex about the wing.

Figure (16) is a sketch of the streamlines we might
expect for the flow of a fluid past an airplane wing.  Our
Bernoulli equation argument was that because the fluid
was flowing faster over the top of the wing (where the
streamlines are closer together) and slower under the
wing, the pressure must be higher under the wing than
on top so that the sum of the terms   (p + ρv2/2)  be
constant.  (The   ρgy term is too small to worry about for
a fluid like air.)  This higher pressure below suggests
that the fluid is exerting a lift force on the wing.  In
Figure (16) we have drawn a circuit   C′  around the
wing.  When we calculate the integral   v⋅d  around
this circuit, we get a big positive contribution from the
high speed fluid at the top, and a smaller negative
contribution from the slow fluid at the bottom.  Thus
there is a net positive circulation κ  surrounding the
wing.  In Figure (16), the circulation κ  points in the  +z
direction.  If there were no net circulation, if the fluid
had the same speeds above and below the wing, there
would be no lift.

Here is where we will adopt a rather unconventional
view in order to directly apply the Magnus equation
(94) to the airplane wing.  We will picture the wing
as being made of frozen fluid of the same density as
the air flowing over it.  This way we can think of the
wing itself as part of the fluid, giving us a constant
density, fluid core vortex to which we can apply
Equation (95).  Because the Magnus equation in-
volves only the total circulation κ  and not the details
of the structure of the core, it makes no difference
that our core now consists of a vortex sheet around
the surface of the wing rather than the solid-body
like rotation we assumed in our other vortex cores.

The purpose of the wing is to support the weight  mg
of the airplane.  If we divide  mg  by the total length
L of the wings, we get the downward,  – y directed
force  F g  per unit length acting on the wings, and
thus on the core of the wing vortex.

Here is the unconventional part of the argument.  If you
exert a downward,  –y directed force on a z  oriented
vortex, you will get an x directed relative velocity of
the core as shown in Figure (17).  (Figure (17) is just
Figure (8) rotated 90°.)  Comparing Figures (16) and
(17), we can say that the downward gravitational force
on the wing, i.e., on the core of the vortex around the
wing, is causing the wing vortex to move forward
relative to the fluid through which the airplane is
flying.  The Magnus equation, with  Fe = Fg  is

  Fg = ρVrel×κ (104)

This gives us an explicit formula relating the down-
ward gravitational force  F g  per unit length, the
circulation κ  of the wing vortex, and the forward
speed  V rel  of the airplane.

Figure 16
Flow pattern past an airplane wing.

Figure 17
Motion of a vortex subject to a localized force g .
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The first thing this equation tells you is that there must
be a vortex around the wing of an airplane for the
airplane to fly.  In addition, the vortex cannot stop at the
end of the wing because vortex lines, being solenoidal

  (∇ ⋅ω = 0), cannot stop in the fluid.  Instead the vorti-
ces trail back behind the airplane and are sometimes
very visible during takeoff on a misty morning.

Equation (94) also tells us that for a given speed  V rel ,
the heavier the airplane, i.e., the greater  F g  is, the
greater the circulation κ  has to be.  To lift the airplane,
the circulation has to be particularly strong during
takeoff where the forward velocity  V rel  of the airplane
is small.  As a result the massive jumbo jets have strong
wing tip vortices trailing after them, strong enough to
flip small airplanes taking off behind them.  Pilots of
small aircraft are warned to stay clear of the jumbo jets.

We have just presented the rather different picture
that the forward motion of an airplane is caused by
the gravitational force acting down on the core of the
wing vortex.  When this point of view was presented
in a science  journal article, a reviewer replied that it
was the airplane motors which pulled the airplane
forward.  Our response to that was—what about a
glider that flies without motors?  The main role of the
motors in level flight is to overcome the viscous drag
on the wings and fuselage.

Although it works well, our picture is still unconven-
tional.  When we used the Bernoulli argument in
Chapter 23 of the Physics text, we were using the
conventional picture that the fluid is exerting a lift
force on the wing.  The conventional derivation of
the lift force involves calculating the momentum
transfer between the fluid and the solid object.  This
is a  somewhat messy calculation involving integra-
tion of pressure forces over the surface of the object.
When you finish, you find that the lift force is
proportional to the total circulation κ  about the wing
and the velocity  V rel  of the wing relative to the fluid
through which it is moving.  Such a lift force on a
moving vortex is called the Magnus Force.

The Magnus Lift Force
We are in a position to write down the formula for the
lift force on an airplane wing without doing any pres-
sure force integrations.  Start with Equation (104)

  Fg = ρVrel×κ (104) repeated

which relates the gravitational force  Fg  per unit
length to the circulation κ  and the relative velocity

 Vrel  of the vortex.  If the plane is in level flight, then
the downward gravitational force  Fg  must be ex-
actly balanced by the upward lift force  Flift  for the
plane not to rise or fall.  Thus we have

 Flift = –Fg (105)

which gives us

  Flift = –ρVrel×κ (106)

In addition to airplane wings, spinning objects gen-
erally have a vortex around them.  If the object is
moving through the fluid at a velocity  V rel , it will
experience a sideways lift force given by Equation
(106).  This sideways lift force on a spinning object
is called the Magnus force  F magnus after G. Magnus
who studied the sideways motion of spinning ob-
jects in 1852*.  The Magnus lift force formula found
in textbooks is

   
Fmagnus = –ρVrel×κ

Magnus
lift force
formula

(107)

* "On the deviation of projectiles; and on a remark-
able phenomenon of rotating bodies." G. Magnus,
Memoirs of the Royal Academy, Berlin(1852). En-
glish translation in Scientific Memoirs, Lon-
don(1853)., p.210. Edited by John Tyndall and Wil-
liam Francis.
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The Magnus Force and Fluid Vortices
The extended Helmholtz theorem, Equation (78)
and its application to the motion of vortex lines
through a fluid, was developed in the 1960s to help
understand vortex behavior in the Rayfield-Reif
experiment.  Before that, and still in most textbooks,
the motion of vortices through a fluid is explained in
the following way.

The Magnus force formula    Fmagnus = –ρVrel×κ
tells us the lift force on a solid object moving through
a fluid at a velocity  Vrel , when there is a circulation
κ  about the object.

If one has a fluid core vortex moving relative to the
fluid, one says that there must be a lift force

  Fmagnus = –ρVrel×κ   acting on that vortex.  But there
is no extra mass associated with a fluid core vortex,
so one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero.  That means that there must be an external
force  Fexternal acting on the vortex to cancel the
Magnus lift force.  That is, one must have

 Fexternal + Fmagnus = 0 (108)

Using the Magnus formula (107) in (108) gives

  Fexternal = –Fmagnus = ρVrel×κ (109)

This is just our Equation (95) relating the relative
motion of a vortex to the localized, non potential
force on the core of the vortex.

