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Calculus 2000

A Physics-Based Calculus Text

When developing a physics curriculum, a major
concern is the mathematical background of the
student. The Physics 2000 text was developed
teaching premedical studentswhoweresupposedto
have had one semester of calculus. Because many
of the students had taken calculus several years
previously, and had forgotten much of it, thephysics
text used strobe photographs and the computer to
carefully introduce the calculus concepts such as
vel ocity, accel eration, and thelimiting process. By
thetime wegot to electricity and magnetismin Part
2 of Physics 2000 we relied on the student being
familiar with the basic steps of differentiation and
integration.

For students who have forgotten much of their
calculuscourse, or thosewho havenot had cal culus
but wish to study the Physics 2000 text, we have
written Chapter 1 of Calculus 2000. This chapter
not only covers all the calculus needed for the
Physics 2000 text, but is also carefully integrated
withit. Thechapter ismuch shorter than thetypical
introductory calculus text because the basic cal cu-
lusconceptsarediscussedinthephysicstextandthe
calculus chapter only has to deal with the formal-
ism.

After theintroductory cour ses, thestandard physics
curriculumrepeatedly goes over the sametopicsat
successively higher mathematical levels. Atypical
exampleisthe subject of electricity and magnetism
which is taught using integral equations in the
introductory cour se, using differential operatorsin
an upper level undergraduate course, and then
taught all over againinagraduatelevel course. In
each of the cour sesit takesa whilefor the student to
realizethat thisisjust the same old subject dressed
up in new math.

With Chapters 2 through 13 of the Calculus 2000,
we introduce a different approach. We take the
topics that we have already introduced in Physics
2000, and show how these topics can behandled in
progressively more sophisticated mathematical
ways. Once we have introduced the mathematical
concepts of gradient, divergence and curl in the
calculus text, we can turn the integral form of
Maxwell's equation into a wave equation for elec-
tric and magnetic fields. With the introduction of
the Laplacian and complex variables, we can study
Schrédinger's equation and begin to solve for the
hydrogen wave patter ns discussed in Chapter 38 of
the physics text.
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Beyond seeing the same topics in a more sophisti-
cated way, the student finds that new insights can
result from the advanced mathematical approach.
Chapter 10 of thecal culustextisashort chapter less
than two pages. But it isone of the most significant
chaptersinthetext. For thereweseethat Maxwell's
equationsfor electric and magnetic fieldsrequire
that electric charge be conserved. This intimate
connection between a conservation law and field
theory becomes clear when we have sufficiently
power ful mathematical tools to handle the theory.

The physicstext beganitsdiscussion of vector fields
in Chapter 23, using the velocity field as its first
example. We did that because it is much easier to
visualizethefamiliar flow of water than theabstract
concept of anelectricfield. Wesawthat thestream-
linesin fluid flow went over to electric field lines,
Gauss's law in fluid theory simply represented the
incompressibility of thefluid, and Bernoulli'sequa-
tion provided an introduction to the concept of
voltage and potential.

However our discussion of electric and magnetic
fields, particularly in this calculus text, go way
beyond the simplefluid flowtopicsweintroducedin
the physics text. In the last two chapters of the
calculus text, we turn the tables and apply to fluid
theory the mathematical techniques we learned
studying electricity and magnetism. In Chapter 12
we discuss the concept of vorticity whichisthe curl
of the velocity field. The focus is to develop an
intuitive understanding of the nature of vorticity
and the role it plays in fluid flows, particularly
vortices and vortex rings.

Chapter 13 is an introduction to fluid dynamics.
Theidea is to bring our discussion of the velocity
field uptothesamelevel asour treatment of electric
and magnetic fields. We begin with a derivation of
the Navier-Stokes equation which applies to con-
stant density viscous fluids. Thisisthen converted
into an equation for vortex dynamicsfromwhichwe
derive an extended form of the famous Helmholtz
equation. Wethen usethat to derivethewell known
properties of vortex motion such as the so called
Magnusfor ce, and discuss the experiment Rayfield
and Reif used to measure the circulation and core
diameter of quantized vorticesin superfluid helium.
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Schrédinger's equation Cal 6-2
Debye, on electron waves Cal 6-1
Decay
Exponential decay Cal 1-32
Decaying oscillation
RLC circuit Cal 5-10
Definite integral
Compared to indefinite integrals Cal 1-14
Defining new functions Cal 1-15
Introduction to Cal 1-11
Of velocity Cal 1-11
Process of integrating Cal 1-13
Del
Relation to curl Cal 8-2
Del - gradient operator Cal 3-7
Del cross; curl
Chapter on Cal 8-1
Del squared
Chapter on Cal 4-1
In Cartesian coordinates Cal 4-3
In spherical polar coordinates
Derivation of Cal 4-12
Spherical harmonics Cal 6-18
Relation to curl Cal 8-2
Relation to potential flow Cal 12-4
Schrédinger's equation
Applied to hydrogen atom Cal 6-14
Schrédinger's equation Cal 4-2
Viscous force Cal 4-1
For 3D flows Cal 4-6
In cylindrical coordinates Cal 4-7



Index-4 Calculus 2000 - Index Calculus only

Delta function
Definition of Cal 7-8
In three dimensions Cal 7-8
Used in Gauss'law Cal 7-9
Delta i,j
Handling multiple cross products Cal 13 A1-5
Used in dot product Cal 13 A1-2
Delta i,j and epsilon i,j,k
Appendix on Cal 13 A1-1
Density of circulation
Stokes' law Cal 12-11
Derivative
As a limiting process Cal 1-6, Cal 1-18, Cal 1-
23, Cal 1-28, Cal 1-30
As the Slope of a Curve Cal 1-30
Constants come outside Cal 1-24
Negative slope Cal 1-31
Of exponential function e to the x Cal 1-28
Of exponential function e to the ax Cal 1-29
Of function x to the n'th power Cal 1-24
Of sine function Cal 1-38
Partial Cal 5-24
Second
Chapter on Cal 2-1
Constant acceleration formulas Cal 2-9
Third, boat lofting Cal 2-5
Derivative, partial
Order of, appendix on Cal 9-8
Derivative, second Cal 2-2
Geometrical interpretation Cal 2-3
Of a sine wave Cal 2-2
Differential equation
Fast way to find real solutions Cal 5-10
For LC circuit
Solving with complex numbers Cal 5-8
For LRC circuit
Transient solutions Cal 5-22
For R, L, and C circuits Cal 5-6
Homogenous Cal 5-9
To integral equation Cal 3-4
Differentiation. See also Derivative
Chain rule Cal 1-25
More on Cal 1-23
Differentiation and integration
As inverse operations Cal 1-18
Velocity and position Cal 1-18
Fast way to go back and forth Cal 1-20
Position as integral of velocity Cal 1-20
Velocity as derivative of position Cal 1-20

Dimensions of
Capacitance Front cover-2
Electric charge Front cover-2
Electric potential ~Front cover-2
Electric resistance Front cover-2
Energy Front cover-2
Force Front cover-2
Frequency Front cover-2
Inductance Front cover-2
Magnetic field Front cover-2
Magnetic flux Front cover-2
Power Front cover-2
Pressure  Front cover-2
Dirac equation
Discussion of Cal 6-12
Divergence
Chapter on Cal 7-1
Relation to curl Cal 8-2
Shrinking the surface integral Cal 7-2
Theorem Cal 7-5
Handling a point charge Cal 7-7
Relation to curl Cal 8-3
Divergence and curl
Surface & line integrals shrunken Cal 7-1, Cal 7-2
Uniquely determined field Cal 12-2
Divergence and gradient compared Cal 7-5
Divergence free fields Cal 7-10
Dot product
Relation to curl Cal 8-2
Use of delta ij Cal 13 A1-2
Driven LRC circuit Cal 5-19



E

Einstein
Summation convention Cal 13-5
Electric and magnetic fields
In terms of scalar and vector potentials Cal 11-3
Electric charge
Conservation of
Consequence of Maxwell's equations Cal 10-1
Continuity equation for Cal 10-2
Dimensions of  Front cover-2
Electric field
Gradient of voltage Cal 3-3
Equation for Cal 3-7
Field of point charge Cal 3-10
Interpretation Cal 3-6
In terms of scalar & vector potentials Cal 11-3
Of a line charge
Using gradient in cylind. coord. Cal 3-19
Of a point charge
Using gradient in spherical coord. Cal 3-18
Wave equation for
With sources Cal 11-6
Electric potential
Dimensions of  Front cover-2
Plotting experiment Cal 3-2
Related to fluid flows Cal 12-3
Electric resistance
Dimensions of  Front cover-2
Electromagnetic waves
Chapter on wave equation Cal 9-1
Electromagnetism
Classical theory of Cal 11-3
Electron
In Standard model of elementary particles Cal 7-7
Point particle? Cal 7-7
Energy
Dimensions of  Front cover-2
Energy levels, hydrogen
Calculation of lowest Cal 6-15
Lowest two from Schrédinger's equation Cal 6-7
Epsilon i,j,k
Use in cross product Cal 13 A1-3
Handling multiple cross products Cal 13 A1-5
Epsilon i,j,k and delta i,j
Appendix on Cal 13 A1-1
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Equation
Continuity
For electric charge and current Cal 10-2
Extended Helmholtz equation Cal 13-15
Magnus Cal 13-21
Airplane wing Cal 13-24
Maxwell's
Derivation of the wave equation Cal 9-4
Vector identities for Cal 9-2
Navier-Stokes Cal 13-2
Nonlinear effects Cal 13-7
Schrédinger's. See Schrédinger wave equation
Vector
Components with derivatives Cal 1-7
Vortex dynamics equation Cal 13-12
Wave, one dimensional Cal 2-1
General form of Cal 2-14
Solutions using complex variables Cal 5-24
Wave, relativistic
Dirac's Cal 6-12
For zero rest mass particles Cal 6-2
Particles with rest mass Cal 6-3
Schrédinger's Cal 6-3
Euler's numbere =2.7183. .. Cal 1-17
Expansion, binomial Cal 1-23
Derivation of Cal 2-6, Form.-9
Expansion, series
Exponential function in complex variables Cal 5-4
Sin and cosine Cal 5-4
Taylor series Cal 2-7
Experiments I
Potential plotting Cal 3-2
Exponential decay Cal 1-32
Exponential form complex number Cal 5-3
Exponential function
As function of sin and cos Cal 5-5
Derivative of Cal 1-28
Exponential decay Cal 1-32
Indefinite integral of Cal 1-29
Integral of Cal 1-29
Introduction to Cal 1-16
Inverse of the logarithm Cal 1-16
Series expansion Cal 1-28
y to the x power Cal 1-16

Extended Helmholtz's theorem Cal 13-15

Discussion of Cal 13-16
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F
Fall line. See Gradient: Of voltage: Interpretation
As a field line Cal 3-23
Faraday's law
In terms of the vector potential Cal 11-3
Non potential field Cal 12-3
Feynman Cal 7-7
Quantized vortices Cal 12-16
Parabolic surface of rotating helium Cal 12-6
Field
Divergence free Cal 7-10
Plotting experiment Cal 3-2
Pressure field Cal 3-1
Scalar field Cal 3-7
Uniquely determined, conditions for Cal 12-2
Vector field
Created by gradient Cal 3-1
Vorticity field Cal 12-18
Field lines
And contour lines Cal 3-23
Two dimensional slope Cal 3-24
Fluid dynamics
Introductory chapter on Cal 13-1
Vorticity Cal 12-1
Fluids
Compressible
Continuity equation for Cal 10-3
Laminar flow Cal 4-8
Newtonian, definition of Cal 4-4
Potential flow Cal 12-3
In a straight pipe Cal 12-5
Zero vorticity Cal 12-3
Solid body rotation Cal 12-9
Viscous force on Cal 4-5
Vorticity as a source of fluid motion Cal 12-7
Flux
Of vorticity in flow tube Cal 12-18

Rate of change of through moving circuit Cal 13-

15
Flux equation, derivation of Cal 7-11
Force
Conservative forces
And Faraday's law Cal 11-2
Dimensions of Front cover-2
Non potential
In Navier-Stokes equation Cal 13-11
Viscous
In cylindrical coordinates Cal 4-7
In pipe flow Cal 4-7
On a fluid element Cal 4-5
Formulary Form.-1
Discussion of Cal 4-2
Fractal geometry Cal 3-23
Frequency
Dimensions of Front cover-2

Functions delta i,j and epsilon i,j,k
Appendix on Cal 13 A1-1

Functions obtained from integration Cal 1-15
Logarithms Cal 1-15

G
Gamma
Speed of sound Cal 2-18
Gauge invariance
Choice of vector potential divergence Cal 11-4
Gauge invariant theory Cal 11-4
Gauss' law
Derived from differential equation Cal 7-7
Electric field of point charge
Using delta function Cal 7-9
Geometrical interpretation
Of Gradient Cal 3-4, Cal 3-22
Equations for Cal 3-25
Of second derivative Cal 2-3
Geometry, fractal Cal 3-23
Gibbs, Willard; gradient notation Cal 3-7
Gradient
A summary of gradient formulas Cal 3-18
As a vector field Cal 3-28
Chapter on Cal 3-1

From a Geometrical Perspective Cal 3-4, Cal 3-22

Equations for Cal 3-25
In Cartesian coordinates Cal 3-12
In cylindrical coordinates Cal 3-14
Coaxial cable Cal 3-21
Electric field of line charge Cal 3-19
Radial component Cal 3-14
Theta component Cal 3-15
In spherical coordinates
Phi component Cal 3-17
Theta component Cal 3-17
Of pressure Cal 3-29
Of voltage Cal 3-3
Field of point charge Cal 3-10
Interpretation Cal 3-6
Parallel plate capacitor Cal 3-8
Voltage inside conductor Cal 3-9
Operator "del" Cal 3-7
Relation to curl Cal 8-2
Vector and scalar fields Cal 3-1

Gradient vector

In three dimensions Cal 3-28
Steepest slope Cal 3-25
Transformation of Cal 3-25

Gravity

Quantum theory of Cal 7-7

Gyroscope like behavior
Of vortex line due to non potential force Cal 13-18
Gyroscopes

Superfluid Cal 12-17



H
Half-life
In exponential decay Cal 1-33
Of muons, exponential decay Cal 1-33
Heisenberg, Werner Cal 1-2
Helium, superfluid Cal 12-6
Helmholtz theorem
Application to smoke rings Cal 12-21
Derivation from Navier-Stokes equation Cal 13-11
From extended Helmholtz theorem Cal 13-16
Introduction to Cal 12-19
Helmholtz theorem extended
Discussion of Cal 13-16
Including non potential forces Cal 13-15
Homogeneous solution for RLC equation Cal 5-23
Homogenous differential equation Cal 5-9, Cal 5-23
Hydrodynamic voltage
Gradient of and Bernoulli's equation Cal 13-9
Hydrogen atom
Bohr radius Cal 6-7
Schrédinger's equation for Cal 6-6
Schrédinger's equation solutions Cal 6-7
Lowest two energy levels Cal 6-7
Non spherically symmetric Cal 6-18
Spherical harmonics Cal 6-18
Standing wave patterns in Cal 6-8
Hydrogen wave patterns
Lowest energy ones Cal 6-8

I
lllustrator™, Adobe Cal 2-6
Imaginary numbers Cal 5-2
Impedance Cal 5-15

Formulas for Cal 5-18
Impulse

Of a vortex ring Cal 13-23

Impulse equation Cal 13-23

Indefinite integral

Definition of Cal 1-14

Of exponential function Cal 1-29
Inductance

Dimensions of  Front cover-2
Infinities in the gravitational interaction

String theory Cal 7-7
Instantaneous velocity

And the uncertainty principle Cal 1-2

Calculus definition of Cal 1-5
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Integral
As asum Cal 1-10
Calculating them Cal 1-11
Definite, introduction to Cal 1-11
Formula for integrating x to n'th power Cal 1-
14, Cal 1-27
Indefinite, definition of Cal 1-14
Of 1/x, the logarithm Cal 1-15
Of a constant Cal 1-13
Of a curve that increases linearly Cal 1-13
Of a velocity curve Cal 1-12
Of exponential function e to the ax Cal 1-29
Of the velocity vector Cal 1-10
As area under curve Cal 1-12
Of x to n'th power
Indefinite integral Cal 1-27
Integral formulas
Many of them Form.-5
Integral, line
Becomes curl for infinitesimal paths Cal 8-3
Integral sign Cal 1-10
Integral, surface
Shrinking for divergence Cal 7-2
Integral to differential equations Cal 3-4
Integration
Equivalent to finding area Cal 1-11
Introduction to Cal 1-8
Introduction to finding areas under curves Cal 1-13
Why computers do it so well Cal 1-12
Integration and differentiation
As inverse operations Cal 1-18
Fast way to go back and forth Cal 1-20
Position as integral of velocity Cal 1-20
Velocity as derivative of position Cal 1-20
Integration formulas Cal 1-27
Intensity
Of wave function Cal 6-9
Interpretation of solutions to Schrédinger's Eq. Call
6-9
Interval, evaluating variables over Cal 1-10
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L
Laminar flow Cal 4-8, Cal 7-10
Landau, Lev
Superfluid helium Cal 12-6
Landau's prediction for Cal 12-6
Laplacian
Relation to curl Cal 8-2
Laplacian (del squared)
Chapter on Cal 4-1
Relation to potential flow Cal 12-4
LC circuit
Ringing like a bell Cal 5-11
Leibnitz Cal 1-2
Leptons
Standard model of elementary particles Cal 7-7
Lifetime
Muon, exponential decay Cal 1-32
Light
Speed of light
From one dimensional wave equation Cal 9-7
Structure of electromagnetic wave Cal 9-1, Cal 9-
6
Limiting process Cal 1-2
Definition of derivative Cal 1-30
In calculus Cal 1-5
Introduction to derivative Cal 1-6
With strobe photographs Cal 1-3
Line charge, electric field of
Calculated using calculus
In cylindrical coordinates Cal 3-19
Line integral
Becomes curl for infinitesimal paths Cal 8-3
Localized non potential force
Effect on vortex motion Cal 13-17
Lofting, boat Cal 2-5
Logarithms
Integral of 1/x Cal 1-15
Introduction to Cal 1-15
Inverse of exponential function Cal 1-16
LRC circuit. See RLC circuit
LRC circuit, ringing like a bell Cal 5-11

Magnetic and electric fields
In terms of scalar and vector potentials Cal 11-3
Magnetic field
Analogous to vorticity in fluids Cal 12-7
Of a straight wire
Calculating curl of Cal 8-12
Curl of Cal 8-10
Wave equation for
With sources Cal 11-6
Magnetic flux
Dimensions of  Front cover-2

Magnus equation

Airplane wing Cal 13-24

Relative motion of vortex line and fluid particles

Cal 13-20

The equation Cal 13-21
Magnus formula

Exact for curved vortices Cal 13 A2-1
Magnus lift force Cal 13-25

On fluid core vortices - a pseudo force Cal 13-26
Mass

Continuity equation for flow of Cal 13-5
Maxwell's equations

All forms of Cal 11-6

Conservation of electric charge Cal 10-1

Derivation of the wave equation Cal 9-4

In differential form Cal 8-9

In terms of scalar and vector potentials Cal 11-3

Introducing vector potential into Cal 11-3

One dimensional wave equation

Gives speed of light Cal 9-7

Plane wave solution Cal 9-6

Relativistic wave equation for photons Cal 6-3

Vector identities for Cal 9-2

Vector potential in Cal 11-2
Measurement limitation

Due to uncertainty principle Cal 1-2
Measurement of quantized circulation Cal 13-20
Measuring time constant from graph Cal 1-34
MKS units  Front cover-2
Modulus

Spring Cal 2-15
Momentum of fluid particles

Navier-Stokes equation Cal 13-2
Motion

Of charged vortex rings Cal 13-18

Of vortex line, relative directions Cal 13-22
Moving circuit

Vector Identity for Cal 13-12
Multiple cross products

Easy way to handle Cal 13 A1-5
Muon

In Standard model of elementary particles Cal 7-7

Lifetime, exponential decay Cal 1-32



N

Navier-Stokes equation Cal 13-2
As starting point for fluid theory Cal 13-7
Bernoulli equation derivation Cal 13-8
Derivation of Helmholtz's theorem from Cal 13-11
Final equation! Cal 13-7
Momentum of fluid particles Cal 13-2
Newton’s second law for fluids Cal 13-2
Non potential forces in Cal 13-11
Nonlinear equation Cal 13-7
Rate of change of momentum Cal 13-2
Role of viscosity Cal 13-7
Viscosity term in Cal 13-10
Curl of vorticity Cal 13-10
Negative slope Cal 1-31
Neutrinos
In Standard model of elementary particles Cal 7-7
New functions, obtained from integration Cal 1-15
Newtonian Fluids
Definition of Cal 4-4
Newton’s laws
Second law
For fluids, the Navier-Stokes equation Cal 13-2
Non potential field Cal 12-3
Non potential forces
In extended Helmholtz theorem Cal 13-15
In Navier-Stokes equation Cal 13-11
Localized
Causing sideways motion Cal 13-17
Rayfield-Reif experiment Cal 13-16
Nonlinear equation
Navier-Stokes equation Cal 13-7
Normalization of wave function Cal 6-10

(o]

One dimensional wave equation Cal 2-1, Cal 2-14
Maxwell's equations
Gives speed of light Cal 9-7
Solutions using complex variables Cal 5-24, Cal
5-25
Order of partial derivative Cal 9-8
Oscillation
Decaying Cal 5-10
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P

Parabolic profile, pipe flow Cal 4-8
Parabolic surface, rotating fluid

Superfluid helium Cal 12-6

Telescope mirror Cal 12-6
Parallel plate capacitor

Example of voltage gradient Cal 3-8
Partial derivative Cal 5-24

Order of

Appendix on Cal 9-8

Partial derivative operator Cal 8-2
Particular solution, driven RLC circuit Cal 5-22
Perpendicular components of flow Cal 12-2
Phi component

Gradient in spherical coordinates Cal 3-17
Photons

Relativistic wave equation for Cal 6-3
Physical constants

In CGS units Back cover-1

In MKS units  Front cover-2
Pipe flow

Calculating viscous forces Cal 4-7

Measuring viscosity coefficient Cal 4-9

Parabolic profile Cal 4-8

Potential flow in Cal 12-5

Pressure force Cal 4-9

Viscous force formula Cal 4-8
Plane, tangent Cal 3-23
Plane wave

Discussion of Cal 9-6

Solution for Maxwell's equations Cal 9-6
Plotting

Experiment, electric potential Cal 3-2
Plywood model. See Gradient: Of voltage: Interpre-

tation

Point charge

Divergence theorem Cal 7-7

Quantum electrodynamics Cal 7-7
Point particles

Delta function Cal 7-8

Problems with gravity theory Cal 7-7

Standard model Cal 7-7
Postscript™ language Cal 2-6
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Potential, magnetic
Wave equation for Cal 11-4
Potential, electric
Wave equation for Cal 11-4
Potential energy
Electric potential energy
Electric field as gradient of Cal 3-4
Schrédinger's Equation Cal 6-6
Potential flow
And the Laplacian (del squared) Cal 12-4
Bernoulli’s equation in Cal 13-9
Definition of Cal 12-3
Examples of
In a sealed container Cal 12-4
In a straight pipe Cal 12-5
Superfluids Cal 12-6
Zero curl, no vorticity Cal 12-3
Power
Dimensions of Front cover-2
Power series. See Series expansions
Powers of 10, names of Front cover-2
Prediction of motion
Using calculus Cal 1-9
Pressure
Dimensions of Front cover-2
Pressure field Cal 3-1
Pressure force
As gradient of pressure Cal 3-29
In pipe flow Cal 4-9
Per unit volume Cal 3-30

Probability wave, Schrédinger's Equation Cal 6-9

Projectile motion
And the uncertainty principle Cal 1-4
Calculus definition of velocity Cal 1-5
Pulse
Formation of wave pulse Cal 2-14

Q

Quantized angular momentum

In hydrogen wave patterns Cal 6-8
Quantized circulation

Measurement of Cal 13-20
Quantized vortex ring

Rayfield-Reif experiment Cal 13-16
Quantum electrodynamics

Feynman, Schwinger, and Tomonaga Cal 7-7

Point charges Cal 7-7
Quantum mechanics

Concept of velocity Cal 1-4
Quantum theory

Vector potential needed in Cal 11-3
Quantum theory of gravity Cal 7-7
Quantum vortices Cal 12-15

Core of Cal 12-16

Giant Bohr atom Cal 12-15

Number in rotating bucket Cal 12-16
Quarks Cal 7-7

In Standard model of elementary particles Cal 7-7

Radial component
Gradient in cylindrical coordinates Cal 3-14
Radian measure Cal 1-35
Radians to degrees Cal 5-4
Radius of curvature
Definition Cal 2-4
Second derivative Cal 2-4
Rate of change of momentum
Of fluid particles, Navier-Stokes equation
When mass is conserved Cal 13-6
Rayfield-Reif experiment Cal 13-16
Creation of vorticity Cal 13 A2-9
Motion of charged vortex rings Cal 13-18
RC circuit
Differential equation for Cal 5-6
Solving with complex numbers Cal 5-8
Labeling voltages Cal 5-7
Real part of complex number Cal 5-2
Relativistic physics
Electromagnetic radiation, structure of Cal 9-
1, Cal 9-6
Relativistic wave equation
For zero rest mass particles Cal 6-2
Particles with rest mass Cal 6-3
Schrédinger's Cal 6-3
Resonance
In driven RLC circuits Cal 5-21
Rest mass
Non zero
Relativistic wave equation for Cal 6-3
Zero
Relativistic wave equation for Cal 6-2