What we have shown, by deriving Equation (109)
directly from the Navier-Stokes equation, which
itself came from Newton's second law, is that we can
describe vortex motion without any reference what-
soever to a Magnus lift force.  The Magnus force is
a pseudo  force, which like the centrifugal force,
may be very useful for calculation, but which has no
place in a basic description of the motion of the fluid
itself.
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Appendix for Chapter 13
Part 1
Component Notation and
the Functions 

     δδij and 
  εijk

In our derivation of the Navier-Stokes equation we
ran into the term   ∇ i(pvi)  which we could not handle
very well with vector notation like   ∇ ⋅v  or   ∇ φ.  To
handle this term we resorted to component notation

  ∇ i  and  vi , and introduced the Einstein summation
convention.  Here we will briefly review the summa-
tion convention, and then discuss two quantities   δij
and   εijk  that play basic roles when we work with dot
and cross products in component notation.  These
quantities also become extremely useful when we
are working out vector identities, like the relation-
ship

  
(v⋅∇ ) v = ∇ v2

2
– v×(∇ ×v) (13-33)

which we used to get the  v2/2  term in Bernoulli's
equation.

CH 13 APP 1 COMPONENT NOTATION
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THE SUMMATION CONVENTION
In Equation (12) of this chapter we wrote the dot
product of two vectors   a ⋅b  in the following three
forms

  a ⋅ b = axbx + ayby + azbz

= aib iΣ
i = x,y,z

= aib i

(13-12)

With the summation convention, when we have
repeated indices like  aib i , it is understood that we
are to sum over all values of the repeated index i.  We
gave as an example

 aib jci = axb jcx + ayb jcy + azb jcz

where we summed over the repeated index i, but the
single index j was not summed.  In mixed index-
vector notation,  aib jci  could be written

 (aibci) j = aib jci (1)

THE DOT PRODUCT AND      δδij
We will see that the quantity   δij , defined by the
simple relationship

  δij = 1 if i = j

= 0 if i ≠ j
(2)

is closelly related to the dot product in component
notation. Consider the term

  δijaib j (3)

Here both indices i and j are repeated, so that we have
to sum over both to get

  δijaib j = δxxaxbx + δxyaxby + δxzaxbz

+ δyxaybx + δyyayby + δyzaybz

+ δzxazbx + δzyazby + δzzazbz

(4)

In Equation (4), the only non zero   δij  terms are   δxx ,
  δyy  and   δzz, leaving

  δijaib j = δxxaxbx + δyyayby + δzzazbz (5)

Since   δxx = δyy = δzz = 1 , we get

  δijaia j = axbx + ayby + azbz = a ⋅b (6)

In component notation this can be written

  
δijaib j = ajb j = a ⋅b (7)

You can see that the function   δij turns the product of
two vectors  ai  and  b j  into a dot product.

Another way of handling   δijaib j  is to first work out
the effect of   δij  acting on  ai .  Setting the index j to
x we have

  δixai = δxxax + δxyay + δxzaz = ax

Similarly we get

  δiyai = ay

  δizai = az

Thus for any value of j,   δijai  is equal to  a j

  
δijai = aj (8)

Then when we want to evaluate the product   δijaib j

we can write

   (δijai)b j = (a j )b j = a ⋅b (9)
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THE CROSS PRODUCT AND      εεijk
We just saw that   δij turned the product of two vectors

 ai  and  b j  into a dot product   a ⋅b.  We will now see that
a slightly more complex function   εijk  turns the product
of two vectors  a jbk  into a cross product   a ×b

The cross product   a ×b  of two vectors  is given by

  (a × b)x = aybz – azby

(a × b)y = azbx – axbz

(a × b)z = axby – aybx

(10)

We will see that this can all be written as the one
equation

 
  

(a × b)i = εijka jbk (11)

where the function   εijk  has the values

   εijk = 0 if any two indices are equal

εxyz = 1

εxzy = – 1

εzxy = + 1

⋅ ⋅ ⋅

(12)

What we are indicating by the dots is that if you
permute (interchange) any two neighboring indices,
you change the sign.

For example, what is the sign of   εzyx?  To find out we
do the following permutations starting with   εxyz = + 1

  εxyz = + 1

εxzy = – 1

εzxy = + 1

εzyx = – 1

(13)

It does not matter how you do the permutation you
always come out with the same answer.  For example

  εxyz = + 1

εyxz = – 1

εyzx = + 1

εzyx = – 1

(13a)

Because of this permutation property,   εijk  is often
called the permutation tensor.  (A tensor is a vector
like object with more than one index.)

Now we have to check that Equation (11), using   εijk
for the cross product, gives the correct result.  Using
the summation convention and crossing out terms
like   εxxk  which are zero, we have

  (a ×b)x = εxjka jbk

= εxxkaxbk + εxykaybk + εxzkazbk

= εxyxaybx + εxyyayby + εxyzaybz

                   + εxzxazbx + εxzyazby + εxzzazbz

  (a × b)x = εxyzaybz + εxzyazby (14)

With   εxyz = +1,   εxzy = –1 (one permutation), we get

  (a × b)x = aybz – azby (15)

Which is the correct answer.

Exercise 1
Check that

  (a × b)y = eyjkajbk
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As an example of the use of the   εijk , let us prove the
vector identity

  A⋅ (B×C) = (A×B)⋅C (13-68)

which we used in the derivation of the Helmholtz
theorem.  We have

  A⋅ (B×C) = Ai(B×C)i

= AiεijkBjCk

  
A⋅ (B×C) = εijkAiBjCk (16)

  (A×B)⋅C = (A×B)iCi

= εijkA jBkCi

  
(A×B)⋅C = εijkA jBkCi (17)

To show that Equation (17) is equivalent to (16), we
will first rename the indices in Equation (16).  We
will do this in two steps to avoid any possible errors.
Changing   i → r ,   j → s ,   k → t  in Equation (16)
gives

  εijkAiBjCk = εrstArBsCt (16a)

We can do this because it does not matter what letter
we use for a repeated index.  Now we wish to rename
the indices again so that the vector components in
Equation (16) match those in (17).  If we substitute

  r →j ,    s → k ,    t → i , Equation (16a) becomes

  εrstArBsCt = ε jkiA jBkCi (16b)

which when combined with (17a) gives

  εijk AiBjCk = ε jkiA jBkCi (16c)

With some practice, you will not bother going through
steps (16a) and write (16b) directly.

We now have

  A⋅ (B×C) = ε jkiAjBkCi (16d)

  (A×B)⋅C = εijk A jBkCi (17) repeated

The vector components now match, and what we
now have to do is see how   ε jki  compares with   εijk .
We will start with   εijk  and see how many permuta-
tions it takes to get to   ε jki .  We have

  ε jik = – εijk

  ε jki = – ε jik = – (–εijk)

Two permutations are required, we have   ε jki = εijk ,
and thus the terms in (16) and (17) are equal, which
proves the identity.

While these steps may have looked a bit complex the
first time through, with some practice they are much
easier, faster, and more accurate than writing out all
the x, y, and z components of the cross products.
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Handling Multiple Cross Products
To work out vector identities involving more than
one cross product, there is a special identity that is
worth memorizing.  It is

  
εijkεklm = δilδjm – δimδjl (18)

First of all, note that Equation (18) has the correct
symmetry.  It must change sign on the right if you
permute (interchange) i and j or l and m, because that
is what   εijk  and   εklm  do on the left side.  This
combination of δ  functions has that property.