Right-hand rule
For Cartesian coordinates Cal 3-12
RLC circuit
Decaying oscillation Cal 5-10
Differential equation for Cal 5-11
Driven LRC circuit Cal 5-19
Impedance Cal 5-15
Formulas for Cal 5-18
Labeling voltages Cal 5-7
Solution using complex variables Cal 5-12
Transient solutions Cal 5-22
Roller bearings
For wheel on fixed axle, Stokes' law Cal 12-13
Rope
Wave equation for Cal 2-10
Rotated coordinate system
Components of a vector in Cal 3-26
Rotating bucket of superfluid helium
Quantized vortices in Cal 12-16
Rotating shaft
Total circulation of Cal 12-12
Velocity field of Cal 12-12

S
Scalar and vector potentials
Chapter on Cal 11-1
Scalar field Cal 3-7
Gradient gives vector field Cal 3-29
Pressure Cal 3-29
Scalar potential
And the electric field Cal 11-3
Relation to vector potential Cal 11-2
Wave equation for Cal 11-4
Coulomb gauge Cal 11-6
Gauge invariant form Cal 11-4
Wave gauge Cal 11-5
Schrédinger, Erwin Cal 6-1
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Schrédinger's equation
Allowed standing wave patterns, hydrogen Cal 6-
7
Angular momentum in solutions Cal 6-18
Applied to the hydrogen atom Cal 6-14
Bohr radius Cal 6-7
Calculation of lowest energy level Cal 6-15
Chapter on Cal 6-1
Complex conjugate of wave function Cal 6-9
Coulomb potential Cal 6-6
Del squared in Cal 4-2
Felix Block story on Cal 6-1
For hydrogen atom Cal 6-6
Full three dimensional form Cal 6-6
Hydrogen atom solution Cal 6-6, Cal 6-7
Ideas that led to it Cal 6-2
Intensity of wave function Cal 6-9, Cal 6-10
Interpretation of solutions Cal 6-9
Lowest two energy levels Cal 6-7
Non spherically symmetric solutions Cal 6-18
Spherical harmonics Cal 6-18
Normalization of wave function Cal 6-10
Potential energy in Cal 6-6
Probability interpretation Cal 6-9
Second energy level Cal 6-16
Solutions of definite energy Cal 6-14
Solved for hydrogen atom Cal 6-14
Why it is complex Cal 6-5
Schrédinger's relativistic wave equation Cal 6-3
Two solutions Cal 6-4
Schwinger Cal 7-7
Second derivative Cal 2-2
Constant acceleration formulas Cal 2-9
Geometrical interpretation Cal 2-3
Of a sine wave Cal 2-2
Radius of curvature Cal 2-4
Second energy level, hydrogen Cal 6-16
Second viscosity coefficient Cal 4-6
Series expansions Cal 1-23
Binomial Cal 1-23
Exponential function
Complex variables Cal 5-4
Exponential function e to the x Cal 1-28
Sine and cosine Cal 5-4
Taylor Cal 2-7
Sideways motion of vortex line
Caused by localized non potential force Cal 13-17
Sine function
Amplitude of Cal 1-37
Definition of Cal 1-35, Cal 1-36
Derivative of, derivation Cal 1-38
Series expansion Cal 5-4
Sine waves
As function of complex exponential Cal 5-5
Second derivative Cal 2-2
Traveling wave Cal 2-14
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Single vortex line Cal 13 A2-4
Singly connected surface, Stokes' law Cal 12-13
Slinky™
Compressional wave on Cal 2-15
Slope of a curve
And contour maps Cal 3-23
As derivative Cal 1-30, Cal 3-23
Formula for Cal 1-30
In two dimensions Cal 3-23
Negative slope Cal 1-31
Steepest slope, gradient vector Cal 3-25
Smoke rings Cal 12-20
Approaching each other Cal 12-21
Creating Cal 12-21
Role of viscosity in Cal 12-21
Prediction of Helmholiz’s theorem Cal 12-21
Stability of Cal 12-21
Titanium tetrachloride for Cal 12-20
Soap film analogy
Stokes' law Cal 8-7
Solar neutrinos. See Neutrinos
Solid body rotation Cal 12-9
Curl of velocity field Cal 12-10
Sound
Speed, formula for Cal 2-20
Speed of air molecules Cal 2-21
Speed of, calculating Cal 2-17
Wave equation for Cal 2-17, Cal 2-20
Adiabatic expansion Cal 2-18
Sound waves, speed of
Formula for Cal 2-21
Source of fields, conserved Cal 10-3
Source terms for wave equations Cal 11-6
Speed of
Air molecules Cal 2-21
Sound, formula for Cal 2-20
Vortex rings
Circular rings Cal 12-20
Two dimensional rings Cal 12-19
Wave pulses
On rope, calculus derivation Cal 2-13
Waves
One dimensional wave equation Cal 5-24
Spherical coordinates
Derivation of del squared in Cal 4-12
Div, grad, curl, del squared, A dot del B Form.-3
Gradient in Cal 3-16
Phi component Cal 3-17
Theta component Cal 3-17
Schrédinger's equation Cal 6-6
Unit vectors Cal 3-16
Derivative of changing unit vectors Cal 4-12
Spherical harmonics Cal 6-18

Spline fitting Cal 2-5
Spring
Wave equation for Cal 2-17
Speed of wave Cal 2-17
Spring modulus Cal 2-15
Stability of smoke rings Cal 12-21
Standard model of elementary particles Cal 7-7
Leptons Cal 7-7
Electrons Cal 7-7
Muons Cal 7-7
Neutrinos Cal 7-7
Tau particle Cal 7-7
Quarks Cal 7-7
Standing waves
Patterns in hydrogen Cal 6-8
From Schrédinger's equation Cal 6-7
Wave equation Cal 2-14
Stokes' law
Applied to wheel on fixed axle Cal 12-13
Convert line to surface integral Cal 8-4
Derivation of Cal 8-4
Final result Cal 8-6
Introduction to Cal 8-3
Revisited Cal 12-11
Roller bearings Cal 12-13
Soap film analogy Cal 8-7
Total circulation and density of circulation Cal 12-
11
Strain, definition of
Wave equation Cal 2-15
Streamlines
Bernoulli’s equation
Applies along a streamline, derivation of Cal 13-9
Stress Cal 4-4
Viscous Cal 4-4
String theory Cal 7-7
Vortex current tensor Cal 13 A2-1
Strobe photographs
And the uncertainty principle Cal 1-2
Substantive derivative Cal 13-2
Summation
Becoming an integral Cal 1-10
Of velocity vectors Cal 1-10
Summation convention, Einstein's Cal 13-5, Cal 13
A1-2
Superfluid gyroscope Cal 12-17
Superfluids
Potential flow in Cal 12-6
Superfluid helium Cal 12-6
Feynman's prediction for Cal 12-6, Cal 12-16
Landau's prediction for Cal 12-6
Surface integral
Shrinking for divergence Cal 7-2



T
Tangent line Cal 3-23
Tangent plane Cal 3-23
Tau particle

In Standard model of elementary particles Cal 7-7
Taylor series expansion Cal 2-7

Constant acceleration formulas Cal 2-9
Tensor formulas Form.-7
Theta component

Gradient

In cylindrical coordinates Cal 3-15
In spherical coordinates Cal 3-17

Third derivative, boat lofting Cal 2-5
Time constant

Measuring from a graph Cal 1-34
Titanium tetrachloride for smoke rings Cal 12-20
Tomonaga Cal 7-7
Total circulation

Of a vortex Cal 12-14

Of rotating shaft Cal 12-12

Stokes' law and density of circulation Cal 12-11
Total circulation and density of circulation

Stokes' law Cal 12-11
Transients Cal 5-22

Particular solution Cal 5-22

Transient solution Cal 5-23
Traveling wave

Sine wave Cal 2-14
Tritton, fluid dynamics text Cal 4-9
Turbulence Cal 7-10
Two dimensional conserved current

Vortex, intuitive discussion of Cal 13 A2-2
Two dimensional vortex ring Cal 12-19

Speed of Cal 12-19

U

Uncertainty principle Cal 1-2
And definition of velocity Cal 1-2
And strobe photographs Cal 1-2
Applied to projectile motion Cal 1-4
Uniquely determined field
Conditions for Cal 12-2
Unit vectors
Cylindrical coordinate system Cal 3-14
Derivative of changing unit vectors Cal 4-12
Spherical coordinate system Cal 3-16
Units
CGS
Centimeter, gram, second Back cover-1
MKS
Meter, kilogram, second Front cover-2
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v

Variables
Evaluated over interval Cal 1-10
Vector
Components in rotated coordinate system Cal 3-
26
Definition of acceleration Cal 1-7
Component equations Cal 1-8
Definition of velocity Cal 1-6
Component equations Cal 1-8
Dot product
Summation convention, Einstein's Cal 13-5
Equations
Components with derivatives Cal 1-7
Gradient vector
Transformation of Cal 3-25
Vector fields
As gradient of scalar field Cal 3-29
Created by gradient Cal 3-1
Gradient as a vector field Cal 3-28
Vector identities Cal 8-3
For a moving circuit Cal 13-12
Rate of change of flux through Cal 13-15
For use with Maxwell's equations Cal 9-2
Many of them Form.-4
Vector potential
And the electric field Cal 11-3
Chapter on Cal 11-1
Curl and divergence of Cal 11-4
Divergent and solenoidal parts Cal 11-4
Gauge invarience Cal 11-4
In Faraday's law Cal 11-3
Introducing into Maxwell's equations Cal 11-3
Introduction to Cal 11-2
Needed in quantum theory Cal 11-3
Unneeded in classical electromagnetism Cal 11-3
Wave equation for Cal 11-4
Coulomb gauge Cal 11-6
Gauge invariant form Cal 11-5
Wave gauge Cal 11-5
Velocity
And the uncertainty principle Cal 1-4
Calculus definition of Cal 1-5
Component equations Cal 1-8
Curve, area under Cal 1-12
Definite integral of Cal 1-11
Integral of Cal 1-10
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Galculus Chapter 1

Introduction to Calculus

This first chapter covers all the calculus that is needed
for the Physics 2000 text. The remaining chapters allow
students to look at the physics from an advanced
mathematical point of view.

This chapter, which replaces Chapter 4 in Physics
2000, is intended for students who have not had
calculus, or as a calculus review for those whose
calculusis not well remembered. If, after reading
partway throughthischapter, youfeel your calculus
background is not so bad after all, go back to
Chapter 4 in Physics 2000, study the derivation of
the constant acceleration formulas beginning on
page 4-8, and work the projectile motion problems
intheappendixto Chapter 4. Thosewho study all of
thisintroduction to cal culus should then proceed to
the projectile motion problems in the appendix to
Chapter 4 of the Physics text.
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LIMITING PROCESS

In Chapter 3 of Physics 2000, we used strobe photo-
graphs to define velocity and acceleration vectors.
Thebasi capproachwastoturnupthestrobeflashing
rate, as we did in going from Figure (3-3) to (3-4)
shown below. We turned the rate up until all the
kinksareclearly visibleand thesuccessivedisplace-
ment vectors give a reasonable description of the
motion. We did not turn the flashing rate too high,
for the practical reason that thedi splacement vectors
became too short for accurate work.

In our discussion of instantaneous velocity we con-
ceptually turned the strobe all the way up asillus-
trated in Figures (2-22a) through (2-22d), redrawn
herein Figure (1). Inthesefigures, weinitially see
a fairly large change in V, as the strobe rate is
increased and At reduced. But then the change
becomessmaller, anditlooksasif weareapproach-
ing some final value of v, that does not depend on
thesizeof At, provided At issmall enough. 1tlooks
asif wehave comeclosetothefina valuein Figure
(1c).

The progression seenin Figure (1) iscalled alimit-
ingprocess. Theideaisthat therereally issometrue
valueof vy whichwehavecalled theinstantaneous
velocity, and that we approach this true value for
sufficiently small values of At. Thisisa calculus
concept, and in the language of calculus, we are
taking the limit as At goesto zero.

Introduction to Calculus

THE UNCERTAINTY PRINCIPLE

For over 200years, fromtheinvention of calculusby
Newton and Leibnitz until 1924, the limiting pro-
cess and the resulting concept of instantaneous ve-
locity was one of the cornerstones of physics. Then
in 1924 Werner Heisenberg discovered what he
calledtheuncertainty principlewhich placesalimit
on the accuracy of experimental measurements.

Helsenberg discovered something very new and
unexpected. He found that the act of making an
experimental measurement unavoidably affectsthe
results of an experiment. This had not been known
previously because the effect on large objects like
golf balls is undetectable. But on an atomic scale
wherewestudy small systemslikeelectronsmoving
inside an atom, the effect is not only observable, it
can dominate our study of the system.

One particular consequence of the uncertainly prin-
ciple is that the more accurately we measure the
position of an object, themorewedisturb themotion
of the object. Thishasanimmediate impact on the
concept of instantaneous velocity. If we turn the
strobe al the way up, reduce At to zero, we are in
effect trying to measure the position of the object
with infinite precision. The consequence would be
an infinitely big disturbance of the motion of the
object wearestudying. If weactually couldturnthe
strobe al the way up, we would destroy the object
we were trying to study.

Figures 3-3 and 3-4 from Physics 2000
Strobe photographs of a moving object. In the first photograph,
the time between flashesis so long that the motion is difficult to
understand. I n the second, the time between flashes was reduced
and the motion is more easily understood.



Calculus 2000 - Chapter 1

Introduction to Calculus Cal 1-3

0O ___ 0 1
-7 . \\\\\ - ’:‘ N
//// -~ \\\ /// VO \\\\
pd VO N /"‘/ N
’ AN , N
4 AN \ / \\
N \ \
AN \ \
N \ \
N \ \
AN \
N \ \
AN \ \
AN \ \
N \ \
N \ \
N \ \
AN \ \
N \ \
NooN \
N \
S\ \
AN \ \
N 1 %
\ \
\ \
\ \
\
At =0.4 Sec At =0.1 Sec
(a) (c)
. —_
01 Vo \Y
+__A_‘ _ _‘\\\\
+/+ '+\+\ /// \\\
+7 ® e N
& ’ "‘\ /// \\\
% AN
\ \\
't\ N
X AN
\ \
X \
\ \
\-\ \\
\ \
X \
\ \
\ \
Y \
\ \
\
At = 0.025 Sec instantaneous velocity
(b) (d)
Figure 1

Transition to instantaneous velocity. As we reduceAt,
thereislessand less changein the vector V. It looks
asif we are approaching an exact final value.
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Uncertainty Principle on a Larger Scale
It turns out that the uncertainty principle can havea
significant impact on alarger scale of distance than
the atomic scale. Suppose, for example, we con-
structed a chamber that is 1 cm on each side, and
wished to study the projectile motion of an electron
inside. Using Galileo’ sideathat objectsof different
massfall at the samerate, we would expect that the
motion of the electron projectile should bethe same
asmore massive objects. If wetook astrobe photo-
graph of the electron’ s motion, we would expect to
get results like those shown in Figure (2). This
figurerepresentsprojectilemotionwith an accelera-
tion g =980 cm/sec?and At = .01sec, asthereader
can easily check.

When we study the uncertainty principlein Chapter
40 of the Physics text, we will see that a measure-
ment whichisaccurate enough to show that position
(2) isbelow position (1), could disturb the electron
enough to reverseitsdirection of motion. The next
position measurement could find the electron over
wherewe drew position (3), or back wherewe drew
position (0), or anywhere in the region in between.
As a result we could not even determine what
direction the electron is moving. This uncertainty
would not be the result of asloppy experiment, itis
the best we can do with the most accurate and
delicate measurements possible.

0 1
1 X2
P
by 3
o +
£
c
3
r 4

<———1 centimeter ———
Figure 2

Hypothetical electron projectile motion experiment.
The uncertainty principle tells usthat such an
experiment cannot lead to predictable results.

Introduction to Calculus

The uncertainty principle has had a significant im-
pact on the way physicists think about motion.
Because we now know that the measuring process
affectstheresults of the measurement, we seethat it
is essential to provide experimental definitions to
any physical quantity we wish to study. A concep-
tual definition, liketurning the strobe all theway up
to define instantaneous vel ocity, can lead to funda-
mental inconsistencies.

Even an experimental definition like our strobe
definition of velocity canleadtoinconsistent results
when applied to something like the electron in
Figure(2). Buttheseinconsistenciesarerea. Their
existence is telling us that the very concept of
velocity isbeginning tolosemeaning for thesesmall
objects.

On the other hand, the idea of the limiting process
and instantaneous vel ocity isvery convenient when
applied to larger objects where the effects of the
uncertainty principle are not detectable. Inthiscase
we can apply all the mathematical tools of calculus
developed over the past 250 years. The status of
instantaneous velocity has changed from a basic
concept to auseful mathematical tool. Those prob-
lems for which this mathematical tool works are
called problemsinclassical physics; thoseproblems
for which the uncertainty principleisimportant, are
in the realm of what we call quantum physics.



Calculus 2000 - Chapter 1

CALCULUS DEFINITION OF VELOCITY

With the above perspective on the physical limita-
tions of the limiting process, we can now return to
themaintopic of thischapter—the useof calculusin
defining and working with velocity and accelera-
tion.

In discussing the limiting process in calculus, one
traditionally uses aspecial set of symbolswhichwe
can understand if we adopt the notation shown in
Figure (3). Inthat figure we have drawn the coordi-
nate vectors R; and R;,, for thei th and (i + 1)
positions of the object. We are now using the
symbol ATQi torepresent thedisplacement of theball
duringthei toi+1linterval. Thevector equation for
AR; is

AR; = Ry —R; (1)
In words, Equation (1) tells us that ATR’i is the

change, during thetime At, of the position vector R
describing the location of the ball.

o
€ AR;
1+1
R :
Ri+1
AR; = Rjy — R
- ﬁ~
Vi = At

Figure 3
Definitions of AR, and V.
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The velocity vector v; isnow given by
AR
Vi = At 2

Thisisjust our old strobe definition v; = $;/At, but
using anotationwhich emphasizesthat thedisplace-
ment §; = AR, isthe changein position that occurs
during the time At. The Greek letter A (delta) is
used both to represent theideathat the quantity AR;
or At issmall, and to emphasize that both of these
guantities change as we change the strobe rate.

The limiting processin Figure (1) can bewrittenin
the form

Yi = AtL0AT (3

wheretheword*limit” with At — 0 undernesath, isto
beread as“limit as At goesto zero”. For example
we would read Equation (3) as “the instantaneous
velocity v; at position i isthelimit, as At goesto
zero, of theratio AR, /At .”

For two reasons, Equation (3) is not quite yet in
standard calculus notation. Oneisthat in calculus,
only the limiting value, in this case, the instanta-
neous velocity, is considered to be important. Our
strobe definition V; = AR; /At is only a step in the
limiting process. Therefore when we seethe vector
V; , weshouldassumethatitisthelimiting value, and
no special symbol liketheunderlineisused. For this
reason we will drop the underline and write

o _ limit AR,

i = AL O At (32)
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The second change deal swith the fact that when At
goesto zeroweneed aninfinitenumber of timesteps
to get through our strobe photograph, and thusitis
not possible to locate a position by counting time
steps. Instead we measurethetimet that has el apsed
since the beginning of the photograph, and use that
timetotell uswherewe are, asillustrated in Figure
(4). Thus instead of using V; to represent the
velocity at position i, we write V(t) to represent the
velocity at time t. Equation (3) now becomes
v = AR (@)

where we also replaced AR; by its value AR(t) at
timet.

Although Equation (3b) is in more or less standard
caculusnotation, thenotationisclumsy. Itisapainto
keep writing the word “limit” with a At — 0 under-
neath. To streamline the notation, we replace the
Greek letter A with the English letter d asfollows

limit AR(Y) _ dR(t)

(The symbol = means defined equal to.) To a
mathematician, the symbol dR(t)/dt isjust short-

t=.1sec .2sec
®

t=
@®

tg Osec t=.3sec

t=.4sec

R(t)att= .3 sec

t=.5sec

Figure 4

Rather than counting individual images, we can
locate a position by measuring the elapsed timet.
In thisfigure, we have drawn the displacement
vector R(t) at timet = .3 sec.

Introduction to Calculus

hand notation for the limiting process we have been
describing. But to a physicist, there is a different,
more practical meaning. Think of dt asashort At,
short enough so that the limiting process has essen-
tially occurred, but not too short to seewhat isgoing
on. InFigure(1), avalueof dt lessthan .025 seconds
is probably good enough.

If dt issmall but finite, then we know exactly what
the dR(t) is. Itisthe small but finite displacement
vector at thetime t. Itisour old strobe definition of
velocity, with the added condition that dt is such a
short time interval that the limiting process has
occurred. From this point of view, dt isarea time
interval and dR(t) areal vector, which we can work
withinanormal way. The only thing special about
these quantities is that when we see the letter d
instead of A, we must remember that a limiting
process is involved. In this notation, the calculus
definition of velocity is

v(t) = dF;t(t)

()

whereR(t) and V(t) arethe particle’s coordinate vec-
tor and vel ocity vector respectively, asshowninFigure
(5). Remember that thisisjust fancy shorthand nota-
tionfor thelimiting processwe have been describing.

________
-~ =~

R(®) \

Figure 5
| nstantaneous position and velocity at timet.
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ACCELERATION

Intheanalyssof strobe photographs, we defined both
avelocity vector v and an acceleration vector a. The
definition of &, shown in Figure (2-12) reproduced
herein Figure (6), was

Vit1 —Vi

3 = L (6)

In our graphical work wereplaced v; by S;/At so that
we could work directly with the displacement vectors
S, and experimentally determine the behavior of the
acceleration vector for several kinds of motion.

L et usnow changethisgraphical definition of accel-
eration over to acalculus definition, using theideas
just appliedtothevel ocity vector. First, assumethat
the ball reached position i attime t asshownin
Figure (6). Then we can write
v, = V()

Vi1 = V(t+AL)

to change the time dependence from a count of
strobe flashes to the continuous variable t. Next,
define the vector AV(t) by

V(1) = V(t+AL) —V(t) (: vi+1—\7i) @)
Weseethat Av(t) isthechangeinthevelocity vector

as the time advances from t to t+At. The strobe
definition of & can now be written

ofsn |- 050 . 50

position at

time AN yosition at
e v ime t+At

Figure 6
Experimental definition of the acceleration vector.
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Now go through the limiting process, turning the
strobe up, reducing At until thevalue of a(t) settles
down to its limiting value. We have

A(t) calculus | _ [imit V(t +At) —v(t)
definition/| ~— At-0 At

9)
_ limit Av(t)

At-0 At
Finally use the shorthand notation d/dt for the
limiting process:

a) = 20

(10)

Equation (10) does not make sense unless you re-
member that it isnotation for all theideas expressed
above. Again, physicists think of dt as a short but
finitetimeinterval, and dv(t) asthe small but finite
changeinthevelocity vector duringthetimeinterval
dt. It sour strobe definition of accel eration with the
added requirement that At is short enough that the
limiting process has already occurred.

Components

Even if you have studied calculus, you may not
recall encountering formulas for the derivatives of
vectors, like dR(t)/dt and dv(t)/dt which appear in
Equations (5) and (10). To bring these equations
into a more familiar form where you can apply
standard cal culusformulas, wewill break thevector
Equations (5) and (10) down into component equa-
tions.

In the chapter on vectors, we saw that any vector
equation like

A=B+C (11)
is equivalent to the three component equations

A, = B,+C,

Ay = By+Cy

A, =B,+C,
The advantage of the component equationswasthat
they are ssmply numerical equations and no graphi-
cal work or trigonometry is required.

(12)
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The limiting process in calculus does not affect the
decomposition of a vector into components, thus

Equation (5) for v(t) and Equation (10) for &(t)
become

v(t) = dR(t)/dt (5)
V() = dR,(t)/ct (5a)
v = dR(t)/dt (5b)
V,(t) = dR,(t)/dt (5¢)
and
at) = dv(t)/dt (10)
a () = dvy(t)/dt (10a)
a(t) = dv,(t)/dt (10b)
a,(t) = dv,(t)/dt (10c)

Often we use the letter x for the x coordinate of the
vector R andweusey for Ry andzfor R,. Withthis
notation, Equation (5) assumestheshorter and perhaps
more familiar form

V(1) = dx(t)/dt R (58)
vy(t) = dy(t)/dt (50)
V() = dz/dt  pgwez  * (5C)

Atthispoint thenotation hasbecomedeceptively short.
Y ou now have to remember that x(t) stands for the x
coordinate of the particle at atimet.

We havefinally boiled the notation down to the point
whereitwouldbefamiliarinany caculuscourse. If we
restrict our attention to one dimensional motion along
the x axis, then al we have to concern ourselves with
are the x component equations

vy(t) = d)ég[t)
10
o - 940 a
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INTEGRATION

When weworked with strobe photographs, the pho-
tograph told us the position R(t) of the ball astime
passed. Knowing the position, we can then use
Equation (5) to calculatethe ball'svelocity v(t) and
then Equation (10) to determine the acceleration
a(t) . Ingenera, however, we want to go the other
way, and predi ct themotion fromaknowledgeof the
acceleration. For example, imaginethat youwerein
Galileo's position, hired by a prince to predict the
motion of cannonballs. Y ou know that acannonball
should not be much affected by air resistance, thus
the accel eration throughout its trajectory should be
theconstant gravitational acceleration g. Y ouknow
that &(t) = g. How then do you use that knowledge
in Equations(5) and (10) to predict themotion of the
ball?

The answer isthat you cannot with the equationsin
their present form. Theequationstell you how to go
from R(t) to &(t), whileto predict motion you need
to go the other way, from &(t) to R(t) . Thetopic of
thissectionisto seehow to reversethedirectionsin
whichwe use our calculusequations. Equations (5)
and (10) involve the process called differentiation.
We will see that when we go the other way the
reverseof differentiationisaprocesscalledintegra-
tion. We will see that integration is a smple con-
cept, but aprocessthat issometimeshard to perform
without the aid of a computer.
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Prediction of Motion

In our earlier discussion, we have used strobe pho-
tographsto analyze motion. Let usseewhat we can
learn from such aphotograph for predicting motion.
Figure (8) is our familiar projectile motion photo-
graph showing the displacement $ of aball during
thetimetheball traveled from aposition labeled (0)
to the position labeled (4). If the ball is now at
position (0) and each of the imagesis (.1) seconds
apart, thenthevector s tellsuswheretheball will be
at atimeof (.4) secondsfrom now. If wecan predict
$, wecan predict themotion of theball. Thegeneral
problem of predicting the motion of the ball isto be
ableto calculate 3(t) for any timet.