Before we try to prove Equation (18), we will give
an example of how useful it is.  Consider the rather
messy set of cross products   a × (b × c) .  Using the

  εijk  notation for cross products, we have

  a × (b × c)
i

= εijka j(b × c)k

= εijka jεklmblcm

= (εijkεklm)a jb lcm

(19)

Using Equation (18) we get

  a × (b × c)
i

= (δilδjm – δimδjl ) a jb lcm (20)

We will get some practice with the use of the δ
functions   δij .  We have for example

  δilb l = bi ; δjmcm = cj (21)

So that

  δilδjma jb lcm = ajbic j

and

  – δimδjla jb lcm = – ajb jci

We get the result

  
a × (b × c)

i
= ajb ic j – a jb jci (22)

To apply Equation (22) to the problem we had with
the Navier-Stokes equation, let

  a = v ; b = ∇ ; c = v (23)

giving

  v × (∇ × v)
i

= vj∇ iv j – vj∇ jvi (24)

By not changing the order of the vectors in Equation
(22), the equation can be used when one or more of
the vectors are the gradient vector  ∇ .

To get Equation (24) into the form we want, consider

 

  1
2

∇ iv
2 = 1

2
∇ i(vx

2 + vy
2 + vz

2)

= 1
2

(2vx∇ ivx + 2vy∇ ivy + 2vz∇ ivz)

= vj∇ ivj

(25)

Thus Equation (24) can be written

  
v × (∇ × v)

i
= ∇ i

v2

2 + vj∇ jvi (26)

To put this in pure vector notation, notice that
Equation (26) is the (i)th component of the vector
equation

  
v×(∇ ×v) = ∇ v2

2
+ (v⋅∇ )v (27)

Equation (27) is equivalent to

  
(v ⋅∇ )v = – ∇ v2

2
+ v×ω (28)

which we used to get the Bernoulli term   –∇ (v2/2)
into the Navier-Stokes equation.
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Proof of the   εε  Identity
We will use a rather brute force method to prove the
identity

  εijkεklm = δilδjm – δimδjl (18) repeated

Let us consider the special case i = x and j = y.  Then
for the δ  functions we get

  δilδjm – δimδjl = δxlδym – δxmδyl (29)

If l = x, m = y,   get +1 from   δxlδym (30a)

If l = y, m = x,   get –1 from   – δxmδyl (30b)

All other values of l and m give zero (30c)

For this case i = x and j = y, the product of   ε's ,
becomes

  εijk εklm = εxykεklm (31)

The only non zero value for k is z giving

  εxykεklm = εxyzεzlm (32)

The only value of l and m that give a non zero result
are l = x, m = y and l = y, m = x.  For l = x , m = y,
we get   εxyzεzxy .  Two permutations give

  εzxy ⇒ –εxzy ⇒ ε xyz = +1

Thus

  εxykεklm = +1       for l = x, m = y (33a)

which agrees with Equation (30a).

For the case l = y,  m = x, we get

  εxykεklm = εxyzεzyx

Now

   εzyx ⇒ –εzxy ⇒ ε xzy ⇒ –εxyz = –1

thus

   εxyzεzyx = (+1)(–1) = (–1)

and we have

  εxykεklm = –1       for l = y, m = x (33b)

which agrees with Equation (30b).  All other values
of l and m give zero, in agreement with (30c).

You can see that Equation (18) is correct for the
special case i = x, j = y.  In a few more pages of
essentially identical work you can, if you want,
show that Equation (18) works for any values of i
and j.  For practice, perhaps you might try a case like
i = z, j = y.
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Appendix for Chapter 13
Part 2
Vortex Currents

In the main part of Chapter 13, we derived the
following equation that describes the behavior of
vorticity in a constant density fluid.

  ∂ω
∂t – ∇ × (v × ω) = ∇ × gnp (13-55)

It turns out that there are two rather different ways
to handle this equation.  The one we used in the main
part of the chapter was to show that

   δΦ(ω)
δt

= ∂ω
∂t – ∇ ×(v×ω) ⋅dA

S′

=
rate of change of the flux
of ω through a circuit S ′
that moves with the fluid

(13-74)
Thus if   gnp = 0 , there is no change in the flux and we
have Helmholtz's theorem.  If there is a change in
flux, we have the relative motion of the vortex lines
and fluid particles that we discussed in detail.

The other approach, which we discuss in this appen-
dix, is to turn Equation (13-55) into a continuity
equation for the flow of the vorticity field  ω .  The
physical idea of how we get a continuity equation is
very straightforward.  The mathematics requires a
fairly extensive use of the tensor    εi jk  that we dis-
cussed in Appendix 1.  That is why we have delayed
the discussion of the flow of vorticity and vortex
currents until this appendix.

Of the two approaches, the continuity equation ap-
proach is the more powerful. As we mentioned, it
leads to an exact Magnus formula for curved fluid
core vortices, a result that had not been obtained any
other way.  And the flow of vorticity, in the form of a
vortex current tensor, appears to be playing a role in
recent approaches to string theory.

CH 13 APP 2 VORTEX CURRENTS
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In Figure (1a) we have also drawn a plane that cuts
through these vortices.  This is an arbitrary plane,
slicing the fluid in any way we want.  After drawing
the plane, we then align the axis of our coordinate
system so that the z axis is perpendicular to the
plane.  Thus we call this the z  plane.

Where a vortex tube or line comes up through the plane,
we have drawn a white circle, and where it goes down
through—a black circle.  Because the flux tubes of a
solenoidal field cannot start or stop in the fluid, the
circles in the z  plane cannot appear or disappear one at
a time.  What can occur is that a loop may pull out of the
plane as may be happening in the lower right hand
corner.  When this happens, a white circle and a black
circle annihilate each other.  If a loop enters the plane,
we have the creation of a white circle-black circle pair.

If the plane extends well out beyond the region of the
vortex lines, then we have a conservation law.  The
number of white circles minus the number of black
circles is a constant.

We can go a step farther, and note that the circulation
κ  of each vortex tube is given by the formula

  κ = ω⋅dA

S′

= ωzdAz
area of
intersection

(1)

We get the same result for κ  no matter what z  plane
we use for integrating   ωz , as long as the z  plane cuts
through the entire tube.  As a result the white circles
in Figure (1a) represent a net circulation   +κ  and the
black circles   –κ .  If all the flux tubes of  ω  have the
same circulation κ , then the total flux of  ω  through
the plane is simply κ  times the net number  of
circles, i.e., the number of white circles minus the
number of black circles.

If the fluid is bounded, or the plane does not extend
out beyond the region of the vortex lines, then the net
number of circles can change by having vortex lines
move in or out across the edges.  Thus the more
general conservation law is that the rate of change
of the net number of circles in a given region of the
plane is equal to the rate at which circles are
flowing in or out across the edges of the region.
This is a verbal statement of a continuity equation
for the flow of the black and white circles.

CONSERVED TWO
DIMENSIONAL CURRENTS
Before we go through any mathematical steps, let us
look at the physical ideas of why we should expect
to find a conserved flow of vorticity, and why
working with a conserved flow might give us a simple
way to handle the dynamics of the vorticity field.

In Figure (1a) we have sketched several vortices of
rather arbitrary shape that we imagine are moving
around in a constant density fluid.  When we originally
drew this diagram, we were thinking of quantized
vortex lines moving around in superfluid helium.  But
it turns out that our analysis applies to tubes of flux for
any solenoidal field, i.e., any field like  ω  that has zero
divergence.  The significance of a solenoidal field is
that the flux tubes cannot stop or start in the fluid.  The
tubes have no free ends in the fluid.