From Figure (8) we seethat S isthe vector sum of the
individual displacement vectors S, , S, , S3 and 3,

§=§1+§2+§3+§4 (11)

We can then use the fact that S, = V,At, S, = VAL,

etc. to get
S = VAt + VAL + VoAt + VAL (12)

Rather than writing out each term, we can use the
summation sign X to write

(12a)

4
S = Z]_let
=
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Equation (12) is approximate in that the v, are
approximate (strobe) velocities, not the instanta-
neous velocities we want for a cal culus discussion.
In Figure (9) we improved the situation by cutting
At to 1/4 of itspreviousvalue, giving usfour times
as many images and more accurate velocities v, .

We seethat the displacement S isnow thesum of 16
vectors

S = §l+§2+§3+"'+§15+§16 (13)

Expressingthisintermsof thevelocity vectorsv, to
V16 We have

8 = VAt + VoAt + VgAt + ... + VAt + VygAt (14)

Or using our more compact notation

6
8= i_Zl v At (14a)
WhileEquation (14) for S looksquitedifferent than
Equation (12)—the sum of sixteen vectors instead
of four—thedisplacement vectors $ inthetwo cases
are exactly the same. Adding more intermediate
images did not change wherethe ball waslocated at
the time of t = .4 seconds. In going from Equation
(12) to (14), what has changed asaresult of shorten-
ing the time step At, isthat the individual velocity
vectors V; becomemorenearly equal to theinstan-
taneous velocity of the ball at each image.

S;~0 1234

Figure 8
To predict the total displacement &, we
add up theindividual displacements §;.

Figure 9
With a shorter timeinterval, we add up more
displacement vectorsto get the total displacement §.
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If wereduced At again by another factor of 1/4, so
that wehad 64imagesintheinterval t=0tot=.4 sec,
the formulafor S would become
64

3= i_Zl VAt (15a)
where now the v; aretill closer to representing the
ball's instantaneous velocity. The more we reduce
At the more images we include, the closer each V;
comes to the instantaneous velocity v(t). While
adding more images gives us more vectors that we
haveto add up to get thetotal displacement S, there
isvery littlechangein our formulafor s. If we had
amillion images, we would simply write

1000000

VAt (16a)

i=1
Inthiscasethe v; would bephysically indistinguish-
ablefrom theinstantaneousvelocity v(t) . Wehave
essentialy reached a calculus limit, but we have
problems with the notation. It is clearly inconve-
nient to label each v; and then count the images.
Instead we would like notation that involves the
instantaneousvel ocity V(t) and expressesthebegin-
ning and end pointsintermsof theinitial timet; and
final time t;, rather than the initial and final image
numbersi.

In the calculus notation, we replace the summation
sign = by something that looks amost like the
summation sign, namely theintegral sign /. (The
Frenchwordfor integrationisthesameastheir word
for summation.) Next wereplaced theindividual v;
by the continuous variable V(t) and finally express
theend pointsby theinitial time t; andthefinal time
t;. Theresultis

n becomes

(17)

M-

3 =

ViAt - | infinitely

large

t
ﬁ V()

as the number )

1

Calculus notation is more easily handled, or is at
least morefamiliar, if we break vector equations up
into component equations. Assume that the ball
started at positioni which hascomponents x; = x(t;)
[read x(t;) as“xattimet; "] andy; = y(t;) asshown
in Figure (10). Thefinal position f isat x; = X(t;)
and yr = y(ty) .

Introduction to Calculus

Thusthe displacement S has x and y components
S = X(t) —x(t)
sy = Y(t) —y(t)

Breaking Equation (17) into component equations
gives

s = X(t) -x(®) = [ w0

(18a)

S =YY = | wor| g

Here we will introduce one more piece of notation
often used in calculuscourses. Ontheleft hand side
of Equation (18a) we have x(t;) —x(t;) which we
can think of asthe variable x(t) evaluated over the
interval of timefromt; tot;. Wewill oftendeal with
variables evaluated over some interval and have a
gpecial notation for that. We will write

X(tr) —X(t;) = x(t) If (19)

You aretoreadthesymbol x(t) | {If as"x of tevaluated
fromt; tot;". Wewritetheinitia timet; atthebottom
of thevertical bar, thefinal time t; at the top.

Figure 10
Breaking the vector § into components.



Weusesimilar notation for any kind of variable, for
example

)| = F(x) —F(xy) (19a)

(Remember to subtract when the variable is evalu-
ated at the value at the bottom of the vertical bar.)

With this notation, our Equation (18) can be written

sc=x0] "= [ w0 (184)

ts
t

f bt
t. Y

5 =0’ (18b)

Calculating Integrals

Equation (18) is nice and compact, but how do you
useit? How do you calculate integrals? Thekey is
to remember that an integral isjust afancy notation
for asum of terms, where we make the time step At
very small. Keeping thisin mind, we will see that
thereisavery easy way to interpret an integral.

t; ts
® ® ® ® ® ®

Figure 11a
Strobe photograph of ball moving at
constant velocity in x direction.

V(1)

Vx

—1
t ts
Figure 11b

Graph of v,(t) versust for the ball of Figure 11a.

(1)

V,
Vx X7

t, At t,

Figure 11c
Each v At isthe area of arectangle.

Toget thisinterpretation, let usstart withthesimple
caseof aball movinginastraight line, for instance,
the x direction, at a constant velocity v, . A strobe
picture of thismotionwould look likethat shownin
Figure (11a).

Figure (11b) isagraph of theball'svelocity v,(t) as
afunction of thetimet. Thevertical axisisthevalue
of v, , thehorizontal axisisthetimet. Sincetheball
is traveling at constant velocity, v, has a constant
valueandisthusrepresented by astraight horizontal
line. In order to calculate the distance that the ball
has traveled during the time interval from t; to t;,
we need to evaluate the integral

distanceball

travelsin

timeinterval
t; tot;

t
s, = Jt | "y, (Ot (189

Toactualy evaluatetheintegral, wewill go back to
our summation notation
¥ final

2 Vi At
Finitial
and show individua time steps At in the graph of v,
versust, asin Figure (11¢).

Sx = (20)

We see that each term in Equation (20) is repre-
sentedinFigure(11c) by arectanglewhoseheightis
v, and whose width is At. We have shaded in the
rectangle representing the 7th term v,;,At . We see
that v, At isjust the area of the shaded rectangle,
and it is clear that the sum of all the areas of the
individual rectangles is the total area under the
curve, startingattimet; andendingattimet;. Here
we are beginning to see that the process of integra-
tion is equivalent to finding the area under a curve.

With asimple curvelike the constant velocity v,(t)
in Figure (11c), we see by inspection that the total
areafrom t; to t; isjust the area of the complete
rectangle of height v, and width (t; —t;) . Thus

S = Vy X (t—t) (21)
Thisistheexpectedresultfor constant vel ocity, namely

distance _ : : for
traveled = velocity x time \C/g:)%ﬁ;t (219)
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To see that you are not restricted to the case of
constant velocity, suppose you drove on a freeway
due east (the x direction) starting at 9:00 AM and
stopping for lunch at 12 noon. Every minuteduring
your trip you wrote down the speedometer reading
sothat you had anaccurateplot of v, (t) fortheentire
morning, aplot likethat showninFigure(12). From
suchaplot, couldyou determinethedistance s, that
you had traveled?

Y our best answer istomultiply eachvaluev; of your
velocity by the time At to calculate the average
distance traveled each minute. Summing these up
from theinitial time t; = 9:00 AM to the final time
t; = noon, you have as your estimate

S = IsziAt
(The symbol = means approximately equal.)

To get amore accurate value for the distance trav-
eled, you should measure your velocity at shorter
time intervals At and add up the larger number of
smaller rectangles. The precise answer should be
obtained in the limit as At goesto zero

_ limit A= [
5 = lmit’ ¥ vt = ft Twod (@)
This limit is just the area under the curve that is
supposed torepresent theinstantaneousvel ocity v, (t) .

V()

At noon t

I
9am

Figure 12

Plot of v,(t) for atrip starting at 9:00 AM and
finishing at noon. The distancetraveled isthe
area under the curve.
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Thus we can interpret the integral of acurve asthe
area under the curve even when the curve is not
constant or flat. Mathematicians concern them-
selveswith curvesthat are sowild that it isdifficult
or impossible to determine the area under them.
Such curves seldom appear in physics problems.

While the basic idea of integration is simple—just
finding the areaunder acurve—in practiceit can be
quite difficult to calculate the area. Much of an
introductory calculus course is devoted to finding
the formulas for the areas under various curves.
Therearealsobookscalledtablesof integralswhere
youlook uptheformulafor acurveandthetabletells
you the formulafor the area under that curve.

In Chapter 16 of the Physicstext, we will discuss a
mathematical technique called Fourier analysis.
This is a technique in which we can describe the
shape of any continuous curve in terms of a sum of
sinewaves. (Why we want to do that will become
clear then.) Theprocessof Fourier anaysisinvolves
finding the area under some very complex curves,
curves often involving experimental datafor which
we have no formula, only graphs. Such curves
cannot be integrated by using a table of integrals,
with the result that Fourier analysis was not widely
used until theadvent of themoderndigital computer.

The computer made a difference, because we can
findtheareaunder amost any curveby breaking the
curveinto short pieces of length At calculating the
area v;At of each narrow rectangle, and adding up
the area of the rectanglesto get thetotal area. If the
curveissowildthat wehavetobreak itintoamillion
segments to get an accurate answer, that might be
too hard to do by hand, but it usually avery simple
and rapid job for a computer. Computers can be
much more efficient than people at integration.
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The Process of Integrating

There is a language for the process of integration
which we will now take you through. In each case
we will check that the results are what we would
expect from our summation definition, or the idea
that an integral is the area under a curve.

Thesimplestintegral wewill encounter isthe calcu-
lation of the area under a curve of unit height as
shown in Figure (13). We have the area of a
rectangle of height 1 and length (t; —t;)

[¥; tf
f 1dt =f dt = (t—t)
t t

1

(22)

area = 1(t;—t)

t; ty
Figure 13
Area under a curve of unit height.

We will use some special language to describe this
integration. We will say that the integral of dt is
simply thetimet, and that theintegral of dt from t;
tot; isequal tot evaluatedfromt; tot; . Insymbols
thisiswritten as

t
ffdt:t
&

Recall that the vertical line after avariable meansto
evaluate that variable at the final position t; (upper
value), minus that variable evaluated at the initial
position t; (lower value). Notice that this prescrip-
tion gives the correct answer.

(23)

ts
= (i —tj)
t

Thenext simplestintegral istheintegral of aconstant,
like aconstant velocity v, over theinterval t; to t;

t
f fodt = Vy (t; —1;)
t

(24)

Vx

area = v, (t;—t)

t; ty
Figure 14
Area under the constant v, curve.
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Since (t;—t;) = f,'f dt, we can replace (t;—t;)in
Equation (24) by the integral to get

f tf

f v, dt = VXJ dt v, aconstant (25
ti t

and we see that a constant like v, can be taken
outside the integral sign.

Letustry thesimplest casewecanthink of where v,
is not constant. Suppose v, starts at zero at time
t; = 0 and increaseslinearly according to the formula

(26)

v =at

Figure 15

When we get up to the time t; the velocity will be
(atf) asshown in Figure (15). The area under the
curve v, = at isatrianglewhosebaseisof length t;
andheightis at; . Theareaof thistriangleisonehalf
thebasetimestheheight, thusweget for thedistance
s, traveled by an object moving with this velocity

t
s, f "t = L(base) x (height)
0

(27)
= Sty = a2

Now let us repeat the same calculation using the
language onewould findinacalculusbook. Wehave

s, = fotf vdt = fotf (at) it (28)

Theconstant (a) can comeoutside, and weknow that
the answer is 1/2at;? , thus we can write

t
5, = foftdt = La (29)

In Equation (29) we can cancel the asto get the result

6,
fo tdt = %tfz (30)
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Inacalculustext, you would find the statement that
theintegral [tdt isequal to t4/2 andthat theintegral
should be evaluated as follows

0 _
5= o (31)

Indefinite Integrals

When we want to measure an actual area under a
curve, we have to know where to start and stop.
Whenwe put theselimitsontheintegral sign, liket;
and t;, we have what is called a definite integral.
However therearetimeswherewejust want to know
what theform of theintegral is, with theideathat we
will putinthelimitslater. Inthiscasewehavewhat
iscalled an indefinite integral, such as

_ t?
ftolt_2

Thedifferencebetweenour definiteintegral inEqua
tion (31) and the indefinite one in Equation (32) is
that we have not chosen the limits yet in Equation
(32). If possible, atable of integralswill giveyou a
formulafor theindefiniteintegral and let you put in
whatever limits you want.

indefiniteintegral (32

Integration Formulas

For some sets of curves, there are smple formulas
for the area under them. One exampleisthe set of
curvesof theform t". Wehave aready considered
the caseswheren=0and n=1.

n=0 1 !
f tOt = f at =t (332)
i t
n=1 t
1 t2
ftdtzftdtzz (33b)
Some resultswe will prove later are
n=2 t2
f t2dt = g (330)

Introduction to Calculus

(33d)

Looking at the way these integrals are turning out,
we suspect that the general ruleis

nd—tn+l
ft b= g

(34)

It turnsout that Equation (34) isagenera result for any
valueof nexcept n=-1. If n=-1, then youwould
have divison by zero, which cannot be the answer.
(Wewill shortly discussthespecia casewheren=-1.)

Aslong as we stay away from the n = —1 case, the
formulaworks for negative numbers. For example

e _ [t _ tC2D _ ¢l
Jt dt‘ftZ‘ iy il )

4=-1 (35)

In our discussion of gravitational and electrical
potential energy, we will encounter integrals of the
form seen in Equation (35).

Exercise 1

Using Equation (34) and the fact that constants can
come outside the integral, evaluate the following inte-
grals:

it does not matter whether
(a) f xdx we call the variable t or x
=
5 also sketchthe area
(b) Jx =1 x>dx being evaluated
t=2
(c) dt show that you get
=1 t2 a positive area
GmM where G, m, and M
(d) J r2 dr are constants

'a" is a constant
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NEW FUNCTIONS

We have seen that when we integrate a curve or
function like t2, we get anew function t3/3. The
functions t? and t3 appear to be fairly similar; the
integrationdidnot createsomethingradically differ-
ent. However, the process of integration can lead to
some curves with entirely different behavior. This
happens, for example, in that special case n = -1
when we try to do theintegral of t=1.

Logarithms

Itiscertainly nothardtoplot t~1 , theresultisshown
inFigure (16). Alsothereisnothing fundamentally
difficult or peculiar about measuring the area under
thet! curvefromsomet; to t;, aslong aswe stay
away fromtheorigint=0wheret~! blowsup. The
formula for this area turns out, however, to be the
new function called thenatural logarithm, abbrevi-
ated by the symbol In. The areain Figure (16) is
given by the formula

ft i Lot = Inty) - In(t;) (36)

t; t
Figure 16
Plot of t=1. The area under thiscurve

isthe natural logarithm In.
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Two of the important but peculiar features of the
natural logarithm are

In(ab) = In(a) + In(b) (37)
Ind) = -In(a (38)
Thuswe get, for example
Int;) —In(t)) = In(t;) +In tl)
(39)

o

Thus the area under the curvein Figure (16) is

Yt _ [t
ft. T = '”(ti)
|

Whilethenatural logarithm hassomerather peculiar
propertiesitiseasy toevaluatebecauseitisavailable
on al scientific calculators. For example, if t;=.5
seconds and t; = 4 seconds, then we have

) _ a4 -
In(ti) = |n(3) = In(8)
Entering the number 8 on ascientific calculator and
pressing the button labeled In, gives

In(8) = 2.079

(40)

(41)

(42)

which isthe answer.

Exercise 2
Evaluate the integrals

o001 X J.ooooot1 X

Why are the answers the same?
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The Exponential Function

Wehavejust seenthat, whilethelogarithm function
may have some peculiar properties, it is easy to
evaluate using ascientific calculator. The question
we now want to consider is whether there is some
function that undoes the logarithm. When we enter
the number 8into the calculator and press|n, we get
the number 2.079. Now we are asking if, when we
enter the number 2.079, can we press some key and
get back thenumber 8? Theanswer is, you pressthe
key labeled eX. The eX key performsthe exponen-
tial function which undoes the logarithm function.
We say that the exponential function eX is the
inverse of the logarithm function In.

Exponents to the Base 10

Y ou are aready familiar with exponentsto the base
10, asin the following examples

100 =1

10! = 10 1000l=110=1

10% = 100 102 = 1/100 = .01 (43)
EEENREN EENENEN

10% = 1,000,000 10~ = .000001

Theexponent, thenumber written abovethe 10, tells
us how many factors of 10 are involved. A minus
sign means how many factors of 10 we divide by.
From this alone we deduce the following rules for
the exponent to the base 10.

102x 10° = 102+P (45)

(Example 10% x 102 = 100 x 1000 = 100,000 .)
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The inverse of the exponent to the base 10 is the
function called logarithm to the base 10 which is
denoted by the key labeled |og on ascientific calcu-
lator. Formally this means that

log (10%) =y

(46)

Check this out on your scientific calculator. For
example, enter the number 1,000,000 and pressthe
log button and see if you get the number 6. Try
several examples so that you are confident of the
result.

The Exponential Function y*

Another key on your scientific calculator islabeled
y* . Thisallows you to determine the value of any
number y raised to the power (or exponent) x. For
example, enter thenumber y = 10, and pressthe y*
key. Then enter the number x =6 and pressthe =
key. You should see the answer

yX = 108 = 1000000

Itisquiteclear that all exponentsobey thesamerules
we saw for powers of 10, namely

yaxyb = ya+b

(47)

[Example y?2 xy3 = (y xy)(y xy xy) = y°]
And as before

y 2= g (48)
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Exercise 3

Use your scientific calculator to evaluate the follow-
ing quantities. (You should get the answers shown.)

(a) 10° (1000000)
(b) 2° (8)

(c) 23 (1)

(

d) 107" (1)

(To dothis calculation, enter 10, then press y*. Then
enter 1, then press the +/~ key to change it to -1, then
press = to get the answer .1)

(e) 2°° (1//2=707)
(f) log(10) (1)
(g) In(2.7183) (1) (verycloseto 1)

Try some other examples on your own to become
completely familiar with the y* key. (You should note
that any positive number raised to the O power is 1.
Also, some calculators, in particular the one | am
using, cannot handle any negative values of y, not
even (-2 which is +4)
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Euler's Number e = 2.7183...

We have seen that the function log on the scientific
calculator undoes, is the inverse of, powers of 10.
For example, we saw that

log (10%) = x (46) repeated

Example: log (10%) = 6

Earlier we saw that the exponentia function eX was
theinverseof thenatural logarithmIn. Thismeansthat

In(eX) = x (49)

The difference between the logarithm log and the
natural logarithm In, isthat log undoes exponents
of the number 10, whileIn undoes exponents of the
number e. This special number e, one of the
fundamental mathematical constantslike 1t,isknown
as Euler's number, and is always denoted by the
letter e.

Y ou can find the numerical value of Euler's number
e on your calculator by evaluating

el = e (50)

Todothis, enter 1into your calculator, pressthe e
key, and you should see the result

el = e = 2718281828 (51)

We will run into this number throughout the course.
Y ou should remember that eisabout 2.7, or you might
evenremember 2.718. (Only remembering eas2.7is
asklutzy asremembering 11 as 3.1)

Theterminology in math coursesisthat thefunction
log, whichundoesexponentsof thenumber 10, isthe
logarithmto the base 10. The function In, what we
have called the natural logarithm, which undoes
exponents of the number e, is the logarithm to the
base e. You can have logarithms to any base you
want, but in practice we only use base 10 (because
we have 10 fingers) and the base e. Thebaseeis
special, in part because that is the logarithm that
naturally arises when we integrate the function 1/x.
Wewill seeshortly that thefunctionsInand e* have
severa more, very special features.
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DIFFERENTIATION AND INTEGRATION

The scientific calculator is a good tool for seeing
how thefunctionslikelnand e* areinverse of each
other. Another example of inverse operations is
integration and differentiation. We have seen that
integration allows us to go the other way from
differentiation [finding x(t) from v(t), rather than
v(t) from x(t)]. However it is not so obvious that
integration and differentiation are inverse opera-
tions when you think of integration as finding the
area under a curve, and differentiation as finding
limitsof Ax/At as At goesto zero. Itistimenow to
make this relationship clear.

First, let us review our concept of a derivative.
Going back to our strobe photograph of Figure (3),
replacing R; by R(t) and R, ; by R(t+At), asshown
inFigure(3a), our strobevelocity wasthen given by

_ R(t+a0) —R()

v(t) - (52)

Thecalculusdefinition of thevel ocity isobtained by
reducing the strobetimeinterval At until we obtain
the instantaneous velocity v .

9 _ limit R(t+280-R()
calculus = At 0 At

(53)

AR = R(t+At) — R(t)

* I+1

R(Y)

R(t+At)

- AR R(t+At) — R(t
- 2R - Ret-fo

Figure 3a
Defining the strobe velocity.
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While Equation (53) looks like it is applied to the
explicit case of the strobe photograph of projectile
motion, itiseasily extended to cover any process of
differentiation. Whatever functionwehave[wehad
R(t), supposeitisnowf(t)], evaluateit at twoclosely
spaced times, subtract the older value from the
newer one, and divide by the time difference At.
Taking thelimit as At becomesvery small givesus
the derivative

df(t) _ limit f(t+At) —f(t)

®t - AM-0 At (54)

Thevariable with which we are differentiating does
not haveto betimet. It can beany variable that we
can divide into small segments, such as x

d _ limit f(x+Ax) —f(x)
ax X = a0 AX

(55)

Let us see how the operation defined in Equation
(55) istheinverse of finding the areaunder acurve.

Supposewehaveacurve, likeour old v, (t) graphed
as afunction of time, as shown in Figure (17). To
find out how far wetraveled in atimeinterval from
t; to somelater time T, we would do the integral

X(T) = f "Vt

(56)

The integral in Equation (56) tells us how far we
havegoneat any timeT duringthetrip. Thequantity
X(T) isafunction of thistime T.

()

t
|
t, T

Figure 17

The distance traveled by the time T isthe area under
the velocity curve up to thetime T.
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Now let us differentiate the function x(T) with
respect to the variable T. By our definition of
differentiation we have

t X(T +At) —x(T)
-0 At

X(T) — I|m| (57)
Figure(17) showsusthefunctionx(T). Itisthearea
under the curve v(t) starting at t; and going up to
timet = T. Figure (18) shows us the function
X(T +At). It is the area under the same curve,
starting at t; but goingupto t=T + At. Whenwe
subtract these two aress, all we haveleft isthe area
of the slender rectangle shown in Figure (19).

V(1)

!
t; T
Figure 17 repeated
Thedistance x(T) traveled by thetime T

V(1)

' N

t T T+At

Figure 18

Thedistance x(T+At) traveled by thetime T+At.

V(1)

/VX(T)At

VN
Figure 19 T T+At

Thedistance x (T+At) —x(T)
traveled during thetime At.
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Therectanglehasaheight approximately v,(T) and
awidth At for an area

X(T +At) —x(T) = vy (T)At (58)
Dividing through by At gives
v(T) = X(T+ AAti —Xx(T) (59)

Theonly approximationinEquation (59) isat thetop
of therectangle. If the curveisnot flat, v, (T + At)
will bedifferentfrom v, (T) andtheareaof thesliver
will have avalue somewhere between v, (T)At and
V(T + At)At. Butif wetakethelimit as At goesto
zero, thevalueof v, (T + At) must approach v,(T),
and we end up with the exact result

t X(T +At) —x(T)
-0 At

Thisisjust the derivative dx(t)/dt evaluated at t = T.

v (T) = I|m|

(60)

V(T) = % (=T (61a)
where we started from
T
X(T) = ft_ v, (t) dt (61b)

Equations(61a) and (61b) demonstrate explicitly how
differentiation and integration are inverse operations.
Thederivativedlowedustogofromx(t) to v, (t) while
theintegral took usfrom v,(t) tox(t). Thisinverseis
not as s mple as pushing a button on acal culator to go
from Into eX. Herewehaveto ded withlimitsonthe
integration and a shift of variablesfrom t to T. But
these two processes do alow usto go back and forth.
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A Fast Way to go Back and Forth

We introduced our discussion of integration by
pointing out that equations

d
i = 20 g = M0

(62a,b)

went the wrong way in that we were more likely to
know the acceleration a,(t) and from that want to
calculate the velocity v, (t) and distance traveled
X(t). After many steps, we found that integration
was what we needed.

Wedo not want to repeat all those steps. Instead we
would like a quick and simple way to go the other
way around. Hereishow you doit. Think of the dt
in (62a) as a small but finite time interval. That
means you can treat it like any other number and
multiply both sides of Equation (62a) through by it.

Vy(t) = %

dx(t) = vi(t)dt (63)

Now integrate both sides of Equation (63) from some
initial time t; toafinal timeT. (If youdothesamething
to both sides of an equation, both sides should still be
equal to each other.)

f t_T dx(t) = f tT v (D) dt

(64)

If dt isto be thought of asasmdl but finite time step,
then dx(t) isthe small but finite distance we moved in
thetimedt. Theintegra on theleft sde of Equation
(64) isjust the sum of al these short distances moved,
whichisjust thetota distance moved during thetime
fromt; toT.

f T ax(® = x(®
; )

T
N = X(T) —-X (tl)

Thuswe end up with the result

T T t)dt
= v
. |, wo

X(t)

(66)

Equation (66) isalittle more general than (62b) for
it allowsfor thefact that x(t;) might not be zero. If,
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however, we say that westarted our trip at x(t;) =0,
then we get the result

-
X(T) = fti v, ()t 67

representing the distance traveled since the start of
the trip.