Figure 1
If you slice the solenoidal vortex lines with an arbitrary
xy plane, the circles, representing the intersection of
the lines and the plane, form the objects of a conserved
two dimensional current. When a loop pulls out of the
plane,  as in the lower right corner, two circles of
opposite orientation annihilate each other. Circles can
be created or annihilated only in pairs, or come in
through the edges.

x

y

b)
z

x

y

a)
z
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CONTINUITY EQUATION FOR VORTICITY

To obtain the mathematical continuity equation for the
flow of   ωz , we start with the dynamic equation for
vorticity, given by Equation (55) of Chapter 13 as

  ∂ω
∂t – ∇ ×(v × ω) = ∇ ×(gnp) (13-55)

which obviously is equivalent to

  ∂ω
∂t = ∇ ×(v×ω+ gnp) (13-55a)

In component notation this can be written as

  ∂ωj

∂t = ε jik∇ i(v×ω+ gnp)
k

(2)

where   εi jk  is the permutation tensor used in Appen-
dix 1 to handle cross products.  Using the fact that

  ε jik = –εi jk , we get

  ∂ωj

∂t = –∇ i εi jk (v×ω+ gnp)
k

(3)

Rather than try to deal with all the components in
Equation (3), let us look at the z component of the
equation, which becomes

  ∂ωz
∂t = – ∇ i εizk(v × ω+ gnp)

k
(4)

Defining the vector   j (ωz)  by the equation

  
j(ωz)i = εizk(v×ω+ gnp)

k
(5)

we get the equation

  
∂ωz
∂t = – ∇ ⋅ j (ωz) (6)

which has the form of a continuity equation if we
interpret   j (ωz)  as the current vector for   ωz .

This current vector   j (ωz)  has the very special
property that it is two dimensional; it has no z
component.  The formula for the z component is

  j(ωz)z = εzzk(v×ω+ gnp)
k

= 0 (7)

This is zero because   εzzk = 0 .  Thus Equation (6)
is the continuity equation for the two dimensional

flow of   ωz , which is exactly what we expected from
our discussion of Figure (1b).

The formula for   j (ωz)  still needs some simplifica-
tion.  The first step is to write   v×ω in component
notation to get

  εizk(v×ω)k = εizkεklmvlωm

Next, use the relationship we proved in Appendix 1

  εijkεklm = δilδjm – δimδjl (A1-18)

to get

  εizk(v×ω)k = (δilδzm – δimδzl)vlωm

= viωz – vzωi

(8)

The other simplification comes from noting that

  (z×gnp)
i
= εijkz j(gnp)

k
= εizk(gnp)

k
(9)

where we set   εijkz j = εizk  because the unit vector z
has only a z component.

In Equation (5) using Equation (8) for   εizk(v×ω)k
and Equation (9) for   εizk(gnp)

k
to get

  j(ωz)i = viωz – vzωi + (z×gnp)
i

(10)

We can simplify the interpretation by introducing
the notation

  v = (vz , v||); ω = (ωz , ω||) (11a)

where the vectors  v||  and   ω||  are vectors represent-
ing the components of v  and  ω  parallel to the flow
of   ωz , i.e., components that lie in the z  plane.

Since the current vector   j (ωz)  has no z  component,
it has only a parallel component

  j (ωz) = j||(ωz) (11b)

With this notation, we can let the index i be the
parallel component in Equation (10), giving

  
j (ωz) = v||ωz – vzω|| + z×gnp (13)

Equation (13) is our final equation for the two
dimensional current or   ωz  in the z  plane.
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Roughly speaking, the terms in Equation (13), re-
peated below, have the following interpretation.

  j (ωz) = v||ωz – vzω|| + z×gnp (13) repeated

The   v||ωz  term clearly represents the convection of

  ωz  due to the fluid motion  v||  in the plane.  The
  z × gnp  term which we call the Magnus term, gives

us the sideways motion of the vortex when a non
potential force is acting on the fluid.  For example,
if we have an x  directed force g  acting on the core
of a z  directed vortex, we end up with a y  directed
flow of vorticity as indicated in Figure (2), a diagram
we have seen before.

The   – vzω||  term is more of a problem to interpret.
We note, however, that for a two dimensional flow
with straight vortices, we can orient the z  plane to
cut the vortex perpendicular to the core so that   ω||  is
zero and the term vanishes.  We will see that for three
dimensional fluid flow with a curved vortex, this
term can be made to go away by choosing a properly
oriented z  plane.  From this point of view, the

  – vzω||  term tells us which z  plane to use.

A SINGLE VORTEX LINE
To help  interpret the equations for vortex motion,
we will apply Equation (13)  to the motion of a single
vortex line. We cut the line with a z  plane as shown
in Figure (3a) and look at the behavior of   ωz  in that
plane, as seen in Figure (3b). The main result is that
we end up with a formula for the motion of the center
of mass of   ωz . This result is a consequence of their
being a conserved two dimensional current of   ωz .

Figure 2
 Motion of a vortex line subject to an x directed force.

Figure 3a
Cut the vortex line with a z  plane.

x
z

y

g

j  = z  gy

ω

z

x

ω

y

z plane

Vcom

z

Figure 3b
We will study the motion of   ωωz  in the z  plane.
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Center of Mass Motion
Our first step is to show that if we have an isolated
vortex where both   ωz  and non potential forces  gnp
are confined to a core region, then the vortex veloc-
ity  Vvortex, defined by

  Vvortex ≡ 1
κ j (ωz)dAz

core
area

= VCOM (14)

is the velocity of the center of mass of   ωz  in the z
plane.

To show this, we begin with Figure (4) where we
show the localized core area of a vortex as it passes
through the z  plane.  We are assuming that the
dotted rectangle from  xa  to  xb , and  ya  to  yb  lies
outside the core area where both   ωz  and   j (ωz)  are
zero.

We define the area   ∆A(yi), seen in Figure (4), as a
band of thickness   ∆y  that goes from  xa  to  xb , and
from  yi  to   yi+∆y .  The total vorticity   ∆κ i  in this
band is

  
∆κ i = ∆y ωz(x,yi)dx

xa

xb

(15)

The formula for the center of mass coordinate  RCOM
of a collection of masses  mi  is (see page 11-3 of the
Physics text)

  MRCOM = r imiΣ
i

(16)

where M is the total mass.

Replacing M by the vortex total circulation κ , and
 mi  by   ∆κ i , the equation for the y component of the

center of mass of the vorticity,  YCOM , becomes

  κYCOM = yi∆κ iΣ
i

(17)

Differentiating Equation (17) with respect to time,
noting that the total circulation κ  does not change
with time, gives

  
κ ∂YCOM

∂t
= κVyCOM = yiΣ

i

∂∆κ i
∂t (18)

Our problem now is to calculate the rate of change of
the circulation   ∆κ i  in our   ∆y  band.  We do this by
calculating the net rate of flow of vorticity into the
band due to the vortex current   j(ωz) , indicated in
Figure (5).

Along the line  y = yi , the net current into the band
is

  
Jy(yi) = jy(x, yi )dx

xa

xb

current in
from below (19)

where   jy = jy(ωz) .

Up at   yi+∆y , the component   jy(ωz)  flows up out of
the band, so that the net inward current up there has
a minus sign

  Jy(yi+∆y)inward = –Jy(yi+∆y)

= – jy(x, yi+∆y)dx

xa

xb

(20)

Figure 4
Calculating the center of mass of   ωωz .

x

y

xa xb

ya

yb
i

∆y

∆A(y )

yi

ωz

xa xb

j (y ) y i

j (y +∆y) y i

∆yyi

Figure 5
Flow of vorticity into band.
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The total rate   ∂∆κ i/∂t  at which vorticity is flowing
into the band is thus

  ∂∆κ i

∂t
= – Jy(yi+∆y) + Jy(yi) (21)

Using Equation (21) in Equation (18) for  VyCOM
gives

  
κVyCOM = – yi∆yΣ

i

Jy(yi+∆y) – Jy(yi)

∆y
(22)

where we multiplied the right hand side by   ∆y/∆y .

In the limit   ∆y → 0 , the square brackets become the
derivative   ∂Jy(y)/∂y , evaluated at y =  yi

  
κVyCOM = – yiΣ

i

∂Jy(y)

∂y y = yi

∆y (23)

This sum    ∆yΣ
i

 then becomes an integral from  ya  to
 yb , giving

  

κVyCOM = – y
∂Jy(y)

∂y
dy

ya

yb

(24)

The next step, which is called integration by parts,
is a simple way to handle the factor y that appears in
Equation (24).  We note that, by the rules of differ-
entiation

  ∂
∂y

yJ(y) =
∂y
∂y

J(y) + y
∂J(y)

∂y (25)

With   ∂y/∂y = 1  we get

  
y

∂J(y)

∂y
= ∂

∂y
yJ(y) – J(y) (26)

Substituting (26) into (24) gives

  
κVyCOM = – ∂

∂y yJy(y) dy +

ya

yb

Jy(y)dy

ya

yb

(27)

We can explicitly carry out the first integral because
the integral of a derivative is simply the function
itself

  
– ∂

∂y yJy(y) dy

ya

yb

= yJy(y)
ya

yb

= ybJy(yb) – yaJy(ya)

= 0

(28)

We get zero because both  ya  and  yb  lie outside the
core region, where  Jy  is zero.

Thus we are left with
  

κVyCOM = Jy(y)dy

ya

yb

=

ya

yb

xa

xb

jy(x,y)dxdy
(29)

where we used Equation (19) to express  Jy(y)  in
terms of the vortex current density  jy(x,y) .

Because we are assuming that  jy(x,y)  is non zero
only over the core area,  Equation (29) can be written
in the more compact form

  κVyCOM = jy(ωz)dAz
core
area

(30)

where  dAz = dxdy .

Similar arguments give

  κVxCOM = jx(ωz)dAz
core
area

(31)

Combining Equation (30) and (31), and dividing
through by κ  gives

  VCOM = 1
κ j (ωz)dAz

core
area

≡ Vvortex

(14) repeated
which is the result we wanted to show.
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MAGNUS FORMULA FOR CURVED VORTICES

We are now ready to use Equation (13) to derive the
Magnus effect formula for curved fluid core vorti-
ces.  As a reminder, Equation (13) was

  j (ωz) = v||ωz – vzω||+ z × gnp (13) repeated

Slicing a curved vortex with a z  plane as shown in
Figure (3), integrating Equation (13) over the area of
the core, and dividing through by κ  gives

  1
κ j(ωz)dAz

core
area

= 1
κ ωzv||dAz (32a)

  + 1
κ –vzω||dAz (32b)

  + 1
κ z × gnpdAz (32c)

We already know that the left side of Equation (32)
is the vortex velocity  Vvortex .  The first term on the
right, which we will call  Vfluid

  Vfluid = 1
κ ωzv||dAz (33)

is the weighted average of the velocity field  v||  in the
core region.

As we mentioned earlier, the third term, the integral
of   vzω||  tells what z  plane to use for the calculation.
There will be some plane, more or less perpendicular
to the core, which gives a zero value for the integral
of   vzω||  over the core.  We will assume that we are
using that z  plane.

For this example, let us assume that  gnp  is an
external force  ge  acting on the fluid in the core, as
sketched in Figure (2) repeated below.  Multiplying
this force per unit mass by ρ  gives   fe = ρge  as the
force per unit volume acting on the core.  When  fe
is integrated over the core, we get  Fe , the external
force per unit length acting on the vortex.

With this notation the last term in Equation (32)
becomes

  1
κ z × gnpdAz

core
area

= 1
ρκz × ρgnpdAz

core
area

= 1
ρκz × fedAz

core
area

=
z × Fe

ρκ

(34)

Assuming we have chosen the correct z  plane to
eliminate the integral of   vzω|| , we get using Equa-
tions (14), (33) and (34) in Equation (32)

  Vvortex = Vfluid + 1
ρκz × Fe (35)

The Helmholtz equation is now obtained by setting
 Fe = 0  giving

 
  

Vvortex = Vfluid

Helmholtz
equation for
Fe = 0

(36)

In detail, Equation (36) says that when we choose
the z  plane correctly, the center of mass motion of
the vortex core is equal to the weighted average of
the fluid velocity in the core region.

Figure 2 (repeated)
 Motion of a vortex line subject to an x directed force.

x
z

y

g

j  = z  gy
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When  Fe  is not zero and we have a relative motion
of the vortex line and the fluid, we can define the
relative motion vector  Vrel  as

  Vrel ≡ Vvortex – Vfluid (37)

and Equation (35) can be written

  Vvortex = Vfluid + 1
ρκz × Fe (35) repeated

  z × Fe = ρκVrel (38)

We can get further insight from Equation (38) by
writing  Fe  as

  Fe = (Fez + Fe⊥ ) (39)

where  Fez  is the component of  Fe  parallel to the
z  axis, and   Fe⊥  perpendicular to the z axis.  Because
z  cross a vector parallel to z  is zero,   z × Fez = 0  and
we get

  z × Fe = z × Fe⊥ (40)

Thus our final result for the Magnus equation is

   
z × Fe⊥ = ρκVrel

Magnus
equation (41)

and we see that only the component of the external
force perpendicular to the z axis, has an effect on the
vortex motion.  This reminds us why it is important,
for a curved vortex, to find the correct z  plane using
the condition that the integral of   vzω||  be zero.

If we apply Equation (41) to a two dimensional flow
in the xy plane, then the vorticity is automatically z
directed and we can turn κ  into a z  directed vector
κ .  If the flow is to remain two dimensional, then the
external force  Fe  must be in the xy plane, because a
z component of  Fe  would create a z  directed flow.
Thus  Fe  must be   Fe⊥ .  With these restrictions,
Equation (33) is equivalent to

  Fe = ρVrel × κ (13-95)

which is our Equation (13-95) discussed in the
regular part of the chapter.  (Check for yourself that
both Equations (41) and (13-95) predict that an x
directed force  Fe  acting on a z  directed vortex
causes a y  directed relative motion of the vortex.)

What we have learned from deriving the exact
Magnus equation for curved vortices, that we cannot
predict from a two dimensional derivation, is what
component of  Fe  is important and exactly how  Vrel
is defined.
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CREATION OF VORTICITY
So far our emphasis has been on how non potential
forces cause a relative motion of vortex lines and the
fluid particles.  But the vorticity we find in a fluid has
to have been created somehow.  Non potential forces
do that, and we want to end this appendix with a brief
discussion of how.  The discussion is brief, because
it is very incomplete.  The creation of vorticity,
which leads to turbulence, is not only a subject for an
entire fluid dynamics textbook, it is also an active
subject of current research.  Here we will just indi-
cate how the topic begins.