Constant Acceleration Formulas

The constant accel eration formulas, so well known
from high school physics courses, are an excellent
application of theprocedureswehavejust described.

We will begin with motion in one dimension. Sup-
poseacar istraveling dueeast, inthex direction, and
for awhile has a constant acceleration a, . The car
passesusat atime t; = 0, traveling at a speed v, .
Atsomelater timeT, if theacceleration a, remains
constant, how far away from uswill the car be?

We start with the equation
dv, (t
a () = 20 (69

Multiplying through by dt to get
dvy(f) = a(t)dt

then integrating fromtimet; =0 totime t; =T, we
get

T B T
[, @ = [ adod (69)
Sincetheintegral [dv,(t) = v,(t) , wehave
[[a® = w0 =wm-%0 @

where v, (0) isthe velocity v, of the car when it
passed us at timet = 0.

While we can always do the left hand integral in
Equation (69), we cannot do the right hand integral
until we know a,(t) . For the constant acceleration
problem, however, we know that a(t) = a, is
constant, and we have

f OT a ()t = f OT adt (71)
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Since constants can come outside the integral sign,
we get

whereweused [dt =t . Substituting Equations(70)
and (72) in (69) gives
VT =V, = aT (73)

Since Equation (73) applies for any time T, we can
replace T by t to get the well known result

Vy(t) = vy + 3yt (a, constant) (74)

Equation (74) tellsusthe speed of thecar at any time
t after it passed us, as long as the acceleration
remains constant.

Tofind out how far away thecar is, we start with the
equation

v = &

Multiplying through by dt to get
dx(t) = v (t) dt

then integrating fromtimet=0totimet=T gives
(aswe saw earlier)

(62a)

T T
f NECE f oL (75)
Theleft hand sideis
[[ax = x| =xm-x0 ()

If we measure along the x axis, starting from where
we are (where the car was at t = 0) then x(0) = 0.

In order to do the right hand integral in Equation
(75), wehavetoknow what thefunction v,(t) is. But
for constant acceleration, we have from Equation
(74) vy(t) = vy + at , thus

fTv(t)dt:fT(v raf)dt (77)
0 X 0 x0 X
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One of the results of integration that you should
prove for yourself (just sketch the areas) istherule

f if [a(x) + b(x)]dx = f if a(x)dx + f if b(x)dx (78)
thus we get
JT(V +addt = fTv dt+fTaXtdt (79)
0 x0 0 x0 0

Since constants can come outside the integrals, this
isequal to

T T T
fo (Vo + a)dt = vxofo dt+axfo tdt (80)

Earlier we saw that

T T
f d=t =T-0=T (23)
0 0
T {2 T T2 T2
fo tdt=§o = 5 0= (30)
Thus we get
T a 1 2
.[O (Vxo +a)dt = vyol + iaXT (81)

Using Equations (76) and (81) in (75) gives
X(T) ~Xo = VT + 33,7

Taking xo =0 and replacing T by t gives the other
constant acceleration formula

X(t) = vyt + ;axt2 (ay constant) (82

Y ou can now seethat thefactor of t%/2 inthe constant
acceleration formulas comesfrom theintegral tdt.
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Exercise 4

Find the formula for the velocity v(t) and position x(t)
for a car moving with constant acceleration a,, that
was located at position x; at some initial time t;.

Start your calculation from the equations

Vx(t) = d%(tt)

ax(t) = d\git)

and go through all the steps that we did to get
Equations (74)and (82). Seeif you can dothis without
looking at the text.

If you have to look back to see what some steps are,
then finish the derivation looking at the text. Then a
day or so later, clean off your desk, get out a blank
sheet of paper, write down this problem, put the book
away and do the derivation. Keep doing this until you
can do the derivation of the constant acceleration
formulas without looking at the text.

Constant Acceleration Formulas

in Three Dimensions

Tohandlethecaseof motionwith constant accelera-
tioninthree dimensions, you start with the separate
equations

d
wo = 20 e = MO

dv, (t
wo =30 =N @
v = B0 g = Y
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Thenrepeat, for each pair of equations, the stepsthat
|ed to the constant accel eration formulasfor motion
inthe x direction. Theresultswill be

X(0) = Vgt + 2882 (D) = Vo + &yt

V() = vyot + 33t (84)

Z(t) = vyt + %azt2
Thefinal step isto combinethese six equationsinto

the two vector equations

Vy(t) = vyo + at

V(1) = vy + at

() = \70t+%ét2 V() = Vot

(85)

These are the equations we analyzed graphically in
Chapter 3 of the Physics text, in Figure (3-34) and
Exercise (3-9). (Therewewrote $ instead of X(t),
and y; rather than v .)

In many introductory physics courses, considerable
emphasisis placed on solving constant acceleration
problems. You can spend weeks practicing on
solving these problems, and becomevery good at it.
However, when you have done this, you have not
learned very much physics because most forms of
motion are not with constant acceleration, and thus
the formulas do not apply. The formulas were
important historically, for they were the first to
allow the accurate prediction of motion (of cannon-
balls). Butif too much emphasisis placed on these
problems, students tend to use them where they do
not apply. For this reason we have placed the
exercises using the constant accel eration equations
inan appendix at the end of Chapter 4 of the Physics
text. There are plenty of problems there for all the
practice you will need with these equations. Doing
these exercises requires only algebra, there is no
practicewith calculus. Toget someexperiencewith
calculus, be sure that you can confidently do Exer-
cise 4.
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MORE ON DIFFERENTIATION

In our discussion of integration, we saw that the
basic idea was that the integral of some curve or
function f(t) was equal to the area under that curve.
That isan easy enough concept. Theproblemsarose
when we actually tried to find the formulas for the
areas under various curves. The only areas we
actually calculated were the rectangular area under
f(t) = constant and the triangular areaunder f(t) = at.
It was perhaps a surprise that the area under the
simple curve 1/t should turn out to be a logarithm.

For differentiation, the basic idea of the processis
given by the formula
df(t) _ limit f(t+At) —f(t)

at = At-0 At (54) repeated

Equation (54) is short hand notation for a whole
series of stepswhichweintroduced through the use
of strobephotographs. Thebasicideaof differentia-
tionismorecomplex thanintegration, but, aswewill
now seg, it isoften alot easier to find the derivative
of acurvethanitsintegral.

Series Expansions
Aneasy way tofind theformulafor thederivative of
a curve is to use a series expansion. We will
illustrate the process by using the binomial expan-
sion to calculate the derivative of the function x"
where nisany constant.

We used the binomial expansion, or at least thefirst
twoterms, in Chapter 1 of the Physicstext. That was
during our discussion of the approximation formu-
lasthat are useful inrelativistic calculations. Aswe
mentioned in Exercise (1-5), the binomia expan-
sionis

(X + G)n = x"+nax"-1+ M a2x"-2 113

21
(86)
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When a isanumber muchsmallerthanl (a <<1),
we can neglect a2 compared to a (if o =.01,
a2=,0001), with the result that we can accurately
approximate (x + a)" by

(x+0a)" = x"+ nax"-1 a<<l (87)

Equation (87) givesusall the approximation formu-
lasfoundin Equations(1-20) through (1-25) onpage
1-28 of the Physics text.

As an example of Equation (87), just to see that it
works, letustakex=5,n=7and a =.01tocalculate
(5.01)7 . From the calculator we get

(5.01)7 = 79225.3344 (88)

(Todothisenter 5.01, pressthey* button, thenenter
7 and pressthe = button.) Let usnow see how this
result compares with

(x+a)" = x"+nax"-1

(89)
(5+.01)" = 5"+ 7(.01)5°
We have
57 = 78125 (90)

7x.01x5%=7x.01x15625 = 1093.75 (91)
Adding the numbersin (90) and (91) together gives
(92)

Thusweend up with 79218 instead of 79225, which
isnot too bad aresult. Thesmaller a iscompared
to one, the better the approximation.

57 +7(.01)5° = 79218.75
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Derivative of the Function x"

Weare now ready to use our approximationformula
(87) to calculate the derivative of the function x" .
From the definition of the derivative we have

dx™  limit (x + AX)"—x"
dx ~ Ax-0 AX (93)

Since Ax isto becomeinfinitesimally small, wecan
use our approximation formulafor (x +a)". We
get

(x+a)" = x"+n@@x™  (a<<1)
(X +Ax)" = x"+n(Ax)x"1 (Ax<<1) (94)
Using thisin Equation (93) gives

dix™ _ limit [X"+ n(Ax)x"1] —xn
dx =~ &x-0 AX

(95)

We used an equal sign rather than an approximately
equal signin Equation (95) because our approxima-
tionformula(94) becomesexact when Ax becomes
infinitesimally small.

In Equation (95), theterms x" cancel andweareleft
with

dx") _ limit

n(Ax)x™ L
dx = Ax-0

AX (96)

At this point, the factors Ax cancel and we have

dx") _ limit

o = oo M

Sinceno Ax's remaininour formula, weend upwith
the exact result

(97)

d(xm

—=7 = nx"1
dx

(98)

Equation (98) isthe general formulafor the deriva-
tive of the function x" .
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In our discussion of integration, we saw that a
constant could come outsidetheintegral. The same
thing happens with a derivative. Consider, for
example,

af(x + AX) — af(x)
AX

; -
Safeo] = A

Since the constant a has nothing to do with the
[imiting process, this can be written

d imit | f AX) —f
—dx[af(x)] = 'T' lto O+ &) ~109
(99)
__df(x)
B aW
Exercise 5

Calculate the derivative with respect to x (i.e., d/dx)
of the following functions. (When negative powers of
x are involved, assume x is not equal to zero.)

(d) 5x%-3x

(Before you do part (d), use the def(ijr%(iti)on dof( t)he
i ; d _ X aX
derivative to prove that £ [f)+g()|="5" + g )

) x!
(fy x2
(9)
(h) 1hx

(i) 3x7

(In part (k) first show that this should be zero from the
definition of the derivative. Then write 1=x9 and
show that Equation (98) also works, as long as x is not
zero.)

() 5
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The Chain Rule

There is a simple trick called the chain rule that
makes it easy to differentiate a wide variety of
functions. Theruleis

dfly()| _ df(y) dy |
& - dy dx chainrule (100)

To see how this rule works, consider the function

f(x) = (x2)" (101)
Weknow that thisisjust f(x) = x2", and the deriva-
tiveis

df(x) _

X(x2”) = 2nx2n-1 (102)

Sdx
But suppose that we did not know this trick, and
therefore did not know how to differentiate (x2)".
We do however know how to differentiate powers
like x? and y". The chain rule allows usto use this
knowledgein order tofigureout how todifferentiate
the more complex function(x?)".

We begin by defining y(x) as
y(x) = x2 (103)

Then our function f(x) = (x?"can be written in
terms of y asfollows

f) = ("= [y()1"= (v)"= f(y)

fy) = ()" (104)
Differentiating (103) and (104) gives

YO = dx2) = 2 (105)

dfd(;’) = Ly = nyr (106)
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Using (104) and (105) in the chain rule (100) gives

dfly) _ of dy _ o)
dx _dy & (nyn ) (ZX)

= 2ny"™Ix
= 2n(x2)"x

= 2n(x2n-1)x

- 2n(x[2”— 2] + 1)

= 2nx2n-1
which is the answer we expect.

In our example, using the chain rule was more
difficult than differentiating directly because we
already knew how to differentiate x2". But wewill
shortly encounter examples of new functions that
we do not know how to differentiate directly, but
which can be written in the form f[y(x)], where we
know df/dy and dy/dx. We can then use the chain
rule to evaluate the derivative df/dx. We will give
you practice with the chain rule when we encounter
these functions.

Remembering the Chain Rule
Thechainrulecan beremembered by thinking of the
dy's as cancelling as shown.

dity) B _ df(y)
By dx dx

remembering
thechainrule

(108)
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Partial Proof of the Chain Rule (optional)

The proof of the chain rule is closely related to
cancellation we showed in Equation (108). A
partial proof of the rule proceeds as follows.

Suppose we have some function f(y) wherey is a
function of thevariablex. Asaresult f[y(x)] isitself
afunction of x and can bedifferentiated with respect
to x.

o fly(X+ AX) | = fly(X)
d—c)'(f[y(x)] = IAlxmlto [ AJ e

Now define the quantity Ay by

Ay = y(x + AX) —y(X)
s0 that

(123)

(124)

y(x +Ax) = y(x) +Ay
fly(x + Ax)] = f(y +Ay)
and Equation (123) becomes
&f[y(x)] _ limit_f(y +Ay) —f(y)

Ax -0 Ax (125)

Now multiply (125) through by

1 =AY _ y(X+8x) —y(x)

X Ry (126)

_limit|fy +2y) =) yox+ 8% —y(9)
~ -0 Ax Ny

jimit | f(y + Ay) ~1(y) « YXH DY) -y®)|
Ax -0 Ay Ax

(127)
whereweinterchanged Ax and Ay inthedenomina
tor.
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(Wecall thisapartial proof for thefollowing reason.
For some functions y(x), the quantity
Ay = y(x + Ax) —y(x) may beidentically zerofor
a small range of Ax. In that case we would be
dividing by zero (the /Ay ) even beforewetook the
limit as Ax goesto zero. A more complete proof
handles the special cases separately. The resulting
chainrulestill workshowever, evenfor thesespecial
cases.)

Since Ay = y(x + Ax) —y(x) goes to zero as Ax
goesto zero, we can write Equation (127) as

G ily]

_ Llimit f(y +&y) —f(y)

limit Y(X+ AX) —y(X)
Ax -0 AX

a

Thisruleworks aslong asthe derivatives df/dy and
dy/dx are meaningful, i.e., we stay away from kinks
or discontinuitiesinf andy.

(100) repeated
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INTEGRATION FORMULAS

Knowing the formulafor the derivative of the func-
tion x" , and knowing that integration undoesdiffer-
entiation, we can now use Equation (98)

& (98) repeated
tofind theintegral of thefunction x" . Wewill see
that thistrick worksfor all cases except the special
case where n = -1, i.e, the specia case where the
integral isanatural logarithm.

— nxn—l

Tointegrate X", let usgo back to our calculation of
thedistance s, or x(t) traveled by an object moving
inthex directionat avelocity v, . Thiswasgiven by
Equations (19) or (56) as

T T
x| = f v (t) cit (129)
4 i
where theinstantaneousvelocity v,(t) isdefined as
dx(t
v = &0 (129)
Suppose x(t) had the special form
x(t) = t"*1 (a special case) (130)

then we know from our derivative formulas that
dx(t) _ dt*D
d —  dt
Substituting x(t) =t"*1 and v(t) = (n+1)t" into
Equation (128) gives
T T

- f V() dit
t

v(t) = = (n+Dt"  (131)

X(t) (128)

T T
"t = [ (n+1)t"dt

t £

T (132)
- (n+1)ft_ tlt
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Dividing through by (n+1) gives
T ng 1 in+1 T
that = —-t 133
J e = e (133

If we choose t; = 0, we get the simpler result

(134)

and the indefinite integral can be written

nd _ tn+1
ft v}

(135) (also 34)

Thisisthegeneral rulewe stated without proof back
in Equation (34). Note that thisformula says noth-
ing about the case n = -1, i.e.,, when we integrate
t~1 = 1t, because n+1=-1+1=0andweend up
with division by zero. But for all other values of n,
we now have derived ageneral formulafor finding
theareaunder any curveof theform x" (or t"). This
isarather powerful result considering the problems
one encounters actually finding areas under curves.
(If you did not do Exercise 1, the integration exer-
cisesonpage 14, or had difficulty withthem, go back
and do them now.)
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Derivative of the Exponential Function
The previouswork showsusthat if we have aseries
expansion for a function, it is easy to obtain a
formulafor the derivative of the function. We will
now apply thistechniqueto calculate the derivative
and integral of the exponential function eX .

Thereisaseriesexpansion for thefunction eX that
works for any value of x is but is most useful for
small valuesof x = a << 1,is

e“z1+a+°‘—2+“—3+D]] (136)
2 3

where 2! =2 x1, 31 =3x2x1 =6, etc. (The quan-
tities2!, 3! arecalled factorials. For example 3! is
called three factorial.)

To seehow well the series (136) works, consider the
case o =.01. Fromtheserieswehave, uptothe a3
term

a=.01
a2 = .0001; a2/2 = .00005
a2 = .000001; o3 6 = .000000167

Giving us the approximate value
a2 , a3

l+a+ ST + ar - 1.010050167
When we enter .01 into a scientific calculator and
pressthe e button, we get exactly the same result.
Thusthe cal culator isno more accurate than includ-
ing the a3 termin the series, for valuesof a equal
to .01 or less.

(137)
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Let us now see how to use the series (136) for
calculating the derivative of . Wehave, fromthe
definition of a derivative,

imit f(x +Ax) —f(x
dgxf(x) = IAIxm_I:[O ( A)Z ) (56) repeat
If f(x) =eX, weget
d(€*) _ limit | ex* 8% —eX
dx — &-0  Ax } (138)

To do this calculation, we have to evaluate the
quantity eX*&%_ First, we use the fact that for
exponentials

ea+b - eaeb
(Rememberthat 10°*3 = 102 x 10° = 10°.) Thus
XX = eXehX (139)

Now use the approximation formula (136), setting
a = Ax andthrowing out the a2 and a3 and higher
terms because we are going to let Ax go to zero

e = 1+ Ax (140)
Substituting (140) in (139) gives
X = eX(1+ AX)
= X+ XAX (141)
Next use (141) in (138) to get
d(e) _ limit | (€*+eXAx) —eX
dx — Mx-0 AX (142)
The e terms cancel and we are left with
d(e*) _ limit [e*Ax] _ limit
a T ax-0 Ax | - mx-o®  (149)

Sincethe Ax's cancelled, we are left with the exact
result

d(eX)

- X
dx €

(144)

Weseethat theexponentia function e* hasthespecia
property that it isits own derivative.
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We will often want to know the derivative, not just
of the function e but of the slightly more general
result e whereaisaconstant. That is, wewant to
find

d
dxeax

Solving this problem provides us with our first
meaningful application of the chain rule

df(y) _ df(y) dy

(a = constant) (145)

If we set

y = ax (146)
then we have

de _ dev¥ dy

dx T dy dx (147)

Now

fﬁf = e (148)

Y ( )= ax =axl=a (149

dx

Using (148) and (149) in (147) gives

de™ = (e = (e™)(d) = ae™

Thus we have

(150)

Thisresult will beused so oftenitisworth memoriz-
ing.

Exercise 6
For further practice with the chain rule, show that

deax®

2
= 2axe®
dx

Do this by choosing y = ax?
choosing y =x?.

, and then do it again by
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Integral of the Exponential Function
Tocaculatetheintegral of e, wewill usethesame
trick asweusedfor theintegral of x", butwewill be
a bit more formal this time. Let us start with
Equation (128) relating position x(t) and velocity
v(t) = dx(t)/dt go get

- | Ty = ) 1

(128)

SinceEquation (128) holdsfor any function x(t) [we
did not put any restrictions on x(t)], we can write
Equation (128) in a more abstract way relating any
function f(x) to its derivative df(x)/dx

Xt fo df(x)OI

x; dx

(151)

To calculate the integral of e, we set f(x) = e
and df(x)/dx = ae® to get

Xg Xf
= f aedx
Xj Xj

Dividing (157) through by (@) gives us the definite
integral

eaX

(152)

ey = 1eax

Xj

(a=constant) (153)

Xj

The corresponding indefinite integral is

f eXdx = i (a = constant) (154)

Exercise 7
The natural logarithm is defined by the equation

In(x) = f(%)dx

Use Equation (151) to show that

(see Equations 33-40)

Snx =4 (155)

(Hint—integrate both sides of Equation (155) with
respect to x.)
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DERIVATIVE AS THE SLOPE OF A CURVE

Up to now, we have emphasized the idea that the
derivative of afunction f(x) isgiven by thelimiting
process

df(x) _ limit

f(x + AAx)z -f(x)] (55) repeat

We saw that thisform was convenient when we had
an explicit way of calculating f(x + Ax) , aswe did
by using aseriesexpansion. However, alot of words
are required to explain the steps involved in doing
the limiting process indicated in Equation (55). In
contrast, the idea of an integral as being the area
under a curve is much easier to state and visualize.
Now we will provide an easy way to state and
interpret the derivative of acurve.

Consider the function f(x) graphed in Figure (20).
At a distance x down the x axis, the curve had a
height f(x) as shown. Slightly farther down the x
axis, at x + Ax, the curve has risen to a height
f(x + AX) .

f(x)

f(x+AX
SO J—
B I ]
i)~
— AX
X
X X+AX
Figure 20

Two pointson a curve, a distance Ax apart.

f(x+AX)
-f(x)

F(XHAX) < C —
a }

f(x)- - -

AX b

Figure 20a

At this point, the curveistilted
by approximately an angle 6*.
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Figure (20a) is a blowup of the curve in the region
between x and x + Ax . If the distance Ax is suffi-
ciently small, the curve between x and x + Ax
should be approximately astraight lineand that part
of the curve should be approximately the hypot-
enuse of the right triangle abc seen in Figure (204).
Since the side opposite to the angle 8" is
f(x + Ax) —f(X) , and the adjacent side is Ax, we
have the result that the tangent of the angle 0" is

tan(0") = f(x + AAx)z —f(x)

(156)

When we make Ax smaller and smaller, take the
limitas Ax — 0, weseethat theangle 6" becomes
more nearly equal to the angle 6 shown in Figure
(21), the angle of the curve when it passes through
the point x. Thus

_ limit f(x+Ax) —f(x)

tan® Ax -0 Ax

(157)

The tangent of the angle at which the curve passes
through the point x iscalled the slope of thecurveat
the point X. Thusfrom Equation (157) we see that
thesopeof thecurveisequal tothederivativeof the
curve at that point. We now have the interpretation
that the derivative of acurve at some point is equal
to the slope of the curve at that point, while the
integral of acurveisequal totheareaunder thecurve
up to that point.

f(x) %

X
Figure 21

The tangent of the angle @ at which the curve
passes through the point x is called the slope
of the curve at that point.
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Negative Slope

In Figure (22) we comparethe slopesof arising and
afalling curve. In(22a), where the curveisrising,
the quantity f(x + Ax) is greater than f(x) and the
derivative or slope

df(x) _ limit
dx Ax -0

f(x + Ax) —f(X)
AX

is a positive number.

In contrast, for thedownward curveof Figure (22b),
f(x + Ax) islessthan f(x) and the slopeisnegative.
For a curve headed downward, we have

downward heading
curve

df(x) _
- tan(6) (158)
(For thiscaseyou canthink of 6 asanegativeangle,
so that tan(6) would automatically come out nega-
tive. However it is easier smply to remember that
theslopeof anupward directed curveispositiveand

that of a downward directed curve is negative.)

fx+Ax) —f(X) is positive
AX

X  X+AX

2,
% — f(x)
e S/Oa_\é ------- f(x+AX)

Figure 22 a,b
Going uphill is a positive slope,
downhill is a negative slope.

fx+AX) — f(X) is negative
AX
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Exercise 8

Estimate the numerical value of the slope of the curve
shown in Figure (23) at points (a), (b), (c), (d) and (e).
In each case do a sketch of |f(x + Ax) — f(x)| for a small
AX , and let the slope be the ratio of |f(x +Ax)—f(x)] to
AX . Your answers should be roughly 1,0, -1, + 0,
— 00

f)

Figure 23

Estimate the slope at the
various pointsindicated.
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THE EXPONENTIAL DECAY

A curvethat wewill encounter several timesduring
thecourseisthefunction e~ showninFigure(24),
which we call an exponential decay. Since expo-
nents aways have to be dimensionless numbers, we
arewriting the constant (a) in theform 1/x, so that
theexponent x/x ismoreobviously dimensionless.

Thefunction e~ */*o hasseveral very special proper-
ties. Atx =0, it hasthenumerical valuel (e°=1).
Whenweget upto x = Xg, the curve hasdropped to
avaue

eXXo = gl = % (at x =Xg)

~ 1

2.7

When we go out to x = 2X,, the curve has dropped
to

(159)

—Xo/xg = =2 = 1

e %o = e 2

Out at x = 3Xg, the curve has dropped by another

factor of eto (1/e)(1/e)(1/e). This decrease contin-

uesindefinitely. Itisthe characteristic feature of an
exponential decay.

(160)

Muon Lifetime

In the muon lifetime experiment, we saw that the
number of muonssurviving decreased withtime. At
the end of two microseconds, more than half of the
original 648 muonswere still present. By 6 micro-

1/e -

1/e2-

3Xo

2Xo

Figure 24

Aswe go out an additional distance
Xq , the exponential curve drops by
another factor of 1/e.
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seconds, only 27 remained. The decay of these
muonsisan example of an exponential decay of the
form

surviving muonsat | x et

number of number of
=|n (161)
muons timet=0

where t, isthetimeit takesfor the number of muons
remaining to drop by afactor of 1/e = 1/2.7. That
timeis called the muon lifetime.

We can use Equation (161) to estimate the muon
lifetime ty . Inthemovie, the number of muonsét the
topof thegraph, reproducedin Figure(25),1s648. That
isattimet=0. Down at timet = 6 microseconds, the
number surviving is 27. Putting these numbers into
Equation (161) gives

survivin initi _
27 muons = 648 il x &6/t
eblto = 20 = 042

648

Takethe natural logarithm In of both sides of Equa-
tion (162), [remembering that In(eX) = x] gives

(162)

In(e6/t) = —t—06 = In(.042) = —3.17

wherewe entered .042 on ascientific cal culator and
pressed the In key. Solving for t, we get

ty = 6”};% = 1.9 microseconds (163)
This is close to the accepted vaue of ty = 2.20
microseconds which has been determined from the
study of many thousands of muon decays.