Non potential forces, at least in a constant density
fluid like water, can create vorticity in two ways.
One way is to pull it out of the walls of the container.
Near the wall, where the velocity field rapidly goes
to zero, we get a boundary layer where the non
potential viscous forces are important.  These vis-
cous forces, if they are acting at the wall, will move
vorticity out of the wall into the fluid.  For example,
this is how the vorticity in the smoke ring demon-
stration was created.  Viscous forces acting on the
high speed fluid at the perimeter of the hole in the
box pulled a ring of vorticity in from the perimeter.

It turns out to be a tricky question of how viscous
forces behave in a boundary layer.  For laminar pipe
flow, there are viscous forces acting at the wall
continually pulling vorticity into the stream.  In
contrast, for a boundary layer solution called the
Blasius profile, the viscous forces act in the bound-
ary layer but not at the wall.  In that theory, the
vorticity is all created upstream and all the viscous
forces do is move the vorticity farther into the fluid,
thickening the boundary layer.  The velocity profiles
near the wall look nearly the same for both laminar
pipe flow and the Blasius profile, but the viscous
effects are quite different.  This indicates the kind of
problem one has to deal with when working with
boundary layers and the effects of viscosity.

Non potential forces can also create vorticity in the
fluid away from the walls by creating vortex rings.
In a sense, this is the way vorticity is created in the
Rayfield-Reif experiment.  To give you a rough
classical picture of how a charged particle moving

C

g

1

C2

C3 x

z

y

external force acting
on a spherical region

'

'

'

Figure 6
External force creating a vortex ring.

through a fluid could create a vortex ring, imagine
that the charged particle, moving in what we will call
the z  direction exerts a local, more or less spherical
shaped external force g  on the fluid as shown in
Figure (5).  This looks much like the figure we have
drawn so many times, except that there is no vortex
line for g  to push on.  Thus g  cannot be causing a
relative motion of the line and the fluid.  What it is
doing instead is creating a vortex ring around the
region.

We can see the ring creation by applying the ex-
tended  Helmholtz equation (12-78) to the circuits

  C′1 ,   C′2  and   C′3  shown in Figure (6).  These
circuits are moving with the fluid particles, and
Equation (78) tells us that the rate of change of flux
of  ω  through any of them is equal to   g ⋅ d
around the circuit.  With this in mind, we see that the
flux of  ω  through   C′1  is increasing because   g ⋅ d
is positive there, and it is decreasing through   C′2
where   g ⋅ d  is negative.  Since   g ⋅ d  is zero
for   C′3 , there is no change in the flux of  ω  there.

What does it mean that g  is decreasing the flux
through the lower circuit   C′2  when there is no flux
there to decrease?  It means that g  is creating
negative flux of  ω  through   C′2  while at the same
time it is creating positive flux through   C′1 .  What
it is doing is creating a band of flux of  ω  around the
spherical region, a band of flux that is becoming the
core of a vortex ring.

Once vorticity has been introduced into the fluid, an
effective method of introducing more vorticity is the
stretching of existing vortex lines.  How vortex line
stretching affects fluid flows is a topic that has been
studied for a long time by fluid engineers.
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ENERGY DISSIPATION IN FLUID FLOW
While a derivation of the Magnus formula for curved
vortices demonstrates how mathematically effec-
tive the concept of a vortex current   j (ωz)  is, (the
result has not been obtained any other way), the most
important use so far of the concept is in studying the
relationship between energy dissipation in a stream
and the flow of vorticity across the stream.  This
relationship, discovered by Phillip Anderson in 1966,
applies to such diverse situations as turbulent flow in
a channel, and the motion of quantized vortices in
both superfluids and superconductors.  In the case of
superconductors, the phenomenon is now involved
in the legal definition of the electric volt.

We leave this topic for a later text, because one of the
most interesting parts is to show how similar the
vortex dynamics equations are for charged and neu-
tral fluids.  One can make the equations look identi-
cal by incorporating the magnetic field  B  in the
definition of  ω , and including the electric field  E  in

 gnp .  If you want to see this topic now, look at the
article "Vortex Currents in Turbulent Superfluid
and Classical Fluid Channel Flow . . .", Huggins,
E.R., Journal of Low Temperature Physics, Vol. 96,
1994.

The 1852 article by Magnus is "On the deviation of
projectiles; and on a remarkable phenomenon of
rotating bodies." G. Magnus, Memoirs of the Royal
Academy, Berlin (1852). English translation in Sci-
entific Memoirs, London (1853), p.210. Edited by
John Tyndall and William Francis.
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Formulary
For Vector Operations

When you are working problems involving quantities
like   ∇ 2 in cylindrical or spherical coordinates, you do
not want to derive the formulas yourself because the
chances of your getting the right answer are too small.
You are not likely to memorize them correctly either,
unless you use a particular formula often.  Instead, the
best procedure is to look up the result in a table of
formulas, sometimes called a formulary.

In this formulary we summarize all the formulas for
gradient, divergence and curl, in Cartesian, cylindri-
cal and spherical coordinates. We also include inte-
gral formulas, formulas for working with cross prod-
ucts, and with tensors. The formulary was adapted
from one developed by David Book of the Naval
Research Laboratory.

We have also added a short table of integrals, and
summarize some of the series expansions we discussed
in the text.
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CYLINDRICAL COORDINATES
Divergence

  ∇ ⋅ A = 1
r

∂
∂r (rAr) + 1

r
∂Aθ
∂θ +

∂Az
∂z

Gradient

  (∇ f)r = ∂f
∂r

  (∇ f)θ = 1
r

∂f
∂θ

  (∇ f)z = ∂f
∂z

Curl

  
(∇ × A)r = 1

r
∂Az
∂θ –

∂Aθ
∂z

  
(∇ × A)θ =

∂Ar
∂z –

∂Az
∂r

  
(∇ × A)z = 1

r
∂
∂r (rAθ) – 1

r
∂Ar
∂θ

Laplacian

  
∇ 2f = 1

r
∂
∂r (r∂f

∂r ) + 1
r2

∂2f
∂θ2 + ∂2f

∂z2

Laplacian of a vector

  
(∇ 2A)r = ∇ 2Ar – 2

r2
∂Aθ
∂θ –

Ar

r2

  
(∇ 2A)θ = ∇ 2Aθ + 2

r2
∂Ar
∂θ –

Aθ
r2

  (∇ 2A)z = ∇ 2Az

Components of   (A ⋅ ∇∇ ) B

  
[(A ⋅ ∇ )B]r = Ar

∂Br
∂r +

Aθ
r

∂Br
∂θ + Az

∂Br
∂z –

AθBθ
r

  
[(A ⋅ ∇ )B]θ = Ar

∂Bθ
∂r +

Aθ
r

∂Bθ
∂θ + Az

∂Bθ
∂z +

AθBr
r

  
[(A ⋅ ∇ )B]z = Ar

∂Bz
∂r +

Aθ
r

∂Bz
∂θ + Az

∂Bz
∂z

x

x

y

y

top view 
looking 
down

z

r

r

r

z

θ

θ

θ

r

θ

p 

x

y

z

r

z

y

x

p 

Cartesian Coordinates

Cylindrical Coordinates
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SPHERICAL POLAR COORDINATES
Divergence