Figure 25

The lifetime of each detected muon is represented
by the length of a vertical line. We can see that
many muons live as long as 2 microseconds (2Lis),
but few live aslong as 6 microseconds.
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Half Life

The exponential decay curve e U decays to
Ve=1/2.7of itsvalueattimet, . While 1/e isavery
convenient number from a mathematical point of
view, itiseasier to think of thetime ty;, it takesfor
half of the muonsto decay. Thistimet;, iscalled
the half life of the particle.

From Figure (26) we can seethat the half life ty), is
dightly shorter thanthelifetimet, . Tocalculatethe
half life from t, we have

e (164)

— etyltg = 1
t=typ 2
Again taking the natural logarithm of both sides of
Equation (164) gives

-t
~tyoltg) = U2 = 1n(l) = _
In(e 2 o) =52 = In(z) = — 693

ty, = 6931, (165)

From Equation (165) you can seethat ahalf life ty,,
isabout .7 of thelifetime ty . If themuonlifetimeis
2.2usec (wewill abbreviate microsecondsas pisec),
and you start with a large number of muons, you
would expect about half to decay in atime of

(ty2)muon = 693 x 2.2usec = 1.5 psec

The basic feature of the exponential decay curve
e~ isthat for every timet, that passes, thecurve
decreasesby another factor of 1/e. Thesameapplies
to the half life t;,. After one half life, eVl has
decreased to half itsvalue. After asecond half life,
the curveisdownto 1/4 =1/2 x 1/2. After 3 half
livesitisdownto 1/8 = 1/2 x 1/2 x 1/2 asshownin
Figure (27).

1-k -

1/2 -
1/e -

0 / tg
Figure 26 tarz

Comparison of thelifetime t, and the half-life t,,,.
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To help illustrate the nature of exponentia decays,
supposethat you started with amillion muons. How
long would you expect to wait before there was, on
the average, only one left?

To solve this problem, you would want the number
eV to be down by afactor of 1 million

e = 1x107°
Taking the natural logarithm of both sides gives
~titg) = =L = —-6) = _
In(e~t/to] = L= In(1x1075) =138  (166)

(To calculate In(lx 10~ 6) , enter 1, then press the
exp key and enter 6, then pressthe +/—key to change
itto—6. Finally press = to get the answer —13.8.)

Solving Equation (166) for t gives
t = 138ty = 13.8%x2.2 usec

t = 30 microseconds

(167)

That is the nature of an exponential decay. While
you have nearly half a million left after around 2
microseconds, they are essentially al gone by 30
microseconds.

Exercise 9

How many factors of 1/2 do you have to multiply
together to get approximately 1/1,000,0007 Multiply
this number by the muon half-life to see if you get
about 30 microseconds.

1/2-

1/4-
1/8-

0 ty, 2ty, 3t
Figure 27 V2 v v
After each half-life, the curve

decreases by another factor of 1/2.
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Measuring the Time

Constant from a Graph

Theideathat thederivative of acurveisthe slope of
thecurve, leadsto an easy way to estimatealifetime
to from an exponential decay curve e U,

The formula for the derivative of an exponential
curveis

% = et (150) repeated
Setting a=— 1ty gives

d(tity) = _ 1t

Sle o) = —ethho (168)

0

Since the derivative of a curve is the slope of the
curve, we set the derivative equal to the tangent of
the angle the curve makes with the horizontal axis.

diatity) = _Lotity =

dt(e 0) = toe 0 = tan®
The minus sign tells us that the curve is headed
down.

(168a)

In Figure (28), we have drawn aline tangent to the
curve at the point t =T. Thislineintersectsthe (t)
axis(theaxiswhere e~ o goesto zero) at adistance
(x) down the t axis.

e—T/tO_

< X——>
Figure 28 T
A ling, drawn tangent to the exponential decay
curve at some point T, intersectsthe axisa
distance x down the axis. We show that this
distance x is equal to the time constant t,. This
istrue no matter what point T we start with.
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The height (y) of the point where we drew the
tangent curveisjust thevalueof thefunction e~ T/to,
The tangent of the angle 0 isthe opposite side (y)
divided by the adjacent side (x)

Titg

tand = ¥ = S (169)

Equating the two magnitudes of tan® in Equations
(169) in (168a) gives us

LeTho = LeTho

to
which requires that
X =ty (170)

Equation (170) tells us that the distance (x), the
distance down the axis where the tangent lines
intersect the axis, is ssmply the time constant t, .

Theresult givesusavery quick way of determining
the time constant t, of an exponential decay curve.
Asillustratedin Figure(29), chooseany point onthe
curve, draw atangent to the curve at that point and
measure the distance down the axis where the tan-
gentlineintersectstheaxis. That distancewill bethe
time constant t,. We will use this technique in
several laboratory exercises later in the course.

—t/t o
e
/

Figure 29 to

A quick way to estimate the time constant t,
for an exponential decay curveisto draw the
tangent line as shown.
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THE SINE AND COSINE FUNCTIONS

Thefinal topicinour introductionto calculuswill be
the functions sin® and cos® and their derivatives
andintegrals. Wewill need thesefunctionswhenwe
come to rotational motion and wave motion.

The definition of sin@ and cos8, which should be
familiar from trigonometry, are

: _a opposite
siné = g ( )

hypotenuse (1718

hypotenuse (171b)

c
a
/‘ Figure 30

b
where 6 isan angle of aright triangle as shown in
Figure (30), (a) isthe length of the side opposite to
0, (b) thesideadjacentto 8 and (c) thehypotenuse.

cosB = % (adjacent )

The formulas are simplified if we consider a right
triangle whose hypotenuse is of length c =1 asin
Figure (31). Then we have

sind = a (1729
cosO = b (172b)
/‘
a
0 Figure 31
b

We can then fit our right triangle inside a circle of
radius 1 as shown in Figure (32).

Figure 32
Fitting our right triangle inside a unit radius circle.
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Radian Measure

Weare brought up to measure anglesin degrees, but
physicists and mathematicians usually measure
anglesinradians. Theangle 8 measuredinradians
isdefined asthearclength { subtended by theangle
0 onacircleof unitradius, asshownin Figure (32).

arc length subtended

by 8 onaunit circle (173)

eraolians =t
(If wehad acircleof radius c, then wewould define
O agians = V/C , adimensionless ratio. In the special
casec =1, thisreducesto 6, 4as="{")

Sincethecircumferenceof aunitcircleis 21, wesee
that 8 for acompletecircleis 2t radians, whichis
thesameas 360 degrees. Thistellsushow toconvert
from degrees to radians. We have the conversion
factor

360 degrees _
2riradians

degrees

57.3 radian

(174)

As an example of using this conversion factor,
suppose we want to convert 30 degrees to radians.
We would have

30 degrees
57.3 degrees/radian

To decide whether to divide by or multiply by a
conversionfactor, usethedimensionsof theconver-
sion factor. For example, if we had multiplied 30
degrees by our conversion factor, we would have
gotten

= .52 radians

(175)

degrees degrees?
radian radian
This answer may be correct, but it is useless.

30 degrees x 57.3 = 1719

The numbers to remember in using radians are the
following:

90° = 12 radians
180° = mradians
270° = 3r/2radians
360° = 2rmradians

(176)

The other values you can work out as you need them.
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The Sine Function

InFigure(33) wehavestarted with acircleof radius
1 and, inasomewhat randomway, labeled 10 points
aroundthecircle. Thearclength up to each of these
points is equal to the angle, in radian measure,
subtended by that point. The specia values are:

8y = Oradians

8, = 12 radians (90°)
B¢ = mradians (180°)
Bg = 312 radians (270°)

819 = 2mradians (360°)

In each casethe sinB isequal to theheight (a) at that
point. For example

sinB; = a;

snb, = a,

[TTTTT]

SinB,y = ayg

Weseethat theheight (a) startsout at a; = 0 for 6,
increasesup to a, = 1 at thetop of the circle, drops
back downto ag = 0 at 84 = 11, goesnegative, down
to ag=—1 at 6g=23172, and returnsto a;=0 at
010 =21.

Figure 33
The heights a; at various points around a unit circle.
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Our next step isto construct agraph inwhich 6 is
shown along the horizontal axis, and we plot the
valueof sin@ =(a) onthevertical axis. Theresult
isshown in Figure (34). The eleven points, repre-
sentingtheheights a, to &, at 8, to 8,y areshown
aslargedotsin Figure (34). We have also sketched
inasmooth curvethroughthesepoints, itisthecurve
we would get if we had plotted the value of (a) for
every valueof 8 from 8 =0 to 8 = 2rt. Thesmooth
curveisagraph of the function sin@.

Exercise 10
Using the fact that the cosine function is defined as

cosB =b (b is defined in Figures 31, 32)

plot the values of by, b4, 1] byg ona graph similar to
Figure (34), and show that the cosine function cos
looks like the curve shown in Figure (35).

Figure 34
Graph of the function sin(8) .
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Thereisnothing that sayswehaveto stop measuring
theangle © after we havegonearoundonce. Onthe
second trip around, 6 increasesfrom 21t up to 4t
and the curve sinB repeatsitself. If we go around
severa times, we get a result like that shown in
Figure (36). We often call that a sine wave.

Several cycles of the curve cos® are shown in
Figure (37). You can see that the only difference
between a sine and a cosine curve is where you set
0 =0. If youmovetheorigin of thecosineaxisback
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Amplitude of a Sine Wave

A graph of thefunction y(6) = c sin@ looksjust like
the curvein Figure (36), except the curve goesupto
aheight c and down to —c as shown in Figure (38).
We would get the curve of Figure (38) by plotting
points around acircle asin Figure (33), but using a
circleof radiusc. Wecall thisfactor ctheamplitude
of the sinewave. The function sin® has an ampli-
tude 1, while the sine wave in Figure (38) has an
amplitude c (its values range from +c to —).

(to the left) 90° (172) , you get a sine wave. csin®
1- CH----~-
—0
0 o 0
—14 O N
Figure 35 Figure 38
The cosine function. A sine wave of amplitude c.
0 ot 3 am 5 ot ©
-1+
Figure 36

Several cycles of the curve sin(6) .

0 T 21 3m 4Tt 5T 6T[e
_1__
Figure 37

Several cycles of the curve cos(8).
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Derivative of the Sine Function

Since the sine and cosine functions are smooth
curves, weshould beableto calcul atethederivatives
and integrals of them. We will do this by first
calculating the derivative, and then turning the pro-
cessaroundtofindtheintegral, just aswedid for the
functions x" and eX.

The derivative of the function sinf is defined as
usual by

sin(8 +A8) —sind
A8

d(sin@) _ |imit
ae T A0

a7

where AB isasmall changeintheangle 6.

Theeasiest way to evaluatethislimitistogo back to
theunit circleof Figure(25) and construct both sin
and sin(8 +A8) as shown in Figure (39). We see
that sin@ isthe height of the triangle with an angle
0, while sin(0 +AB) is the height of the triangle
whose center angleis (6 +A0). What wehaveto do
is calculate the difference in heights of these two
triangles.

In Figure (40) we start by focusing our attention on
the slender triangle abc with an angle A8 at (@) and
long sides of length 1 (since we have a unit circle).
Since the angle A8 is small, the short side of this
triangle is essentially equal to the arc length along
the circle from point (b) to point (¢). And sincewe
are using radian measure, thisarc length is equal to
the angle AB.

Figure 39
Trianglesfor the sin@ and the sin (8 +A8).
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Now draw alinevertically down from point (c) and
horizontally over from point (b) to formthetriangle
bcd shown in Figure (40). The important point is
that the angle at point (c) in thistiny triangleisthe
same as the angle 6 at point (). To prove this,
consider thesketchinFigure(41). A linebf isdrawn
tangent tothecircleat point (b), so that the angle abf
isaright angle. That meansthe other two anglesin
the triangle add up to 90°, the total angle in any
triangle being 180°

0+¢ = 90° (178)

Since the angle at (€) in triangle bef is aso aright
angle, the other two anglesin the triangle bef, must
also add up to 90°.

a+o = 90° (179)

For both Equations(178) and (179) to betrue, wemust
havea =0.

Figure 40

The difference between sin@ and
sin (@ +A0) isequal to the height
of the side cd of thetriangle cdb.

b
a
2 @0 mil
8+¢ = 90° f
a+@ = 90°
(b = 6
Figure 41

Demonstration that the angle a equalsthe angle 8.
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Thefinal stepisto notethat when A8 in Figure (40)
isvery small, thesidecb of thevery small triangleis
essentially tangent to the circle, and thus parallel to
the side bf in Figure (41). As aresult the angle
between cb andthevertical isalsothesameangle 6 .

Becausethetiny triangle, shownagaininFigure(42)
hasahypotenuse A8 and atop angle 6 , thevertical
side, which is equal to the difference between sin@
and sin(B +AB) has a height (cos0)A8. Thuswe
have

sin(6 +AB) —sinB = (cosB)AB (180)
Equation (180) becomes exact when A8 becomes
an infinitessimal angle.

We can now evauate the derivative

d(sin®) _ |imit |SiN(6 +AB) —sinB
d  48-0 A6
_ limit | (cosB)A6
“NA6-0  AB
Thus we get the exact result
4 (sinB) = cos (181)
B
3|9\%
(72}
D .
_.--SIin(6+A0)
o .
A sin(0)
a 0
Figure 42

The difference between sin@ and sin (8 +486) is
equal to ABcos@. Check that thisresultis
reasonable by considering the special cases
6=0and 8=90°(m/2).
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Exercise 11
Using a similar derivation, show that
d (cosB) = - sin® (182)
de
Exercise 12

Using the chain rule for differentiation, show that

(sinaB) = acosad

g

(a = constant) (183)

(cosaf) = —asinad

Bl

(Hint—if you need to, look at Equation (145) through
(150).

Exercise 13

Using the fact that integration reverses differentia-
tion, as we did in integrating the function e* (Equa-
tions (151) through (154), show that

% 6)0 = Lsinao|
fi (cosab)dé = zsina ‘ei (184a)
(a = constant)
[Sf (sinaB)de = —lcosae‘ %
Jo a 8 (184b)

Use sketches of the integrals from 6,=0 to 6; =11/2 to
show that Equations (184a) and (184b) have the
correct numerical sign. (Explicitly explain the minus
sign in (184b).
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Second Derivatives and the One
Dimensional Wave Equation

In our discussion of a wave pulse on a rope, in
Chapter 15 of Physics 2000, we used a combination
of physical observationandasomewnhat tricky argu-
ment to show that the speed of the wave pulse was
givenbytheformulav = ,/T/p . Thephysical obser-
vation wasnoting that a pulsetravelsdown therope
at an apparently uniform speed. The trick was to
analyze the behavior of the rope from the point of
view of someone moving along with the pulse (ason
pages 15-4, 5).

Another way to handle the problem is to directly
apply Newton's second law to a section of the rope.
Whenweusethisdirect approach, weend upwithan
equation that involves second derivatives not only
with respect in time, but also with respect to space.
Theresulting equation with itssecond derivativesis
what isknown asthewaveequation. Theaimofthis
chapter istolearn howto handlethewave equation,
at least for waves moving in one dimension. (Han-
dlingthreedimens onal waveequationscomeslater.)

To usethewave equationwith any real under stand-
ing, not just manipulating formulas, requires more
familiaritywiththepropertiesof asecond derivative
than we have needed so far. Thuswewill beginthis
chapter with a discussion of the second derivative,
and then go on to the one dimensional wave equa-
tion.
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THE SECOND DERIVATIVE

We have already encountered the idea of a second
derivative in our discussion of velocity and accel-
eration. Consider aparticlemovingdownthex axis,
whosepositionisdescribed by thefunctionx(t). The
particle's velocity v, (t) isgiven by

_oax(b) first
V(D) = dt derivative D

whichisthefirst derivative, with respect to time, of
X(t). The particle's acceleration a(t) is given by

a ) = 20 @
When we use (1) for v(t) in Equation (2) we get
a0 = 9 %0| sz ©

In Equation (3), we see that a(t) is obtained from
X(t) by differentiating twice with respect to time.
Wesay that a,(t) isthesecond derivativeof x(t) and
use the simplified notation

) simplified
dQ d)c(j(t) = d th) notation for 4
t| dt dt second derivative

With this notation, the position x(t), velocity v,(t) ,
and acceleration a,(t) arerelated by

X(t)
V() = %
_d()
a(t) = i ©)

Thereisnothing particularly difficult about carrying
out asecond derivative, just dothederivative opera-
tion twice asillustrated in the following example.

Example 1

Calculate the second derivative, with respect to 6,
of sin(ab)

d%sin(a

Second Derivatives and 1D Wave Eq.

Solution
Begin by taking the first derivative

dsin(ad)
d
Now differentiate again

acos(af) (7)

d (dsin(@)| _ ¢
de( do ) = §olacos(a)|
= a%[cos(ae)]
= d-asin(e0)| 6)
Thus we get
2 .
d?ﬂr;(fe) = _a2sin(af) ©

We see that the second derivative of asinecurveis
itself asine curve, with aminus sign.

Exercise 1
Calculate the following second derivatives

2

(a) %[ cos (a@)]

—~
Q
X |—=
(7
o}
[E———
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Geometrical Interpretation

of the Second Derivative

We have seen that the various calculus operations
have a geometrical interpretation. Integration was
equivalent to finding the area under a curve, while
thefirst derivative represented the slope of acurve.
We now want to obtain the geometrical interpreta-
tion of the second derivative. We will see that the
second derivative is equal to what we will call the
curvature of the curve. To see exactly what that is,
consider the following derivation.

Lety(x) bethesectionof acircleasshowninFigure(1).
Let us use notation found in a number of calculus
texts, and denote the derivative of y(x) by y'(x)

dy(x)

I implified
Y() = =g notatio

notation

(10)

Interms of y'(X), the second derivativeis

AY0) _ limit YA =Y ),
dx? Ax - 0 AX

Remember that y'(x) = dy/dx is the slope of the
curve at position x as shown in Figure (2) (For
example, see Figure 21 of Chapter 1). Thus Equa-
tion (11) tellsusthat to find the second derivative of
y(x) we haveto find the changein slopeaswemove
from x to x + AX.

Ut

Figure 1
Calculating the changein the slope of the
circle,aswego fromx =0to x = Ax.

Figure 2
Theslopeisthe
tangent of the angle.

slope _ dy(x) _
atx — dx tand
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Wewill evaluatethe second derivativeat thebottom
of the circle, where the curve is horizontal and the
dopeis zero.

Ty — O] — horizontal
yIx=01=0  ghelgind
Now move down the x axisadistance Ax asshown
inFigure(1). If Ax issmall, then Ax isessentially
equal to the arc length Al along the circle, and the

angle AB inradian measureisthearclength divided

by theradius R of the circle
_ AL L A
0o =5 =3 (13)

If we draw a line tangent to the circle at position
X = Ax , thistangent linewill makean angle A8 tothe
horizonta as shown in Figure (1). (The two angles
labeled AB inFigurelareequal nomatter how big A6
is.) Thusthe dope of thetangent lineat x = Ax is

slope of circle _ tan (A6)

at x = Ax B (14)

Now if AB isasmall angle, whichit will beif wetake
thelimit as Ax - 0, we can use the approximation

tan(AB) = A (15)

You can see why this approximation is good for
small angles from Figure (2a).

Thusthedopeof thetangent lineat x = Ax isgivenby

slope of A
tangent line = y'[x=Ax] = A® = ﬁx (16)
at x = AX

where we used Equation (13) for A8 .

Now we havevaluesof y' at x =0 (Equation 12) and
at x = Ax (Equation 16), we can use thesevaluesin
Equation (10) to get the value of d?y/dx2 at x = 0,
i.e., a the bottom of the circle.

- R
Figure 2a yI\R
For small angles, 70
the angle and the X
tangent of the angle tan (A8) = y
are essentially X
equal. n6 = L=
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Introducing the notation
2 means d2y(X)/dx2
d y(2x ) evaluated at the
ax< |, -0 point x=0
We have from Equation (10)
dy() | _ timit YI[X=8X] -y[x=0]

dx?2 Ax - 0 AX

X =

(17)
With y'[x=Ax] =Ax/R (Equation 16) and
y'[x=0] =0, we get

d() |  _ limt AX/R-0
dx? «=0 A -0 AX
_ limit 1
AX -0 R

Since the Ax's canceled, we see that 1/R is the
limiting value and we get

d%y(x)

dx? = & (18)

R

x=0

With a dlightly messier derivation we could calcu-
late d2y/dx2 anywhere around thecircle, not just at
the bottom, and we get the same answer 1/R. Thus
we have the more general result

dy() _ 1

anywherearound
dx2 ~ R thecircle

(19)
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CURVATURE

Consider thecurveshowninFigure(3) representing
some function y(x). At point X, we have drawn a
circlethat just fits against the curve. The radius of
the circle is adjusted to give the closest match
possible between the curve y(x,) and the circle.
When we get this closest fit, both the first and the
second derivativesof thecircleand y(x) areequal at
X =Xq. Inother words

2
e Tk (20)

X:XO

In Figure (3) the quantity R is called the radius of
curvatureof the curvey(x) at thepoint Xq , and /R
iscaled the curvature
1
R

Y ou can seeintuitively why 1/Riscalled curvature.
If Risvery large, the curve is amost flat and we
would say it has little curvature. As R becomes
smaller, the curve bendsin atighter circle, and the
curvature 1/R becomes greater.

= curvature of the curve (21)

Thisisthegeometrical picture of the second deriva-
tive. Whilethefirst derivativewasequal totheslope
of the curve at some point, the second derivativeis
equal tothecurvatureof thecurveat that point. The
curvatureisexplicitly thereciprocal of the radius of
curvature of the curvewheretheradius of curvature
isfound by fitting a circle to the curve asin Figure
(3). [Exercise: under what circumstanceswould the
second derivative or curvature be negative?]

X - -

0
Figure 3

At any point along a curve, the curvatureis
1R or -U/R, where R istheradius of the
circlethat just fits the curve as shown.
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Curve Fitting and Boat Lofting

The problem of working with curves has a number
of practical applications, oneof themoreinteresting
of which, at least to asailor, is the lofting of boats.

It turnsout that the eyeisextremely good at judging
the smoothness of a curve. We can, for example,
easily spot the dlightest wrinklein what is supposed
to be the smooth side of aboat. (Itisaninteresting
guestion as to how the eye and brain can do this so
well.)

Through the 16th century, boats were rather crude
looking. Startinginthe 17th century, better looking
boatswere built using thefollowing steps. Thefirst
wasto carveamodel of the hull that wasto be built.
Then conceptually slice the model as you would
slicealoaf of bread. Each of these cuts was called
astation. Typically oneused about 15 stations, each
representing a cross section of the hull at different
distances along the length of the boat. Then points
were taken from the model to represent the shape of
the hull at each station. Figure (4) is a typica
example of ahull cross section at amiddle station.

Since the points showing the shape of the hull were
taken from a small model, any errors in measure-
ment would be greatly magnified when the hull was
lad out full scale. An error of a fraction of a
millimeter in measuring the model would lead to a
very obvious bump in the final hull shape.

\points, taken from
model, used to
draw plans

Figure 4
Typical cross section. (Since boats are supposed
to be symmetric, only one sideis usually drawn.)
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To avoid these bumps, the plans were taken up into
theloft of theboat shed (hencethenamelofting), and
drawn full scale. Wooden splines, typically thin
strips of spruce, were bent along the points of the
curve. Since the splines bent along smooth curves,
any pointsthat were out of place would not befitted
by the splineand the pointswould bemovedtofitthe
smooth curve. This processis called splinefitting.
Once all the full scale curves were smoothed by
spline fitting, then the boat hull was constructed
using these smoothed plans and the result, if done
correctly, was a smooth, good looking hull.

Intheearly 1970's, shortly after wehad started using
the computer in teaching introductory physics, we
had lunch with a boat builder who described the
rather tedious process of lofting a boat. He won-
dered if lofting could be done more easily on the
computer. Thiswas before the availability of inex-
pensivelineplotters, sothat thework would all have
to be done numerically. We agreed to try, the
incentivebeing areduced priceonadiesel enginefor
our boat if we successfully lofted the boat builder's
new |obster boat design.

The most successful part of the project wasfinding
an easy and very effective way to spot a smooth
curve. Just print out alist of thethird derivatives of
the curve. Sincethe second derivativeisthe curva-
ture of the curve, the third derivative is the rate at
which the curvatureis changing asyou go along the
curve. If the curvature changes slowly, then the
curve looks smooth. A bump represents a sudden
change in curvature and therefore has alarge third
derivative. What aspruce spline essentially doesis
to minimize the third derivative.

About the same time that we wrote the lofting
program, a physicist, Peter Karosin Germany, also
wroteaboat |ofting program. Asonedoesnot make
much of a living from a lofting program, Karos
turned tothe problem of using thecomputer to create
letter forms. The letters of the alphabet are con-
structed from different curves that depend upon
whichfontyouareusing. Andjust asinboat design,
the eye is very sensitive to the smoothness of the
curves, even for relatively small letters.
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Karos based his boat lofting and letter design pro-
gramsonwhat arecalled Besier curves. To construct
aBesier curvethrough aseriesof points, at each point
you specify the location y(x) of the point, the first
derivative y '(X) = dy/dx, and the second derivative
y"(X) = d%y/dx2 = 1/R. The section of curve be-
tween two adjacent points is then constructed to
match thefirst and second derivativeat theend points
and minimize the third derivative in the region in
between. Thisuniquely determines the line.

Karos'stechniquesusing Besier curveswasbuiltinto
the Postscript™ language used for letter design. A
way of graphically handlingtheconstructionof Besier
curves was developed and became the basis of the
Adobe Illustrator™ program.

Thoseof youwho haveused Adobelllustrator, or any
of the similar drawing programs, will be familiar
withtheconstructing of Besier curves. Y ou placethe
pen tool at a point and press the mouse button. That
establishesthepoint y(x). Thenyou dragthepentool
in some direction. That direction establishes the
slopeof thecurve y'(x) at that point. How far out you
drag the pen tool before you let up on the mouse
button determines the radius of curvature R at that
point, and thus establishes the second derivative
y" (X) = d?y/dx2 = 1/R there (see Figure 5). When
you move the mouse to another point, press the
mouse button and drag, you determine y(x), y'(X)
and y"(x) at the new point, and then the computer
draws the smooth Besier curve between the two
points.

Whenyou areusing Adobelllustrator, or other draw-
ing programs, think of the fact that you are control-
ling the position, the first derivative, and the second
derivative every timeyou place and drag the mouse.

Figure 5
Constructing Besier
curves with Adobe
[llustrator®. In that
program, the radius
of curvatureis set to
about 60% of the
distance that the
cursor is pulled out
from the point.

point slope

Y \y (Q

cursor

Distance from point to
cursoris proportional to
the radius of curvature.
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THE BINOMIAL EXPANSION

We have seen, starting in Chapter 1 of the Physics
text, the usefulness of the binomial expansion

”(” 1)0(2+ED] (22)

(1+o)" = 1+na+
whichisvalid for any value of a lessthan one, but
which gets better as a becomes smaller. For very
small a , wecould neglect all termsinvolving a2 or
higher powers of o, giving us the approximation
formula

1+a)" = 1+na (a<<1) (23)

which is good for any value of n.

With calculus, we can easily derive the formulafor
the various terms in the binomial expansion. We
begin with the assumption that the quantity (1 + a)"
can be expanded in some kind of a seriesinvolving
powersof a. Wewill write the seriesin the form

L+o)" = Aga%+ A0l +A 02 +A ;03 + (1T
(24)
wherethe Ay, A1, A, etc. are unknown coeffi-

cients that we have to determine.

Equation (24) is supposed to be correct for small
valuesof a including a =0. Setting a =0 gives

(1+0)" = A0+ A 01 +A 0% +A ;0% + (I
(25
Hereis a peculiar convention we use. We assume
that any number x% =1 no matter what x is, includ-
ing 0°. Thus A,0°=A, al theother termsonthe
right side of Equation (25) are zero, and we get

1IN=1=A, (26)

which determines A .

(Writing A 500 instead of just Ay for thefirst term
in the seriesisformalism that makes the series|ook
moreconsistent, butisunnecessary if youdonot like
theideaof 0°=1)
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To determine the value of A |, differentiate Equa-
tion (24) withrespect to a . Weget, using thechain
rule

a0 = gy S
= [n(l + 0()”‘1] 1]
= n(l + (X)n_l (27)

Differentiating the right hand side of Equation (24)
gives

O%(A a0+ A al+A,02+Aad+ DDQ

= 0+A,+2A,0 +3Aa2+ 00 (29)

Thus the first derivative of Equation (24), with
respectto a, is

n(l+a)"~1= A +2A0 +3Aza2 + [II{29)
Now set o =0 and we get

N(1+0)"~1 = A +2A,x0+3A ;x0%+ (I (30)
which gives us

n==~A; (31)
and determines the coefficient A ; .

To determine A, , differentiate Equation (29) with
respect to a . With
da+ont = (-n@a+a)?

we get

n(n—1)(1+a)"~2| = 2A, + 3(2a) + [II{32)

Setting a =0 gives
nn—121)

A2: >

(33)

Exercise 2

Differentiate Equation (32) with respect to a, set
a =0, and show that Az is given by

n(n-1)(n-2)

A3 = “3xox1

(34)
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From Equation (34) you can seethegeneral formula
emerging
n(n—1)(n—2)(n—3)[J

An = - (35)

Thus by successive differentiation we can rather
easly determineall thetermsinthebinomial expan-
sion.

(Onething we have not worried about, but whichis
of major concern in calculus texts, is the range of
values of a for which the series is valid. Such
guestionsareimportant from apurely mathematical
point of view, but are seldom of practical impor-
tance. From a practical point of view, you can
usually evaluate afew terms, and if thelast onesare
negligibly small, theseriesisprobably good enough.)

The Taylor Series Expansion
Thebinomial expansion we have just discussedisa
special caseof themoregenera expansioncalledthe
Taylor series expansion. In Figure (6) we have
sketched a curve representing some function

y = f(x) (36)

Suppose we know everything about the function at
the point x, and would liketo figure out where the
curveisgoing aswemoveaway fromthat point. By
knowing everything about f(x) at the point X, , we
mean that we know f(x,) aswell as all the deriva-
tives of f(x) evaluated at x = X.

y

Figure 6

I f we know everything about the curve y =f (x)
at the point x,, can we predict where the curve
will be a short distance farther down the x axis?
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Thederivation of the Taylor seriesexpansion begins
with the assumption that the function f(x) can be
expanded, in the vicinity of the point X, by the so
called power series

f(x) = Ag(x—xg)°+A(x—Xo)*
+ Ao(x—Xo)? + [

If youthink of (x —Xq) asbeingsomesmall distance
o , then the expansion in Equation (37) isthe same
form asthe expansion of thefunction (1 + a)" back
in Equation (24). Thedifferenceisthat for different
functions f(x) we get different coefficients A,

(37)

To calculate the A, we do the same thing that we
did in deriving the binomial expansion. We dif-
ferentiate both sides of the equation and then set
X =Xq (which corresponds to setting a = (X —Xg)
equal to zero).

First we set x = X, in Equation (37) to get
f(xg) = Ag(X —Xxo)2 + A 1(x —xo) 1+ (I
= Ag(0)°+A (0! + T
= AO

(38)

which determines the first coefficient A .

Differentiating both sides of Equation (37) with
respect to x and then setting x = Xy gives

P = T = A+ 2a,0x-x,)
(39)
+3A4(X —Xg) + I
where we used the chain rule to show that
d%l((x —Xg)"=n(x —xg)" 1 (40)
Setting X = X in Equation (39) gives
, df (x)
f'(xq) = ——~ = A 41
00) = 75 oy = A (41)

all the other terms being zero.
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Exercise 3
Show that
d*f(x) "(xo)
A, =1 = (42)
2 dx? X =%g 2
a1 &) _"(xg)
837 3%x2x1 gy3 = T3 (43)
:XO

From Exercise 3 you can seethat thegeneral form of
the Taylor series expansion is

f(x —xg) = f(Xg) +f'(Xo)(x —Xo)*
+ 2" (Xo) (X = Xg)?
1f'"(x0)(x Xg)*+ [T

This can be written in the compact form

Taylor
0) —Xo)"| series
expansion

(44)

f(x—Xp) = 2

where we used the notation

(45)

The tricky part of the mathematics of the Taylor
seriesexpansionishow far you cango, how far x can
be away from X, , and still have avalid expansion.
Perhaps more important to the physicist is how far
you can go before you have to include too many
terms and the expansion is not useful.

Exercise 4

Apply the Taylor series expansion, Equation (44) to
the function

f(x) = (x—xg)"

evaluated at x, =1, and show that you get the bino-
mial expansion. (Hint—set a =x-x,, i.e., substitute
X=Xg+0 atthe end.)
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The Constant Acceleration Formulas
While the Taylor series expansion, Equation (44),
looks like a very new topic, we have been using a
Taylor series expansion since the very beginning of
our discussion of calculus. The constant accelera-
tion formulas are a ssmple example of this expan-
sion.

Figure (7) is a reproduction of our instantaneous
velocity drawing, Figure (3-32d) from Chapter 3 of
the Physicstext and Figure (Cal 1-1d) of the Calcu-
lustext. At someinstant of time, the ball islocated
at some position (Xg, Yo) attimety, and wewishto
predict the position of the ball at some later timet.

Thelocation of theball isdescribed by two functions
X(t) and y(t). We know x(tg), y(tg) and al the
derivatives of these functions at time ty, they are
simply the velocity and acceleration

x( = %O =y (46)
2
x'(t) = d’t‘gt) = at) 47)
vy = 2O =y (48)
y'(t) = dZ{?) = a() (49)
v
//8//‘!\\\\
Figure 7

I nstantaneous vel ocity at time (t).
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If the particleis moving with constant acceleration,
then all higher derivatives are zero. For example

dy@) _ 9O _ o for
" 1) = ) = 0 stant
y" (1) dt3 dt ggcr:]elgrnation

(50)
The Taylor series expansion for y directed motion
y(t)is

yi-tg = § yeg T
- oo+ B (-t
L dt t—tg)?
LI -
0

With dy/dt = vy, and d?y/dt? = a,, we get

y(t—to) = Yolto) + vy(to)(t—to)
(51)

+3ato)(t—to)?

with al higher powersof (t—ty) having zero coef-
ficients.

If we set to=0 Equation (51), we get the very
familiar result

Y(O) = Yo+ vyt + 312

Hereisan exampleof aTaylor seriesexpansion that
isvalidforany rangeof values (t —ty) . Itisgoodfor
all timest because al derivatives of y(t) above the
second derivative are zero.)

(52)

Exercise 5

Suppose a particle is moving in the y direction with a
constantly increasing acceleration. |.e., assume that

= constant

Find the formula for y(t) for all future times t. (This is
one step above the constant acceleration formulas.)
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THE WAVE EQUATION

InthePhysicstext, wecal cul ated the speed of awave
pulseon aropein Chapter 15, pages15-4and5. As
we mentioned in the introduction, the calculation
wasrelatively simple because of two trickswewere
ableto pull. Onewasto walk along with the pulse,
sothat itlooked asif thepulsewerestanding still and
theropewere passing throughit. Thesecondwasto
picturethetop of thepulseasanarcof acircle, sothat
we would know the acceleration of the rope as it
went aroundthearc. Wegot theright answer, but the
process did not generate much confidence that we
couldhandlemoregeneral cases, likecal culatingthe
speed of asound wave pulse, or even of acompres-
sional pulse on a Slinky. (Remember that we used
dimensional analysis, animportant but approximate
tool, to estimate the wave speeds in these cases.)

What we will do now isthe more direct approach of
applying Newton's laws to a section of the wave
pulse, get adifferential equation, which happensto
involve second derivatives in both space and time,
and then solve the differential equation in the usual
way. That is, we guess a solution, plug it into the
equation, and seeif we made the correct guess. We
will useasmuch physical insight aswe canto guide
usinmakingtheguess. Thedifferential equationwe
will be working with is called the wave equation.

Herewewill beworking with thewave equation for
waves moving in one dimension. Thethreedimen-
sional wave equation will be discussed later.

Figure 8
Wave pulse on a rope. The curvatureis positive
(points up) at x4, and negative at x.
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Waves on a Rope

Our analysis of awave pulse on arope begins much
asitdidinChapter 15. Figures(8) and (9) aresimilar
to Figures (15-3c) and (15-3d), except that we are
now standing still relative to the rope, and we are
assuming the pulseis passing by us.

In our current analysis of thewave pulse, wewill be
somewhat moreformal than wewerein Chapter 15.
We will say that the rope, at the present time, lies
along a curve y(x) as shown in Figure (8). The
quantity x is the distance down the rope (say from
oneend) andy(x) isthe height of thepul sethere, i.e.,
the distance the rope is displaced from its equilib-
rium position. From our various discussions of
derivatives, weknow that dy(x)/dx istheslopeof the
rope at position x, and d?y(x)/dx? = 1/R(x) is the
curvature, which is equal to the reciprocal of the
radius of curvature R(x) at that point. In Figure (8)
we have sketched in circles to show the radius of
curvature at the two points x; and x, along the
curve. Thecurvatureispositiveat x; and negative
at X2 .

L et us consider a short section of rope of length A
located at positionx asshowninFigure(9). For now
assumethat thissection beginsat thetop of thepulse
wheretheropeishorizontal. Shortly wewill seethat
our results apply at any position along the rope.

Thetwo ends of the section of rope are being pulled
along the rope by the tension T. If the rope were
straight, if there were no curvature at this point, the
tension forces would cancel each other and there
would be no net forceon Al. Only becausethereis
curvatureisthere anet force which we have label ed
Ty in Figure (9).

.Ty = TsinA®
~TA®

Figure 9

Dueto the tension pulling on both
sides, this section of ropefeelsa
net downward force T, = TA8.
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Aslong as Al is short enough, this section of rope
will lie along the circle we have drawn to show the
radius of curvature, and the two tension forces T
will be tangent to the circle at the two ends. The
result, from geometry we have now seen several
times, isthat thetwo angleslabeled A8 will beequal
and the right hand tension force will have a down-
ward pointing component T, given by

T, = Tsin(86) = TAB (53)

wherefor small angleswe can replacethe sineof an
angle by the angle itself.

FromFigure(9) weseethat theangle A8 isgivenby

_ Al
ne = & (54)
so that
—na - a1
T, = TA® = TAQ(ﬁ) (55)

Since /R isthe curvature d?y(x)/dx? at Al , weget

d?y(x

T,(x) = TAL d)>l<(2 )

While Equation (56) was derived starting from the

top of the pulse, we can seethat aslong asthe sides

of the pulse are not steep, aslong aswe are dealing

with a shallow wave pulse, Equation (56) should
apply all along the wave.

(56)

To seethis, we havein Figure (10) analyzed the net
force 'T'y acting slightly to the left side of the top of
thepulse(at point X, inFigure(8)). Actually Figure
(10) is the same as Figure (9), rotated by an angle
¢ = dy(x)/dx whichisthe slope of therope at point
X, . Hereiswherethe shallow wave approximation
comesin. Aslong asthe wave is shallow and the

Figure 10 ‘

If the section of rope slopes at an angle ¢, then the net
force Ty’ slopes at the same angle. That haslittle effect
aslong asthe waves are shallow and ¢ remains small.
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sides of the pulse do not become steep, the angle ¢
will be small, there will be very little rotation of
Figure (9), and the net force T,/ will point nearly
straight down and have a magnitude close to that
given by Equation (56).

Ontheother hand, if the pul sebecomessteep, thenet
forceisnolonger y directed and our current analysis
will no longer apply. Whoever has watched ocean
wavesbreak asthey approach the beach and become
steeper and steeper, will recognize that steep waves
behavevery differently from shallow ones. Herewe
areworking only with the theory of shallow waves.

Returning to Equation (56), which we have written
here again

2

T,00 = T d{((ZX)
we want to point out that this equation gives us not
only the magnitude but also the direction of the net
force Ty. Where the curvature d%(x)/dx? is posi-
tive, asitisat point x, inFigure(8), thenetforce T,
isdirectedupwards. Wherethecurvatureisnegative
asat point X, , the net force Ty points down. Thus
Equation (56) for Ty(x) correctly changes sign
when the direction of the net force changes.

(56) repeated

Now that we have areasonably general formulafor
thenetforce Ty onasection Al of therope(theonly
approximation being the shallow wave approxima-
tion), we are ready to apply Newton's second law,
relating this net force to the mass Am and the
acceleration a(t) of this section.

If the rope has amass density p kg/meter, then the
mass of a section of length Al issimply

mass of

Am = HAQ section A/

(57)
We need to think a bit more about the situation to
describe the acceleration of Am. So far we have
described the rope by the curve y(x), which is
essentially a single snapshot of the rope at some
special timet.
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Another way tolook at awave pulseistolook at one
point on the rope, and watch the point move up and
down as the pulse comes by. We can describe this
changing height by the function y(t). The accelera-
tion ay(t) isthen given by

dey(t
a0 = S

Equation (58) is limited in that it describes the
motion of only one point of the rope. We can
describe the motion of the whole rope for al times
with afunction y(x,t) that isafunction of both space
and time. If welook at the rope at some instant of
time t, , then the shape of the ropeis given by

(58)

y(x) = y(x.t) (=t, (59)

whileif we stand at one point X , the motion of the
ropeisgiven by

y(®) = y(x.t)

(60)

An explicit example of such a function y(x,t) was
our traveling wave formula of Equation (15-26) of
the Physics text

X = Xg

y(x) = Asin(kx—wt)  (61) (also 15-26)

which as we saw represented a sinusoidal wave
traveling to the right at a speed

-
Vivave = ?

(62) (also 15-30)

where the special frequency k is related to the
wavelength A by k=2r/A, and the angular fre-
guency w isrelatedtoperiod T by w=21/T. (As
aquick exercise, show that wk hasthedimensions
of avelocity).

With Equation (61) for y(x,t), you can easily seethat
if you look at the wave at onetime, say t = 0, then
y(x,t)

= y(x) = sin(kx)

=0 (63)

is a pure spacial sine wave. If you look at one
particular point, for instance, x = 0, you get

y(x.0) 0 y(t) = sin(-wi) (64)

X =

which isa pure sinusoidal oscillation.
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Partial Derivatives
Whendealingwithafunction of twoor morevariables,
like y(x,t), we have to be somewhat careful when we
talk about derivatives. For now, wewill alwaysassume
that if we are differentiating with respect to space, we
will hold the time variable constant, i.e., consider the
curve a one instant of time. Conversdly, if we are
differentiating with respect to time, we will consider
only one point in space, i.e., hold x constant. Thereis
aspecial notationfor thesesocalled partial derivatives,
where we differentiate with respect to one variable
holding the other constant. In thisnotation wereplace
thed's, asin dx or dt by the symbol 0. Thus

Cdx = 65
dX | holgi ng t constant ox (65)

Cdx = 66
dx holding x constant ot ( )

With this notation we get, for

y(x.t) = sin (kx —ct) (672)

BY(X,t) = k cos (kX _ (A)t) (67b)
0X

ay(x,t) _
5 = —weos (kx — t) (67¢)

Using this new notation for partial derivatives, our
Equations (56) for the net force T, on Al , and (58)
for the acceleration a, of Al becomes

T,x0) = TAQaZg)(();’t) (56a)
2
ay(xt) = 9 gt()z(’t) (58a)

To apply Newton's second law, we equate the net
force T, (x,t) tothemassAm = pAL timestheaccel -
eration a (x,t) to get

Ty(x,t) = Amayxt)

3%y(x,t)

O%y(x.t) _
ot?

TAU “Z

(HAL) (68)
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Thefactorsof Al cancel, and after dividing through
by u we get

T 03y (x,t) _ 9%y(x)
H ox2 ~—  4t2 (69)

as our final differential equation for the motion of
the wave pulse on the rope.

How do you solve such adifferential equation? As
we have mentioned severa times, we guess an
answer for y(x,t), and plug the guessinto the differ-
ential equation to see if we have made the correct
guess. Also, we use whatever physics we have
available to help us make a good guess.

Right now we do not have a formula for a single
pulse that we can use as a guess for a solution to
Equation (69). However we do have theformulain
Equation (61) for asine wave traveling to the right
at aspeed v = wk

y(x,t) = A sin(kx — wt) (61) repeated

To see if this traveling wave is a solution to our
differential Equation (69), we haveto takeanumber
of partial derivatives. They are

oyX.) _ 9 sin(kx — wt)

X X
= A k cos(kx — wt) (70a)
0%y(xt) _ 9
2 - ox Ak cos(kx — wt)
= — A k?sin(kx — o) (70b)
ay(x,t .
y(()t ) - % Asin(kx — wt)
= —wAcos(kx — wt) (70c)

9%y (x,1)
ot2

= %(— w A) cos(kx — wt)

—(—WA)(-w) sin(kx — wt) (70d)
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Using Equations (70b) and (70d) in Equation (69)
gives

T (- AK?) sin(kx - wt) £ - Awsin(ke— )

(71)
The question mark in Equation (71) meansthat this
isaguess, andwestill haveto seeif theguessworks.

First we notice that the functions sin(kx — wt) can-
cel. Wehadto havethiscancellation or therewasno
chance of making the two sidesequal for al timest
and all positionsx. Wealso notethat theamplitudes
A cancel, which means that the solution does not
depend upontheamplitude A. After thesecancella-
tions we get

LK) = —a?
2
L= = Vi (72)

wherewenotedthat v,, 5, = Wk . Takingthesquare
root of Equation (72) gives

Vwave = \/;

which is the answer we got in the Physics text,
Equation (15-5), for the speed of a pulse on arope.

(73)
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The One Dimensional Wave Equation

If we go back to Equation (69), and replace T/ by
Viyave? » We get

0y (x,t) _ 0%y(x,t) | one

2 ] — ]

V, = dimensional
wave  gx2 at? wave equation

(74)
This is a generd form of what is called the one
dimensional wave equation. Aswe havejust seen, a
traveling sine wave, moving to the right at a speed
Viwave 1S @solution to this equation. The following
exercises demongtrate that wavestraveling to the left,
and standing waves, are a so sol utionsto thisequation.

Exercise 6

(a) The formula for a sine wave moving to the left at a
speed vy, 5, = wk was given in Equation (15-33) of the
Physics text as

VX wave movingleft = A Sin (kx + wt) (15-33)

Show that this wave also obeys the wave Equation (73).

(b) Later in Chapter 15 we saw that a standing wave,
which is the sum of a left moving and a right moving

traveling wave, was given by the formula
y = Asinkx cos wt (15-35)

Show that this wave is also a solution to the wave
Equation.

Exercise 7

Suppose you have two solutions y;(x,t) and y,(x,t) , both
of which are a solution to the wave equation with the
same speed V.- Show that the sum wave

Ot = yi(xt) + ya(x.t) (75)

is also a solution of the same wave equation.

i

""'

0

vM

a‘u

Ui

Second Derivatives and 1D Wave Eq.

Exercise 7 gives us an important result. For our
wave eguation, which we got by considering wave
pulses that were not too steep, the sum of two or
morewaves, each of whichisasolution of thewave
equation, isitself asolution.

In our discussion of Fourier analysis, introduced on
page 16-6 of the Physics text, we saw that any
continuous curve can be constructed from a sum of
sine wave shapes. This suggests that we could
construct a single wave pulse, moving to the left at
aspeed v, , Dy adding up abunch of traveling sine
waves of different wavelengths A; = 2rvk;, but all
with the same speed v, 5,0 = Wi/K;j. The construc-
tion in Figure (11) suggests how we could add the
sine (actually cosine) waves to get a pulse. Since
each wave is a solution to the same wave Equation
(73),thesum, i.e., thesinglepul se, isalso asolution.

From Figure (11), it should be clear that we can
construct a solution to the wave equation represent-
ing a pulse with very steep sides. However, in our
analysisof the motion of therope, we had to restrict
ourselves to shallow waves in order to derive the
wave equation for pulses on the rope. What this
meansisthat thewaveequati on hassol utionsthat we
will not see on therope. The shallow pulses on the
rope will obey the wave equation, but we should
expect that a steep pulse on the rope will behave
differently. Not as differently as a breaking ocean
wave, but differently.

Figure 11

How to add cosine waves to get a pulse. Atx =0, all
the waves add to give a big amplitudey. Aswe go out
from x = 0, there is more and more cancellation until
the sum wave adds to zero. If all these are traveling
waves moving to the right at the same speed

Vyave = @, K;, then the whole pulse must move at the

‘0

same speed, maintaining its shape.
\ \‘\

’ "" \

0
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Compressional Waves on a Spring
When we came to the discussion of compressional
waves on a spring, in particular the compressional
Slinky wavewesaw in Figure (Phys1-6) reproduced
here, weresorted to dimensional analysisin Chapter
15 of the Physics text because there are no obvious
tricksto cal cul atethe speed of thepulse. Now weare
inapositionto set up adifferential equation describ-
ing the motion of ashort segment Al of the spring.
Wewill get thewaveequation, and from that we can
immediately tell the speed of the pulse.

Suppose we have a stretched spring of length L as
shown in Figure (12). Theforcerequired to stretch
the spring, which is equal to the tension T in the
spring, is given by Hook's law as

T =k(L-Lyg) (76)
where L ; isthe unstretched length of the spring.

Now supposethat westretch the spring an additional
amount AL . Thetensionwill increase by an amount
AT given by

T+AT

k(L +AL —L )
k(L —L ) + kAL

Using Equation (76) to cancel the T and k(L —L ()
terms, we are left with

AL ) (77)

AT = kAL = kL( L

Figure 1-6 (Physics 2000)
Compressional wave on a Slinky.

Figure 12

Atension T — LO—>
rmanom IVAVVVAA—>
spring from T
alength L, L

toalength L.
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There are two reasons why we have written AT as
KL (AL /L) rather than just KAL . Thefirst isthat
AL /L isthe amount of stretch per unit length, a
guantity engineerscall strain. Itisamoreinherent
property of the spring than the total stretch AL .

The second reason isthat the product kL isalsoan
inherent property of thespring. In Chapter 15, page
15-7 of the Physicstext, we saw that if you had two
identical springs of spring constant k, and attached
them together, you got a spring twice as long but
with half thespring constant. Itistheproduct KL that
does not change when you connect identical springs
or cut a spring in half. Engineers would call this
inherent property kL of thespringaspring modulus.

To describe the stretched spring, we will introduce
afunction y(x) that representsthe displacement of a
point on the spring from its equilibrium (or initial)
position. When we stretch aspring from alength L
toalength L + AL , asshownin Figure (13), every
point on the spring movesto theright adistancey(x)
given by the formula

displacement
y(X) | of a point = X AL (78)
onthespring L

where X is the distance down the spring, starting at
the left end. You can see where we got Equation
(78). If weare at the left end wherex =0, y(x) =0
andthereisno displacement. Attheright end, where
Xx = L, we get the full displacement
y(L) =(L/L)AL =AL. In Equation (78) we are
assuming that the displacement increasesuniformly
as we go down the spring.

Lo ><—AL— gisplacement
\/\/\/\/\/\/\/\/\/\/\/\/\/\f /Y(X)

AMAAMAANN—T

L

Figure 13

The displacement y(X) increases as we
go down the spring. With the formula
y (X) = (x/L) AL, we are assuming that
the displacement isincreasing
uniformly.
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If we differentiate y(x) with respect to x we get

dy(x) _ AL | _ AL
- gleL) - oL 79

dx L)T L
Thus for a uniformly stretched spring,
y'(x) = dy(x)/dx is the amount of stretch per unit

length, whichwehavecalled thestrain of thespring.