  
∇ ⋅ A = 1

r2
∂
∂r (r2Ar) + 1

r sinθ
∂
∂θ (Aθsinθ) + 1

r sinθ
∂Aφ
∂φ

Gradient

  (∇ f)r = ∂f
∂r

  (∇ f)θ = 1
r

∂f
∂θ

  (∇ f)φ = 1
r sinθ

∂f
∂φ

Curl

  (∇ × A)r = 1
r sinθ

∂
∂θ (Aφsinθ) – 1

r sinθ
∂Aθ
∂φ

  
(∇ × A)θ = 1

r sinθ
∂Ar
∂φ – 1

r
∂
∂r (rAφ)

  
(∇ × A)φ = 1

r
∂
∂r (rAθ) – 1

r
∂Ar
∂θ

Laplacian

  ∇ 2f = 1
r

∂2

∂r2 (rf) + 1
r2sinθ

∂
∂θ sinθ ∂f

∂θ + 1
r2sin2θ

∂2f
∂φ2

Laplacian of a vector

  
(∇ 2A)r = ∇ 2Ar – 2

r2
∂Aθ
∂θ –

2Aθcotθ
r2 – 2

r2sinθ
∂Aφ
∂φ

  
(∇ 2A)θ = ∇ 2Aθ + 2

r2
∂Ar
∂θ –

Aθ
r2sin2θ

– 2 cos θ
r2sin2θ

∂Aφ
∂φ

  
(∇ 2A)φ = ∇ 2Aφ–

Aφ

r2sin2θ
+ 2

r2sinθ
∂Ar
∂φ + 2 cos θ

r2sin2θ

∂Aφ
∂φ

Components of   (A ⋅ ∇∇ ) B

  
[(A ⋅ ∇ )B]r = Ar

∂Br
∂r +

Aθ
r

∂Br
∂θ +

Aφ
r sin θ

∂Br
∂φ –

AθBθ + AφBφ
r

  
[(A ⋅ ∇ )B]θ = Ar

∂Bθ
∂r +

Aθ
r

∂Bθ
∂θ +

Aφ
r sin θ

∂Bθ
∂φ +

AθBr
r –

AφBφcotθ
r

  
[(A ⋅ ∇ )B]φ = Ar

∂Bφ
∂r +

Aθ
r

∂Bφ
∂θ +

Aφ
r sin θ

∂Bφ
∂φ +

AφBr
r +

AφBθcotθ
r

x

r sin θ

y

θ

z

r

r

θ

φ

φ
φ

p 

Spherical Polar Coordinates
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VECTOR IDENTITIES
Notation: f, g, etc., are scalars;  A  and  B , etc. are vectors

 (1)    A ⋅ B × C = A × B ⋅ C = B ⋅ C × A = B × C ⋅ A = C ⋅ A × B = C × A ⋅ B

 (2)    A × (B × C) = ( A ⋅ C) B – (A ⋅ B) C

 (3)    A × (B × C) + B × (C × A) + C × ( A × B) = 0

 (4)    (A × B) ⋅ (C × D) = (A ⋅ C) (B ⋅ D) – (A ⋅ D) (B ⋅ C)

 (5)    (A × B) × (C × D) = (A × B⋅ D) C– (A × B ⋅ C) D

 (6)    ∇ (fg) = ∇ (gf) = f ∇ (g) + g∇ (f)

 (7)    ∇ ⋅ (fA) = f ∇ ⋅ A + A ⋅∇ f

 (8)    ∇ × (fA) = f ∇ × A +∇ f × A

 (9)    ∇ ⋅ (A × B) = B ⋅ ∇ × A – A ⋅ ∇ × B

(10)   ∇ × (A × B) = A (∇ ⋅ B) – B (∇ ⋅ A) + (B ⋅ ∇ ) A – (A ⋅ ∇ ) B

(11)   ∇ (A ⋅ B) = A × (∇ × B) + B × (∇ × A) + (A ⋅ ∇ ) B + (B ⋅ ∇ ) A

(12)   ∇ 2f = ∇ ⋅ ∇ f

(13)   ∇ 2 A = ∇ (∇ ⋅ A) – ∇ × ∇ × A

           ∇ × (∇ × A) = ∇ ( ∇ ⋅A) – ∇ 2 A

(14)   ∇ × ∇ f = 0

(15)   ∇ ⋅ ∇ × A = 0

Let  r = i x + j y + kz  be the radius vector of magnitude r, from the origin to the point x, y, z.  Then

(16)   ∇ ⋅ r = 3

(17)   ∇ × r = 0

(18)   ∇ r = r /r

(19)    ∇ (1/r) = – r /r3

(20)   ∇ ⋅ ( r /r3) = 4πδ( r )
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INTEGRAL FORMULAS
If V is the volume enclosed by a surface S and  dS = ndS where n is the unit normal outward from V

(22)   ∇ f d3V
V

= f dS
S

  (23) ∇ ⋅A d3V

V

= A⋅dS

S

  (24) ∇ ×A d3V

V

= dS×A

S

  (25) (f ∇ 2g – g∇ 2f ) d3V

V

= (f ∇ g – g∇ f )

S

⋅ dS

(26) 
  

A ⋅ ∇ ×(∇ ×B) – B ⋅ ∇ ×(∇ × A) d3V

V

= B×(∇ ×A) – A×(∇ ×B)

S

⋅dS

If S is an open surface bounded by the contour C of which the line element is  d

(27)   dS × ∇ f

S

= fd

C

(28)    (∇ × A) ⋅ dS
S

= A ⋅ d
C

Stokes'
law

(29)   (dS × ∇ ) × A

S

= d × A

C

(30)   (∇ f × ∇ g) ⋅ dS

S

= fdg

C

= – gdf

C
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WORKING WITH CROSS PRODUCTS
Use of the permutation tensor   εijk  to work effectively with the cross products.
(Reference: Appendix I in Chapter 13.)

The cross product

  (A × B)i = εijkA jBk

Product of εε's

  εijkεklm = δilδjm – δimδjl

Example of use

  ∇ × (∇ × A)
i

= εijk∇ j(∇ × A)k

= εijkεklm∇ j∇ lAm

= (δilδjm – δimδjl) ∇ j∇ lAm

= ∇ j∇ iA j – ∇ j∇ jAi

= ∇ i∇ jA j – ∇ j∇ jAi

= ∇ (∇ ⋅A) – ∇ 2A
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TENSOR FORMULAS

Notation: f, g, etc., are scalars;  A  and  B , etc. are vectors;  T  is a tensor

Definition
If  e1 ,  e2 ,  e3  are orthonormal unit vectors, a second-order tensor  T  can be written in the dyadic form

  T = Tijeie jΣ
i,j

In Cartesian coordinates the divergence of a tensor is a vector with components

  (∇ ⋅ T)i = (∂Tji/∂xj)Σ
j

Formulas

  ∇ ⋅(AB) = (∇ ⋅A)B + (A⋅∇ )B

  ∇ ⋅( f T ) = ∇ f ⋅T + f ∇ ⋅T

  ∇ ⋅T d3V

V

= dS⋅T
S

Divergence of a tensor (cylindrical coordinates)