If the strainisnot uniform, if for example, we have
acompressional waveonthespring, thestrainistill
given by

. local stretch dy(x)
strain = per unit = ==~
length dx (80)

Tohelpseethat y'(x) =dy(x)/dx isthelocal amount
of stretching per unit length, note that when we
integratethelocal stretching per unitlength over the
total length of thespring, weget thetotal stretch AL .

fo (Yo = [y = y00)

= y(L) -y(0)
= AL-0 = AL

(81)

where y(L) = AL thetotal displacement at the end.

Now go back to Equation (77)
AT = ki (AL (77) repeated

which said that the changeintensioninthespringis
proportional tothestrain AL/L . Weprovedthiswas
truefor auniformstrain AL/L . Theobviousgener-
alizationwhenthe strainisnot uniformisto replace
the average strain AL/L by the local strain
y'(X) = dy(x)/dx to get

AT(X) = dei;E(X) = KLy'(x)

where AT(x) istheincreaseinthetensoninapoint x
duetotheloca strain y'(x) .

(82)

Second Derivatives and 1D Wave Eq.

This gives us as the formulafor the tension T(x) at
point X

T(X) = To+AT(X)
T(X) = To+kLy'(x) (82a)

where T, istheequilibriumtension, and kLy'(x) is
the changein tension caused by the displacement of
parts of the spring from their equilibrium position.

L et usnow apply Equation (82a) to ashort section of
spring of length Ax , asshownin Figure (14). If the
tension were uniform, the tension forces would
cancel andtherewould benonet forceonthissection
of the spring. A net force arises only if thereis a
changeintension aswego fromx to x + Ax . This
net force will be

net

force = T(x +AXx) —T(x)

on Ax

[TO +kLy'(x +Ax)] —[TO +kLy’(x)]

L]y (x +%) -y ()|

y' (X +Ax) —y'(x)
AX

KLAX (83)

Weimmediately seethat thelast quantity inthesquare
brackets is going to become, in thelimit as Ax - 0,
thesecond derivativeof y(x) withrespecttox. Thusour
formulafor the net force on asection of length Ax is

net 2

force = kLAxd y(2x) (84)
dx

on Ax

If thespringhasamassper unitlengthof p kg/meter ,

the mass Am of alength Axis
Am = pAX (85)

Ax

T(X) T(X+AX)

X X+AX

Figure 14

There will be a net force on this short section of spring

if the tension changes as we go from x to x+Ax.
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If we allow waves on the spring, the displacement
y(x) from equilibrium depends not only on the
position x down the spring, but also onthetime (t) .
Thus the displacement is described by the function
y(x,t). The acceleration a,(x,t) at position x on the
spring is
2
ay(X,t) = 0 gi)z(’t)
We are using the partial derivative symbol 0 be-
cause we want to measure the change in y(x,t) with
time at afixed position x.

(86)

Intermsof partial derivatives, Equation (84) for the
net forceon Ax is

net 2
force = kLAxa y(.9 (849)
on Ax ox?

With Equations (844), (85) and (86), Newton's sec-
ond law applied to Am gives

net Newtor's|
force = (Am) ay(x,t) s aw
onAm

%y (x,t A2y (x,t
kLAxg)((z) = (pr)i;Ez) (87)

The factors of Ax cancel and we are left with

kL
I

A%y(x,t) _ d%y(xt
] w

We recognize Equation (88) as the wave equation

2 a2y(xit) - aZy()(!t)
wave aXZ atz
where we can identify the wave speed as

compressional | —  / kL
V(Slinkywave ) - e

We got this same answer on page (15-8) of the
Physicstext using dimensional analysis. However,
with dimensional analysiswewerenot surewhether
afactor of 2 or Tt might bemissing. Having derived
the wave equation, we know that y KL/ is the
correct answer with no missing constant factors.

(89)
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The Speed of Sound

The analysis of compressional sound waves in air
can be carried out aong lines very similar to our
analysisof acompressional waveonaspring. How-
ever todothis, weneed to build on our discussion of
the behavior of anideal gasin Chapters17 and 18 of
thePhysicstext. Thuswewill assumethat thereader
isfamiliar with this material, including the discus-
sionon adiabati cexpansioninthe Chapter 18 appen-
dix.

Consider acolumn of gaswith acrosssectional area
A and length L as shown in Figure (15). We can
think of the gas asbeing in acylinder with friction-
lesswalls, but it could be a hypothetical column in
alargevolumeof gas. Letthevariablex measurethe
distance down the column, starting at the left end,
and imagine that we have africtionless piston at the
right end.

If we pull the piston out a small distance AL , we
change the volume of the gas by an amount

AV = AAL
and in so doing, decrease the pressure p.

(90)

How much the pressure changes depends upon the
way thegasisexpanded. If weexpanditvery slowly
so that heat has time to flow into the gas and the
temperatureremainsconstant (thisiscalled anisother-
mal expansion) then we have, from theideal gaslaw

isothermal
expansion (91)

pV = NRT = constant

where N isthe number of molesof gasinthe cylinder,
Risthegasconstant, and T thetemperaturein kelvins.

However in a sound wave, expansions and compres-
sions happen so rapidly that thereisnot enough time
for heat toflow inor out, and thetemperature changes.

& -~ R
e e .
e e e

—

_______________________________

Figure 15
Column of gas of cross-sectional area A and length L.
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Whenweexpand agaswithno heat flow, wecall this
an adiabatic expansion. Aswe saw in the appendix
to Chapter 18, in an adiabatic expansion the gas
obeys the equation

adiabatic

pVY = constant expansion (92)
where
Cp
Y = c, (93)

is the ratio of the specific heat c, at constant
pressureto the specific heat c,, at constant volume.
It isEquation (92) for an adiabatic expansion rather
than Equation (91) for anisothermal expansion that
we need to use to describe the relationship between
pressure and volume for a sound wave.

The quantity y=c,/c, depends, as we saw at the
beginning of Chapter 18, onthe number of effective
degrees of freedom of the gas molecules. Asyou
found if you did Exercise 2 of Chapter 18, for a
monatomic gas like helium or argon with no rota-
tional degrees of freedom, y=1.66 (5/3). For di-
atomic gases like oxygen, nitrogen, and of course
air, that have two rotational degrees of freedom,
y = 1.40 . When we get to more complex structures
like CO, and NH,, theny dropsto 1.28.

We will now use Equation (92) for an adiabatic
expansion to calculate the change Ap in pressure
when we change the volume of the gas in the
cylinder by anamount AV . Beforewecompresswe
have

pVY = poVy! (94)

where p, and V, are our original pressure and
volume. After the expansion, V goesto Vy+ AV
and p goes to py + Ap, where we know that Ap is
negativefor an expansion. Thusafter the expansion
we have

pVY = (po +Ap)(Vo +AV)Y (954)
With pvY=pyV,¥ = constant, we get
PoVo' = (Po+Ap)(Vo+AV)Y (95b)

Second Derivatives and 1D Wave Eq.

Wecan usethefactthat AV isvery small compared
to V to get

(Vo +AV)Y = Vo(l + AV)

Y y
:VV1+M
Vo O( )

Vo

Using the approximation (1+a)Y=1+ya for a
small a, we have

(96)

Using (96) in (95b), with py + Ap = po(1 + Ap/pg)
gives

PoVoY = (po+Ap)(Vy+AV)Y
oVo 0 0 (97)
- Ap AV
= po(l * 1, )Vov(l +y Vo)
Multiplying this out gives

1+ Op YAV V. ApAV

\/ Y — \/ \
PoVo PoVo Po VO pOVO

(98)
The factors pyV¥ cancel, and we can neglect the
second order term ApAV , giving

Ap YAV
1=1+—"+-"—-
Po Vo
After canceling the 1's and multiplying through by
po We get for the pressure change Ap
AV)

Vo (99)

Ap = —Vpo(

If you look at the appendix to Chapter 18 in our
discussion of the adiabatic expansion, you see that
we started with the equation

YpoAV +ApVy = 0

[whichisEquation (99) if wesolvefor Ap] and went
through a number of calculus steps to derive
pVY = constant . What we have donein going from
pVY=constant to Equation (99) is to undo the
calculus stepsin that appendix. However one typi-
caly remembers the equation pVY = constant for
adiabatic expansions rather than Equation (18-A8),
and it seemed worthwhile to show how to get from
pVY = constant to our formulafor Ap.

(18-A8)
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Now that we have Equation (99) for Ap, we can
follow essentially the same stepsthat we did earlier
to calcul atethe speed of acompressional wavepulse
on aspring.

If the cylinder in Figure (15) has a cross sectional
area A, length L, and we move the piston out a
distance AL , we have

Vo = AL
AV = AAL (100)
thus from Equation (99) we have
ap = —ypo( &Y ] = —vpo B4L
= —ypoAt (101)

In moving the piston out, the average displacement
of amolecule y(x) at position x will be

y(X) = %AL (102)

which is the same as our Equation (78) for the
averagedisplacement of apieceof spring at position
x. Differentiating Equation (102) with respect to x
gives

v = YN - AL
Thuswe seethat for auniform displacement of thegas
molecules, thestrain, the displacement per unit length,
isy'(x) =dy(x)/dx. Wewill now assumethat evenfor
non uniform displacements such asthe kind wewould
have in a pressure pulse, y'(x) represents the loca
strain or displacement per unit length. Intermsof this
local strain, our formula (101) for Ap(x) becomes

(103)

local
pressure
change

Ap(X) = —ypoy'(X) (104)

Asin our discussion of springs, we can write this
equation in the form

P(X) = pg + Ap(x)
P(X) = Po— YPoY'(X)

wherewe seethat variationsfrom the static pressure
po arecaused by local strains y'(x).

(105)
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Now consider asection of the cylinder of length Ax

located at x asshownin Figure(16). Thegasexternal
to Ax ontheleft, where the pressureis p(x), exerts
aright directed force of magnitude

F(x) = Ap(X) (106)

whilethe gason theright exertsaleft directed force

of magnitude
F(x + AX) = Ap(x + AX) (107)

where we have used the fact that the force is the
pressuretimesthearea. Thenetforceon Ax isthus

Fretonax = F(X) — F(x +Ax) (108)
= Alp(x) —p(x +2%)|

Using Equation (105) for p(x) we get

Fret = A{[po —YPoy' ()| - [po —YPoy'(x + AX)]}

The py terms cancel and we are left with

=

Fret = AVDo[y'(X +4x) —y’(X)]

We can multiply by Ax/Ax to get

y'(x +Ax) —y'(X)
AX

Frt = AYPOAX (109)

Asinthecaseof thespring, wewill end uptakingthe
limit as Ax goes to zero, so that the term in the
square bracketsin Equation (109) becomesthe sec-
ond derivative d?y(x)/dx? .

——
zrea p(x) _i i_p(x+Ax)

X

Figure 16
Pressure forces acting on a small section
of gasin our hypothetical cylinder.



Cal 2-20  Calculus 2000 - Chapter 2

We will also let y(x) become a function of time
y(x,t), so that second derivative becomes a partial
derivative with respect to x only, and we get

d?y(x,t)
dx?

asour fina formulafor thenet forceonthegasin Ax.

Fret = YPo(AAX)

(110)

Thenext stepisto calculatethemass Am of thegasin
theregion Ax . If thedensity of thegasis p kg/meter3
andthevolumeinside Ax is (AAX) meters®, wehave

Am = pAAX (111)
The acceleration of thegasin Ax is
d%y(x,t
JOERS (112)

Using Equations(110), (111), and (112) inNewton's
second law gives

I:netonAx = Am ax(t)

3%y (x,t)

3%y (x,t)
YPo(AAX) 32

at?
The factor AAx cancels and we are left with

Yo 92y(xt) _ 0%y(x.t)

= p(AAX) (113)

P ox2 ot? (114)
and we get the wave equation
2 2
v\,zvavea Yy _ 0y (74) repeated

ox2 ot?
where we immediately see that the speed of the
sound wave is given by

- /YP
Veound = TO

In our discussion of sound wavesin Chapter 15 of
the Physicstext, where we used dimensional analy-
sisto predict thespeed of sound, wecameupwiththe
formula

(115)

Vsound = % (116)
where

_ _Qp

B AV/IV
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wascalled the bulk modulusof thegas. Going back
to Equation (101), we have

ap = = —ypht (101)
_ oAV
= —ypg(4Y] (117)

for an adiabatic expansion, and the same with a +
sign for compression. Thus

for adiabatic
compression

A
AU = YPo = B (118)
and our old formula for the speed of sound can be
written as

/ YP
Vsound = 4/ % = TO (119)

which is the same result we got from the wave
equation.

Using the ideal gas law, we can re-express the
quantity py/p inour formulafor the speed of sound
in terms of the temperature T of the gas and some
other constants. First wewill writethedensity p as

kg .= M kg/mole x N moles (120)
meter V meters?

where M is the mass of one mole of the gas (an
Avogadro's number of the gas molecules), N isthe
number of molesin our cylinder, and V the volume
of the cylinder.

Next write theideal gaslaw pV = NRT as

N_ P

V T RT (121)
whereR isthegasconstant and T thetemperaturein
kelvins. Combining Equations (120) and (121) gives

- uyN _ Mp
P=My = RT
or we have
p-81 022

and our formulafor the speed of sound becomes

RT
Vsound = 4/ VTP =\ LM

(123)
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To interpret the physics of Equation (123), it is
perhaps clearer to express the answer in terms of
mass of the gas moleculesinvolved. We have

" _ M kilograms'mole
molecule = N , molecules'mole

M kilograms

"N A Mmolecule
where N, is Avogadro's number, and

K = 'R joules/molekelvin _ R joules
~ N, moleculessmole ~ Ny kelvin
is Boltzman's constant. Thus
R _ NaK - Kk
o = = 124
M NaMpoecule  Mmolecule (129

andintermsof themolecular mass Mg acuie WE gEL

v _ ykT
sound Mmolecule

(125)

From Equation (125), weimmediately seethat for a
gaslike hydrogen consisting of light molecules, the
speed of sound is considerably greater thanin agas
with heavy molecules.

Exercise 8

Calculate the speed of sound at a temperature of 300
kelvin, in hydrogen, helium, nitrogen and CO,. Use
the fact that a hydrogen molecule has the mass of 2
protons, a helium atom the mass of 4 protons (with a
nucleus of 2 protons and 2 neutrons), a nitrogen
molecule the mass of 28 protons (each nucleus has
7 protons and usually 7 neutrons) and a CO, mol-
ecule has a mass of around 44 protons (carbon
nucleus has 6 protons and 6 or 7 neutrons, oxygen
has 8 protons and 8 neutrons, for a total of 12 + 16 +
16 = 44 nuclear particles).
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Aside from its dependence on the mass of the gas
molecules, the other important feature is that the
speed of sound is proportional to the square root of
temperature. Thusthewarmer thegasthegreater the
speed. Thisdependenceof the speed of sound onthe
square root of temperature leads to a close connec-
tion between the speed of sound and the average
speed of the air molecules due to their thermal
motion.

In our discussion of the ideal gas law, we used the
fact that the temperature was a measure of the
average thermal kinetic energy of the gas, the pre-
ciserelationship being

I Mmolecud?? = SKT (126)

where v2 istheaverageof the square of the speed of
the gas molecules (v2 = v,2 +v, 2 +v,?). Writing
Equation (126) in the form

2
v
—KL_ = (127)
Mmolecule

and using thisin Equation (125) gives

_ KT _ /P

Yo =S e V3
molecule

Vsound = V

wi<<

(128)

Several timeswe mentioned that the speed of sound
is closely related to the speed of the air molecules
duetotheir thermal motion. Equation (128) givesus
the preciserelationship. For air, for example, where
y=1.28 weget

/ 1.28
VSOUHd =V T = .65v

Sound travels over half asfast asthe average speed
v of theair molecules.

(129)
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The Gradient

The gradient operation represents the fundamental
way that we go from a scalar field like the electric
voltage V to a vector field like the electric field E.

In this chapter, we present two distinct ways to
introduce the gradient operation. Oneisto use the
factthat electricfieldsarerelatedtoelectric voltage
the same way that forces are related to potential
energy. The second, more geometrical way, is to
picture the electric voltage as being described by a
contour map, and that the electric field isdescribed
by thelinesof steepest decent inthemap. We present
these two points of view as separate sections, View
1 and View 2, that can beread in either order.

We end the chapter with View 3, an application to
fluids, whereweseethat the pressureforce fp acting
onfluid particlesisthegradient of the pressurefield
p. This represents a straightforward example of
obtaining a vector field fp froma scalar field p.
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TWO VIEWS OF THE GRADIENT

In the Physics text, our first laboratory exercise on
electric phenomena was the potential plotting ex-
periment illustrated in Figure (25-10) reproduced
here. Two small brass cylinders connected to a
battery were placed in a shalow tray of dlightly
conducting water. In order to measure the distribu-
tion of voltages V(x,y) at various points (x,y) inthe
water, we had two probesof bent, stiff, wireattached
to blocks of wood, adjusted so that the tips of the
wire stuck down in the water. The other end of the
wire probes were attached to a voltmeter as shown.

By leaving one probefixed, and moving the other in
a way that the reading on the voltmeter remained
constant, we could map out linesof constant voltage
inthewater. Theresultsfromastudent |ab notebook
are shown dlightly cleaned up in Figure (25-11).
These lines of constant voltage are also known by
the name equipotential lines or lines of equal elec-
tric potential. We also pointed out that these lines
were analogousto lines of equal height, the contour
lines in a contour map of the countryside.

battery
probes

Al ] volt
meter
/

~brass Bf ]

: cylinders

tap water pyrex dish

Figure 25-10 (from Physics text)

Simple setup for plotting fields. You plot equipotentials
by placing one probe (A) at a given position and moving
the other (B) around. Whenever the voltage V on the
voltmeter reads zero, the probes are at points of equal
potential.

While mapping the voltage V (x,y) at various points
in the water was a straightforward process, our
construction of theelectricfieldlines E(x,y) wasnot
so obvious. Our procedure was to map E(x,y) by
drawingaset of linesperpendicular totheequipoten-
tial lines as shown in Figure (25-12). With this
techniquewewerejust barely abletotell whether the
resulting field E(x,y) more closely resembled the
field of linechargesor point charges. Our technique
was conceptually correct, but a very crude way to
determinetheelectricfield E(x,y) fromamapof the
voltage V(X,y).

© O

Figure 25-11

Plot of the equipotential lines from a student project by
B. J. Grattan. I nstead of a tray of water, Grattan used a
sheet of conductive paper, painting two circles with
aluminum paint to replace the brass cylinders. We used
the Adobe Illustrator® program to draw the lines
through Grattan's data points.

>

Figure 25-12

To sketch thefield lines, draw smooth lines, always
perpendicular to the equipotential lines, and maintain
any symmetry that should be there.



After thisinitial experiment, we resorted to com-
puter plots, likethe one shown in Figure (25-15), to
see the relationship between the electric field and a
voltage map.

The computer plots, and the model s we constructed
fromthem, nicely illustratethegeometrical relation-
ship between a voltage map and the electric field
lines, but did not provide aconvenient techniquefor
actually calculating the field. The missing tech-
nique, which is the subject of this chapter, is the
mathematical procedure called the gradient, a pro-
cedureinvolving the partial derivatives of the volt-
age function V(x,y).

As Figure (25-15) illustrates, there is a complete
analogy between the contour map of a hilly terrain
and electric field plotsfrom avoltage map. We can

T
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Figure 25-15
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build our discussion of the gradient operation either
upon our knowledge of the mathematics of the
electric field, or by developing the ideas from a
discussionof thenatureof ahilly terrain. Whileboth
approaches are equivalent, we see the subject from
tworather different pointsof view. Theelectricfield
approach is more efficient, while the hilly terrain
approach devel ops some conceptsthat wewill need
later on.

Aswe mentioned in theintroduction, we will begin
this chapter with the electric field approach, and
later discussthehilly terrain viewpoint separately in
View 2. You should study both approaches to see
thisimportant topic from two pointsof view. It does
not really matter which one you study first.

Computer plot of the field lines and equipotentials for a charge distribution
consisting of a positive charge + 3 and a negative charge— 1. Theselines

were then used to construct the plywood model.
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View 1

The Gradient

The Gradient from a

Force - Energy Perspective

CALCULATING THE ELECTRIC FIELD

Figure (1) showsasmall section of the voltage map
of Figure (25-15) on the previous page. The solid
lines are equipotential lines, lines of constant volt-
age spaced .1 volts apart. We want to imagine that
we actually have a detailed map of the voltage
V(X,y) at every point (X,y), and want to mathemati-
cally determine, from that map, the electric field
E(x,y) at every point.

In the Physicstext, we emphasized the ideathat the
electric voltage V(x,y) was the electric potential
energy of aunit test charge, while the electric field
E(x,y) was the electric force on aunit test charge.
Thus the connection between E and V isthe rela-
tionship between force and potential energy.

To review this relationship, imagine that | place a
unit test particle at point A in Figure (1), where the
voltage is V, = .3 volts. Since the voltage is the
potential energy, injoules, of aunit test charge, our test
particle a point A has apotential energy of .3 joules.

\ \ ! |

Figure 1

A small section of the voltage map, showing
equipotential lines spaced .1 volts apart. We will
calculate the amount of work required to move a
unit test charge from point A to point B.

Now imaginethat | move the test particle along the
dashed line from point A at .3 volts over to point B
at .4 volts. The potential energy of the particle has
increased from .3 joulesto .4 joules. Thusto move
theparticle, | must supply (.1) joulesof energy tothe
particle.

Imaginethat | move thetest particle slowly, so that
theforce Fro(x,y) that | exert onthe particleisjust
enough to oppose the force E(x,y) that the electric
field is exerting on the particle. Thusfor the entire
trip from A to B we have

FinX,y) = —E(x.Y) (1)
The amount of work | do in moving the particleis
given by theformulafirst discussed in Chapter 10 of
the Physicstext (seepage 10-15, Equation (10-25)).

work | doin \ B S

movingthe \ = f Fmeltl! (2

test particle / A
Because | am moving the particle slowly so that all
thework | do is stored as electric potential energy,
and because the increase of potentia energy of the
unit test chargeis Vg —V, , we have

B,
fA Fmeldl = Vg—Vp (3)

Wecanget meout of theequation by using Equation
(1) togive

B .
—f E@l = Vg—V, @)
A

Equation (4) isthe integral equation that relatesthe
voltage V(x,y) to the electric field E(x,y). Itisa
relationship we used extensively in the Physicstext.
In the Calculus text, we will often translate from
integral to differential equations, and thischapter on
the gradient will be our first example of how thisis
done.



Thefirst stepingoingto adifferential equationisto
focusinonavery small regionof Figure(1), aregion
shownin Figure(2), centered at the point (X;,y;) on
thepathfrom A to B. Wehavezoomedinso closely
tothepoint (x;,y;) in Figure(2), we have so greatly
magnified the plot, that the equipotential lines and
thefield linesinthisregion aresimply straight lines
at right angles to each other.

Now suppose we move our test particle from point
(1) at (x;,y;) over adistance Al along the path to
point (2) asshown. Equation (4) appliedtothisshort
displacement is

2 .
Vo=V, = — fl E(x.y) il )

For this short path, we can assume that E(x,y) is
essentially constant and replace the integral by the
product E(x;,y;) AL, giving us

V,—V; = —E(xy;) @Al (6)

[Y ou can seethat in going from Equation (5) to (6)
we are essentially undoing the step we took in
Chapter (10) to derive the integral Equation (4).]

Wearediscussing theelectricfield of point charges.
Thisisaconservativefield, whichisafancy way of
saying that the change in potential energy when we
move aparticle between two pointsdoes not depend
uponthe path wetake. Thusif wefirst go adistance
Ax aong the x axisto point (3), then up they axis
adistance Ay to point (2), we should get the same
change in voltage V,—V; that we got by going
directly from point (1) to point (2) along A(.

y

to A

Figure 2

If we zoom in far enough, we reach a point where the
equipotential lines and contour lines are straight lines
perpendicular to each other.
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In going along the x axis, we have
V53—V = —E(x.y;) [AX
(7)
= —Ex(X;,yi) A

where the dot product of E with the x directed
displacement Ax leaves us with the x component
Ey. Writing out V, and V3 intheform

Vi = V(xyi)
V3 = V(X +AX,Y;)
Equation (7) becomes
V(X+AX,Y;) =V (X;.yi) = —Ex(Xiyi)Ax (8)
Dividing through by —Ax gives
V(X+AX,yi) = V(X;,Yi)
AX

Whenwetakethelimitthat Al goestozero, both Ax
and Ay will go to zero, giving

Ex(Xiyi) =—

V(X +AX,Y;) = V(X;,Y;)
AX

_limit
AX - 0

Ex(Xyi) =

9)
By now you should recognize that the limit in
Equation (9) isthepartia x derivativeof thefunction
V(x,y) evaluated at the point (x;,y;). Sincethisis
true for any point (x,y), we get

c o) = -V

(10)

where the symbol 0 isused for partial derivatives.

Exercise 1
Use the above line of reasoning to show that
__Vixy) ’
Ey(xy) = =55, (11)

Introducing the unit vectors X and §, we can combine
Equations(10) and (11) into the single vector equation

E(xy) = REy(xy) +JEy(x.y)

)

E(xy) = —| g2V g OVI)

dy (12)

Equation (12) isthedifferential equationwecanuse
to calculate the electric field E(x,y) at every point
from a knowledge of the voltage V (x,y).
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Interpretation

= _ | g9V(XY) , ,OV(XY)

E(xy) = —|R X +y dy (12)

Tohelpinterpret Equation (12) repeated above, let usgo
back to Figure (25-15) wherewe started with apl ot of the
equipotential linesof thevoltage V (x,y) and constructed
athree dimensional plywood model of the voltage. The
equipotential lines became the contour lines of this
model, and the perpendicular electric field lines are the
lines of steepest slope. If you were standing on terrain
represented by this model, and the slope became dlip-
pery, the field line is the direction you would start to
dlide. Ski instructorscall thisdirection of steepest slope
thefall line.