  (∇ ⋅ T)r = 1
r

∂
∂r (rTrr) + 1

r
∂
∂θ (Tθr) +

∂Tzr
∂z – 1

r Tθθ

  
(∇ ⋅ T)θ = 1

r
∂
∂r (rTrθ) + 1

r
∂Tθθ
∂θ +

∂Tzθ
∂z + 1

r Tθr

  
(∇ ⋅ T)z = 1

r
∂
∂r (rTrz) + 1

r
∂Tθz
∂θ +

∂Tzz
∂z

Divergence of a tensor (spherical coordinates)

  
(∇ ⋅ T)r = 1

r2
∂
∂r (r2Trr) + 1

r sinθ
∂
∂θ (Tθr sinθ) + 1

r sinθ
∂Tφr

∂φ –
Tθθ + Tφφ

r

  
(∇ ⋅T)θ = 1

r2
∂
∂r (r2Trθ) + 1

r sinθ
∂
∂θ (Tθθ sinθ) + 1

r sinθ
∂Tφθ
∂φ +

Tθr
r

– cot θ
r

Tφφ

  
(∇ ⋅ T)φ = 1

r2
∂
∂r (r2Trφ) + 1

r sinθ
∂
∂θ (Tθφsinθ) + 1

r sinθ
∂Tφφ
∂φ +

Tφr

r + cot θ
r Tφθ
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SHORT TABLE OF INTEGRALS
In these integrals, (a) is a constant, and (u) and (v) are
any functions of x.

 1. dx = x

 2. au dx = a u dx

 3. (u + v) dx = u dx + v dx

  4. xm dx = xm + 1

m + 1(m ≠ – 1)

 5. dx
x = ln |x|

 6. u dv
dx

dx = uv – v du
dx

dx

 7. exdx = ex

 8. sin x dx = – cos x

 9. cos x dx = sin x

 10. sin2x dx = 1
2x – 1

4sin 2x

 11. e– axdx = – 1
a e– ax

 12. xe– axdx = – 1
a2 (ax + 1)e– ax

 13. x2e– axdx = – 1
a3 (a2x2 + 2ax + 2)e– ax

  
14. xne– axdx =

0

∞
n!

an + 1

  
15. x2ne– ax2dx =

0

∞
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n – 1)

2n + 1an
π
a

 
16. dx

(x2 + a2)3 / 2 = x
a2 x2 + a2
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SERIES EXPANSIONS

The binomial expansion
(Ch 2, page 6)

  (1 + α)n = 1 + nα +
n(n – 1)

2!
α2 + ⋅ ⋅ ⋅ (2-22)

which is valid for any value of α  less than one, but
which gets better as α  becomes smaller.

Taylor series expansion
(Ch 2, page 8)

  f(x – x0) = f(x0) + f ′ x0 (x – x0)1

+ 1
2!

f″(x0)(x – x0)2

+ 1
3!

f ′′′ (x0)(x – x0)3+ ⋅ ⋅ ⋅

This can be written in the compact form

   
f(x – x0) =

fn(x0)
n!Σ

n = 0

∞
(x – x0)n

Taylor
series
expansion

(2-44)
where we used the notation

  
fn(x0) ≡ dnf(x)

dxn
x = x0

(2-45)

Sine and cosine
(Ch 5, page 4)

  
cos θ = 1 – θ2

2!
+ θ4

4!
+ ⋅ ⋅ ⋅ (13)

  
sin θ = θ – θ3

3!
+ θ5

5!
+ ⋅ ⋅ ⋅ (14)

where θ  is in radians. These expansions are valid for
any value of θ, but most useful for small values where
we do not have to keep many terms.

Exponential
(Ch 1, page 28 and Ch 5, page 4)

  ex = 1 + x + x2

2!
+ x3

3!
+ ⋅ ⋅ ⋅ (1-136)

While this expansion is true for any value of x, it is most
useful for small values of x where we do not have to
keep many terms to get an accurate answer.

Setting    x = iθ gives

   
e iθ = 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ ⋅ ⋅ ⋅ (5-12)

(Since our previous discussion of exponents only
dealt with real numbers, we can consider Equation
(12) as the definition of what we mean when the
exponent is a complex number).



Physical Constants in CGS Units
speed of light   c = 3×1010cm/sec = 1000 ft /µsec = 1 ft /nanosecond
acceleration due to gravity
at the surface of the earth  g = 980 cm/sec2 = 32 ft/sec2

gravitational constant   G = 6.67×10– 8cm3/(gm sec2)
charge on an electron   e = 4.8×10– 10esu
Planck's constant   h = 6.62×10– 27erg sec (gm cm2/sec )
Planck constant / 2π    h = 1.06×10– 27erg sec (gm cm2 / sec )

Bohr radius    a0 = .529×10– 8cm

rest mass of electron   me = 0.911×10– 27gm
rest mass of proton   Mp = 1.67×10 – 24gm
rest energy of electron   mec2 = 0.51 MeV ( ≈ 1 / 2 MeV)
rest energy of proton   Mpc2 = 0.938 BeV ( ≈ 1 BeV)
proton radius   rp = 1.0×10– 13cm
Boltzmann's constant   k = 1.38×10 – 16ergs/ kelvin
Avogadro's number   N0 = 6.02×10 23molecules/mole

absolute zero =  0°K = –273°C
density of mercury =  13.6 gm / cm3

mass of earth =   5.98×10 27gm
mass of the moon =   7.35×10 25gm
mass of the sun =   1.97×10 33gm
earth radius =   6.38×10 8cm = 3960 mi
moon radius =   1.74×10 8cm = 1080 mi
mean distance to moon =   3.84×10 10cm
mean distance to sun =   1.50×10 13cm

 mean earth velocity in orbit about sun = 29.77 km / sec

Conversion Factors
1 meter = 100 cm  (100 cm/meter)
1 in. = 2.54 cm  (2.54 cm/in.)
1 mi = 5280 ft  (5280 ft/mi)
1 km (kilometer) =  105cm (105cm / km)
1 mi = 1.61 km =   1.61×105cm (1.61×105cm/mi)

   1 A° (angstrom ) = 10 – 8cm (10 – 8cm / A° )
1 day = 86,000 sec   (   8.6×104sec / day )
1 year =   3.16×107sec (3.16×107sec/year)

  1 µ sec (microsecond ) = 10 – 6sec (10 – 6sec / µ sec )
1 nanosecond =  10 – 9sec (10 – 9sec /nanosecond )
1 mi/hr = 44.7 cm/sec
60 mi/hr = 88 ft/sec
1 kg (kilogram) =  10 3gm (10 3gm / kg)
1 coulomb =    3×109esu (3×109esu/coulomb)
1 ampere =    3×109statamps (3×109statamps/ampere)
1 statvolt = 300 volts    (300 volts/statvolt)
1 joule =  107ergs (107ergs / joule )
1 W (watt) =  107ergs/ sec (107erg / W)
1 eV =    1.6×10– 12ergs (1.6×10– 12ergs/eV)
1 MeV =  106eV (106eV /MeV)
1 BeV =  109eV (109eV /BeV)

  1 µ (micron ) pressure = 1.33 dynes / cm2

1 cm Hg pressure =   104 µ
  1 atm = 76 cm Hg = 1.01×106dynes/cm2
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