To smplify the job of interpreting Equation (12), imagine
that we are standing at the point A = (Xp,Ya) shownin
Figure (3), wherethe contour line happensto berunningin
they direction. If wemoveaongacontour linethereisno
changein height, thusthe partial derivative of V(x,y) with
respect to y—the rate of change of V(x,y) in they direc-
tion—is zero at point A.

oV (x.y) _
B 13)
The formulafor E(x,y) at point A becomes
= _ _JOV(xy)
E(le) XfXA = -X X XfXA (14)
Y=YA =

X
Figure 3

TheV = .2 volt contour line passes straight up through
the point labeled A. Imagine that the surfaceis
smoothed out and you walk along the dotted line.

Tointerpret Equation (14), imaginethat we smooth out our
plywood model of the voltage surface, then saw the model
in two, cutting through the point A with the saw blade
oriented dlongthex axis, along thedotted linein Figure(3).
A side view of the upper piece is shown at the bottom of
Figure(4). Y ou can seethat thevoltage at the beginning of
thecut, point C, issomewhat greater than .1 volts, and rises
to just over .4 voltsat the end, point D. The mathematical
formulafor thecurveweseeinFigure(4)is V(X,y ») , and
thepartid derivativewithrespecttox at point A isthedope
of thecurve V(X,ya) a X =Xy . Thisisjust thetangent
of theangle 8 in Figure (4).

dopeat point oV (x
A goingin \ = (a);yA) = tan@ (15
x direction X =Xp

Thisisthemaximum dopeat point A. If wesawed through
point A, orienting the saw blade in any other direction, the
dopat point A would beless. In particular thed opewould
be zero if we oriented the saw inthey direction.

From this discussion we seethat the vector E(x,y) points
inthedirection of the maximum g ope and hasamagnitude
equal tothat sope. Theminussignresultsfromthefact that
the force E isin the downward direction toward lower
energy, whilethe positive s ope, or gradient aswewill call
it, isin the upward direction.

/’/
S
4/
P ‘3 -1
Ny
ath through-A /
Cr Q -------- g- _---,Bj. ------ 7| --Tb‘-- < D
// XY yg
el
N \ /////;
N\ VP ss
\L /4
Q ——\\\\\\ / /’7”/?/
7> /=::\ \ ////
>/ W /;A*\\\\\\ i
(e, 3
top view
V(X,){A)
4 - 5
.3 et
2 T to unhA - A 0
) height of patT o2 =
Ctyz====77"
Xc side view  Xa o
Figure 4

The top view shows the point A and the horizontal path
through that point. The side view shows the path we
would haveto climb if the surface were smooth. The
steepest slope at the point A isin the +x direction and is
the tangent of the angle labeled 6.



THE GRADIENT OPERATOR

The extension of Equation (12) to the case where the
voltagevariesinthreedimensions, whereV =V(X,y,2)
isfarly obvious. Itis

oV (x,y,2) +y oV(x,y,2) +3 oV (x,y,2)

E(xy.2) = —|X X ay dz

(16)
Until the beginning of the 20th century, research
papers and textbooks dealing with partial deriva-
tives used notation similar to Equation (16), and the
formulascould becomecumbersomeanddifficultto
read. It was Willard Gibbs who introduced the
gradient operation O defined by the equation

L9 o _ 0
D=X&+y7y+zﬁ

= X0, +y0y +20, (17)
where [, = 0/0x , etc.

Wecall O an operator becauseit does not have an
explicit meaning until it operates on something like
the voltage function V(x,y,2).

ov ov ov
Kax HVay *2az

ROV + 90V +20,V

With this notation, the formulafor the electric field
E(X,y,2) interms of the voltage V(X,y,2) is

OV(x,y,2)
(18)

E(xy,2) = —0OV(xy,2)

(19)

We say that the dectric field E is minus the
gradient of the voltage V.

In the Physics text, we defined a vector field as a
quantity with avector value at every point in space.
We began our discussion of vector fieldsin Chapter
23withthevelocity fieldrather thantheelectricfield
because the velocity field iseasier to visualize. At
any point in space the vector is simply the velocity
vector of the fluid particle located there. For the
electric field wefirst haveto invent the concept of a
tiny unit test chargebeforewecanvisualizetheforce
vector at each point in space.
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Another mathematical concept, which we did not
bother naming inthe Physicstext, isthescalar field.
Itisaquantity that hasascalar or numerical valueat
every pointinspace. Anexampleof ascaarfieldis
voltage, thepotential energy of aunittest charge. At
every point in space that we place the unit test
charge, we get avoltage reading. Since energy has
amagnitude but does not point anywhere, thisread-
ing has ascalar or numerical value only.

From Equation (19), we seethat the gradient opera-
tor 0 , operatingonascalar field V createsthevector
field E=—OV . Thevector OV has a numerical
value equal to the maximum slope of V(x,y,z), and
points opposite to the direction where the slope is
greatest.

In the remainder of this part of the chapter, we will
give examples of using the gradient operation to
calculatetheelectric field from thevoltage. Inonly
afew cases, like the example of the paralel plate
capacitor, is a Cartesian coordinate system (X,y,z)
themost convenient coordinatesystemtouse. Inour
study of el ectric and magnetic phenomena, we often
dealt with point charges where there is spherical
symmetry or line charges with cylindrical symme-
try. We will see that to handle problems with
spherical or cylindrical symmetry, it ismuch easier
towork withthegradient 0V expressedinspherical
or cylindrical coordinate systems. Much of the
detailed work for the remainder of the chapter will
beto work out the formulasfor the gradient in these
coordinatesystems. (Y oudothesederivationsonce,
and then use the results for the remainder of your
scientific career.)

As we mentioned, we have View 2 later in the
chapter, wherewelook at the gradient from amore
geometrical and mathematical point of view. We
end up with Equation (16) as the formula for the
gradient, but explicitly demonstrate that the compo-
nents U,V and 0,V of the gradient transform
(change) the same way the components of a dis-
placement vector change when we go to a rotated
coordinate system. Such discussions will become
very useful later on.
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THE PARALLEL PLATE CAPACITOR

We introduced the parallel plate capacitor in Chap-
ter 26, page 26-14 of the Physicstext. Wedealt with
an idealized situation where we assumed that the
plate diameters were much greater than the separa-
tion. Thenwecould neglect edge effectsand assume
that the electric field was uniform between the
plates, as shown in Figure (26-27) reproduced here.

Since E is the force on a unit test charge, and the
voltageV isits potentia energy, we can caculate the
voltageV betweentheplatesby cal culatingtheamount
of work required to lift the unit charge a distance y
abovethe bottom plate. Sincetheforce E wehaveto
work againgt is constant, thework we do issimply the
force of magnitude Etimestheheighty. If wesay that
the bottom plate is grounded, i.e., define the potential
energy or voltageasbeing zeroat thebottom plate, then
theformulafor thevoltagebetweentheplatesissmply

V(xy,2) = Ey (20)

To evaluate E, we note that when we get to the top
platewherey =d, thevoltageisupto V, thevoltage
to which we charged the capacitor

V, = Ed (21)

ThusE = Vy/d, andthevoltagebetweentheplatesis
given by

V(Xy,2) = \(/joy (22)

Let us now turn the problem around and use the
gradient formula E = — 0V to calculatethe electric
field E from our voltage formula Equation (22).
Writing out all the components of — OV as partial
derivatives, we have from Equation (16)

Ba) = 3Gy 99y +2 5 a9
The x partial derivativeis

oV(xy.2) _ a|VoY| _

—ox  ~oxld) 0 (23)

Thisiszero becausethereisno x dependencein our
formulafor V. When we take the partial derivative
with respect to X, we hold y and z constant. Thus
nothing in the formula Vyy/d changes when we
change x, and this partial derivative is zero.

The other partial derivatives are

ovV(xy,2) _ 9 7V0y7 _ Vo 1
ay oy| d | d (24)

ovV(xy.2) _ 9 7V0y7 -

0z T ozl d |~ 0 (25)

Using Equations(23), (24), and (25) in (22) givesus

. Vo
E =y (26)
which saysthat E pointsdown inthe —¢ direction,
and has amagnitude Vy/d which we already know
from Equation (21). We see that the calculation of
E fromV using E=—-0V isafairly straightfor-
ward process.

battery
S

e

capacitor plates

Figure 26-25
The parallel plate capacitor. The capacitor is charged
up by connecting a battery across the plates as shown.

FF F F F F F F F T F ¥

Figure 26-26
The electric field between and around
the edge of the capacitor plates.

plate of area A
O+ + + + + + + + + + + +]

Figure 26-27

In our idealized parallel plate capacitor the field
lines go straight from the positive to the negative
plate, and the field is uniform between the plates.



Voltage Inside a Conductor
Themainideaof Chapter 26 of the Physicstext was
that you cannot have a static electric field inside a
conductor if thereisno flow of charge. Theequiva-
lent statement in terms of electric voltageisthat the
voltage is constant inside a conductor

V(X,¥,2) insideaconductor = CONstant (27)

To seethat this gives a zero electric field, we have

E = _ﬁvinsjdeaconductor =0 (28)
All the components are zero because the partial
derivative of aconstant is zero.

Toprovideanexplicit exampl e, supposeweturn our
parallel plate capacitor onitsside and assumethat it
is constructed from thick metal plates as shown in
Figure (5). The voltage asafunction of distanceis
shown below the drawing of the plates. Inside the
left plate the voltage has the constant value Vj,
whichgiveszerofieldinside. Betweentheplatesthe
voltage drops uniformly. It has a constant gradient,
which gives us a constant electric field E=— [V
pointinginthedirection of thedownwardslope. The
voltage is again constant (V = 0) in the left hand
plate.
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v, 94 o

mb

Figure 5

Voltage in a parallel plate capacitor. The voltageis
constant inside the plates and, for the assumed uniform
field structure, drops uniformly between the plates.
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ELECTRIC FIELD OF A POINT CHARGE

Our first example of an electric field in the Physics
text was the field of a point charge. If we have a
charge Q located at the origin of our coordinate
system, thentheelectricfieldataposition r = (x,y,2)
as shown in Figure (6) is given by

Er) = 1— 2 = ¢KQ

ameg? 2

(29)

where f is a unit vector in the 7 direction and
k=1/4ng .

In the Physics text, we mentioned, but never accu-
rately derived, that thevoltageV (r) of apoint charge
was

V) = gras =7 (30)

when we chose the zero of potential energy at
r =infinity. What wewant to do now isto show that
theformulafor E(r) followsdirectly from Equation
(30) for V(r) when we use the relationship

= _0OV (14) repeated

Thework isabit messy, because wewill beusing a
Cartesian coordinate systemto solveaproblemwith
spherical symmetry. Later wewill find theformula
for the gradient in spherical coordinates, and then
seethat itisvery easy toevaluate E = — 0V fora

point charge.
Z~

)

Figure 6
Out at a point given by the coordinate
vector 7, we have the unit vector r.

Our first t step will betowrite out the vector equation
E = — 0V asthree component equations

I VAN, VAN, Vi
E=-% g=-%:g=-9

y =~ oy
(31)
Focusing on the x component equation we have

By = _?T\){ - ax(kQ)

Taking the constant kQ outsidethederivativewe have

— 0(1
~kQ&(H
To go any farther, we have to expressthe distancer

asafunction of thecoordinatex. Thisisdoneby the
three dimensional Pythagorean theorem

r= yx2+y2+z2
To calculatethe derivative of (1/r) with respect to x

now becomes an exerciseintheuseof thechainrule
for differentiation. Let us start with

(32)

12 = x2+y2+ 72
which is easy to differentiate. We get
a2 _ 9

e 6x(x2 +y2+ 22) = 2X (33)
Next look at

or _ ov'r2 or?

ox ~ F or2 0x (34)

To evaluate 9v'r2/dr? , set y = r2 so that we have,
using ay"/oy = nyn-1

owvr2 _ayy _

5-1,-5_1
o2 ~ oy ay y 2y 2r (35)
Thus using Equation (33) and (35) in (34) gives
ar _ o'r2 or2 —(i)(Zx)

oX — 9r2 ox2 \2r
o _ x
0x r (36)

whichisafairly simpleresult considering what we
went through.



Finally we have

@(1) _ ot _ ortor
ox\r 0X r ox
aax(%) = —% (37)

and our formulafor E, becomes

= —kQ&[H) = —kQ[- %)

E, = kQX
X r3 (38a)
Clearly the y and z components are
- y
Ey = kQ3 (38h)
_ z
E, = kQﬁ
(38c)

To check that we got the right answer, we can go
back to Equation (29)

(29) repeated

and replace the unit vector t withitsdefinition /r
giving
T = (ry,

. K
E(r) = rr?

ry’rz) = (X,y,Z)

r = ; = 7(xy,2)

=X =2,

_Z
r y r'?Z‘T (39)

Equation (39) says, for example, that the x compo-
nent of the unit vector I hasalength x/r. Thusthe X
component of E in Equation (29) is

x kQ

EX:ka—Q—

2 g2 (40)

_ X
= kQ %3
withsimilar equationsfor E, and E ,. SinceEquations
(38) and (40) are the same, we have verified that
E = —0OV givesthe correct result for V = kQIr.
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The messinesswe encountered cal culating the field
of a point charge from V = kQ/r resulted from our
calculating x, y, and z components of E when we
knewthat E pointedintheradial direction. If weuse
what is called a spherical coordinate system, we
will findthat theformulafor theradial component of
the electric field issimply

—aVv(r)
or

With V(r) = kQ/r we get

E = (41)

= -G} = -ko[-1]= 72 @

and weget thefinal answer inaonelinecalculation.

To get this simple result requires, however, a fair
amount of work deriving the formulafor the gradi-
ent in spherical coordinates. First we haveto define
precisely what a spherical coordinate system is,
show what the unit vectors are, and then calculate
the componentsof thegradient whenwemoveinthe
directions defined by the unit vectors. Whenthisis
all done, when we have the formulafor the gradient
in spherical coordinates, we can use the formula
without ever going through the derivation again.

In the Physics text we encountered problems with
plane symmetry, like the parallel plate capacitor,
cylindrical symmetry, likethefield of alinecharge,
and spherical symmetry like the field of a point
chargewehavejust discussed. Theplanesymmetry
problems are most easily handled in a Cartesian
coordinate system, thecylindrical problemsinwhat
iscalledacylindrical coordinatesystem, and spheri-
cal problemsin aspherical coordinate system. We
will now discussthesethree coordinate systemsand
develop the formulas for the components of the
gradient vector in each coordinate system. Sincewe
have already done thisfor the Cartesian coordinate
system, that discussion will serveasareview of the
procedure we will use.
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GRADIENT IN THE CARTESIAN
COORDINATE SYSTEM

An example of aright handed Cartesian coordinate
system is shown in Figure (7). Out at some
pointt =(x,y,z) the unit vectors X, ¥, and 2 are
parallel tothex, y, and z axisas shown. Itiscalled
aright handed coordinate system because the unit
vectors obey the relationship
KXY =2 (43)
when we use the right hand rule for the cross prod-
uct. (If we used a left hand rule, the z axis would
point the other way.)

Exercise 1
Showthat yxZz = x and ZxX = y.

We will use the force/potential energy relationship
to define the gradient vector. If | move a unit test
chargeashort distance Al , exertingaforce Frpe = — E
to just overcometheelectric field E , thework AW
I dois

AW = F [\ = —E N (44)
Since this work is the change AV in the potential
energy of the unit test charge, we have

AV = —E (45)

But the voltage V is related to the field E by the
gradient

E=-0V (14) repeated
4 ¢
\\\\\ 2
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S~ s
X = NG
Figure 7

The unit vectors X,y ,2 out at the point r.

Using Equation (14) in (45), wecan eliminateE and
get the relationship between the small change in
voltage AV and the voltage gradient LIV

AV = (Ov) al (46)

Equation (46) will alow usto find the formula for
the gradient in the various coordinate systems.

To see how we are going to use Equation (46), we
will start with the Cartesian coordinate system and
choose Al to be ashort step Ax inthe x direction.
Explicitly wewill start at apoint (x,y,z) and moveto
the point (x+Ax,y,z) so that AV, Al and
(0V) Al become

AV = V(x+Ax,y,2)-V(X,Y, 2) (47
Al = RAX (48)
(Ov) b = (@Ov), Ax (49)

Using (47) and (49) in (46) gives
V(X +Ax,Y,2)=V(X,Y,2) = (0V), Ax (50)

Dividing through by Ax and taking thelimit as Ax
goesto zero gives

V(X +AX,Y,2)-V(X,Y, 2)

= — limit
(DV)X T OAX o 0 AX
(51)
whichisthedefinitionof thepartial derivative. Thus
- ov(x,y, z
@v), = D2 (52

whichisour earlier result. This procedure does not
give us anything new for a Cartesian coordinate
system, but will give us new results for other coor-
dinate systems.

(On the next page you will find two pictures of our
model of the electric field of two point charges. We
put the pictures there so that the discussion of the
gradient in cylindrical and spherical coordinates
would each be completed on facing pages.)
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Figure 25-14 (from Physics text)
Different views of the model of the electric field of two
point charges Q, =+3and Q_ =-1.
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GRADIENT IN CYLINDRICAL COORDINATES

In a cylindrical coordinate system, we define the
location of a point p by giving the distance 7 out
fromthezaxis,theangle ® over fromthex axis, and
the height z above the xy plane as shown in Figure
(8). Theunit vectorsare f which pointsradially out
fromthezaxis, 2 which pointsinthezdirection, and
® which is perpendicular to the 2 plane. The
direction of 8 is the direction we move when in-
creasing theangle 6. Thisgives us aright handed
coordinate system wheretheunit vectorsarerelated

by
txB =2 (53)

Y ou should check for yourself that Equation (53)
works for the unit vectors shown in Figure (8), and
that Ox2=tand2xr=0.

We will assumethat in cylindrical coordinates, the
gradient vector at point p is given by the equation
OV = 1 (0V), +8(0V)g+2(0V), (54)

where (OV),, (0V)g and (CV), are the compo-
nents of the gradient vector that we want to deter-
mine.

Z
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|
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top view r
looking
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Figure 8
The unit vectors r, 8, 2 in cylindrical coordinates.

Tocal culatethefirst component (V) ., wewill start
at thepoint p at (r, 8, zZ) and moveashort distance
Ar inthet direction, tothepoint (r+Ar, 6, z) . Our
changeinvoltage AV , displacement Al and the dot
product (V) CAU are for this move

AV = V(r+Ar,06,2)-V(r,6, 2 (55)

Al =t Ar (56)

OV)@AL = |1(3V), +6(0V)g +2(0V),|RAr

(57)
Since the unit vectorsare al at right anglesto each
other, 7 [t =1,0[F=0and 2[T =0, giving us
AV = (Ov) b = (OV),Ar (58)

Dividing (58) through by Ar , using (55) for AV and
taking the limit as Ar goesto zero gives

V(r+Ar,0,2)-V(r, 6,2
Ar

BV, = 3§

(59)
Theright sideof Equation (59) iswhat wewill define
tobethepartial derivativeof V(r, 6, z) with respect
torincylindrical coordinates

V(8.2 _ imit
or T Ar -0

V(r+Ar,0,2)-V(r, 6, 2)
Ar

(60)
Thisistherate of change of the function V(r, 6, z)
aswe changether coordinate. With thisdefinition,
we get

_ ov(r, 6,2

(@v), 5

(61)




Sofar, our results look very much like what we had
for Cartesian coordinates. However, we get some-
thing new when our step Al isin the 8 direction.
Supposeweareat theposition (r, 8, z) ,and moveto
the new point (r, 8+A8, Z) where we increased the
0 coordinate angle by A8 as shown in Figure (9).
Since the angle 8+A8 is measured in radians, the
arc length Al that we move when going from 6 to
0+A0 is

Al = rAB

Youwill noticethat the vector displacement Alisin
the same direction as the 6 unit vector, thus

—

Al = BrAB (62)

The change in voltage AV and the dot product
(OV) A are thus

AV = V(r,0+A8,2) - V(r, 6, 2) (63)

OV =|r(@V), +8(0OV)g +2(0V),|Brae

= (OV)grae (64)

whereweused 60 =1, =20=0.

Using (63) and (64) in our equation AV = 0OV AL,
we get

V(r, 8+08,2) - V(r, 8,2) = (0V)gra8 (65)

X

Figure 9
The displacement A? when we
increase the angle@ by (89 .
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Dividing Equation (65) through by rA8 and then
taking the limit as AB goesto zero gives

V(r, 048, 2) - V(r, 6, z)“

AB -0

(66)
We define the quantity in curly brackets to be the
partial derivative of V(r, 6, z) with respect to the
variable 0

OV(r,8,2) _ jimit |V(r, 8+8,2)-V(r, 8, 2)

00 T N80 Ji¢)
(67)
Thus we end up with the equation
. ov(r, 6, 2)
V) = 7755
(68)

and we get a factor of 1/r in our formula for the
8 component of the gradient in cylindrical coordi-
nates. The factor of 1/r appears because the partial
derivative with respect to 8 measures the rate of
change of V for agiven change A8 inangle, while
the gradient measures the rate of change of V with
respect to agiven step in distance. When we make
achange A6 inangle, the distance we moveis rA8
which increases with r. The factor of r has to be
divided out to get the rate of change of V with
distance.

Exercise 2
Following the above steps, show that

@), - aV(;,Ze, 2)

(69)

This should look the same as our derivation for the
Cartesian coordinate system.
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GRADIENT IN SPHERICAL COORDINATES

Whilethe steps are fresh, let us derive the formulas
for the components of the gradient vector in spheri-
cal coordinates. We will then return to various
applications of the new gradient formulas.

In the spherical coordinate system shown in Figure
(10), apoint p islocated by thedisplacement T from
theorigin, theangle 8 that the coordinate vector 7
makes with the z axis, and the angle ¢ that the
projection of T on the x,y plane makes with the x
axis. The unit vectors are t pointing out in the 7
direction, ® which liesin the t 2 plane pointing in
the direction of increasing 6, and @ which is per-
pendicular to the t2 plane, in the direction of
increasing @. Thisgivesusaright handed coordi-
nate system where

txB=9 (70)
(Again,showforyourselfthat & x p=tand@x t = 8.)
4
p At
0
Y | ’
07 >Xng L.
S | ¢
y X
Figure 10
The unit vectorsr, 8, @ for a
spherical coordinate system.
z
pl m
i |
C D7
]
(f 1
X

Figure 11
The step A? when we increase 6 by A6.
We are directly facing the rz plane.

Exercise 3

Start at the point (r, , ¢) and move a distance Al to the
point V(r + Ar, 8, @) and show thatthe r component ofthe
gradient in spherical coordinates is

- V
(Qv), = 0.9 (71)
where
v, 6,0 _ jimit |VIr+Ar,8,@-V(,6,¢ 70
o T A -0 Ar (72)

Itwas Equation (71) that we used to show in one line that
the voltage V = kQ/r leads to the field E = kQ/r?.

Inspherical coordinates, theradial component of the
gradientissimply the partial derivative, aswe asked
youto show in Exercise 3. Weget new resultswhen
we look at the 6 _and ¢ components, where the
changeindistance Al isnot equal to AB or Ag aone.

Firstlet Al beinthe 6 direction, sothat wegofrom
the point (r, 8, @) to (r, 6+A6, ¢). Thedistance Al
isshowninFigure(11) wherewearelooking squarely
a the rz plane. You can see that Al isinthe ©
direction and has a magnitude Al = rAB so that
Al = 8rne (73)

The change in voltage AV and the dot product
OV N are

AV = V(r, 6+A0, @) —V(r, 6, ¢) (74)
OVIAL = | F(OV), +6(0V)g +@(0V) o|Brae
= (OV)q rae (75)

where 8@ =1, t[(B=¢D=0.

Equating AV from (74) with TV AL in (75), then
dividing through by rA8 and taking thelimit as A8
goesto zero, gives

1 ||m|t V(ri 9+A9, (p) _V(r’ e’ (p)
T A0 - ;)

(DV)e

(76)



We define the partial derivative of V(r, 8, @) with
respect to 0 in spherical coordinates as

oV(r, 8,9 _ Jimit

V(r, 0+00, ¢) —V(r, 6, (p)]

00 - A8-0 AB
(77)
so that we get
=] — 1 aV(r, e1 (p)

astheformulafor the 8 component of the gradient
vector in spherical coordinates.

Finally we will derivethe ¢ component of OV by
taking astep Al inthe @ direction. The geometry
isshowninFigure(12). Thefirstthingtonoteisthat
the projection of the coordinate vector r down on
the xy plane has a length (rsin®). This is the
distancethepoint pisout fromthez axis. Whenwe
rotateanangle Ag about thezaxis, thearclength Al

out adistance (r sin@) is (r sinB)Ag. Thisdistance
isin the direction of the unit vector ¢, thus

Al = @(r in6)Ag (79)

The change in voltage, going from (r, 6, ¢) to
(r, 8, o+AQ) is

AV = V(r, 6, o+Ag) —V(r, 6, @) (80)

|
|
X ~:

Figure 12

The step A? when we increase ¢ by Ag.
Note that we are out a distance r sin@
from the z axis.
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The quantity OV Al is

OV A = |F(DV), +8(0V)g +@(0V) | [ (r sin 6)Aq

= (ﬁV)(p(r sin B)Ag
) (8D)
because (p=1 and f Cip=6 Hp=0.
Equating OV CA in Equation (81) to AV in (80)
gives
V(r, 8, p+AQ) —V(r, 8, @) = (ﬁV)(p(r sin 8)A@

(82)
Dividing (82) throughby (r sin 8)Agandtakingthe
limit at A goesto zero gives

V(r,8,0+A@)-V(r,0,0)
Ag

= — 1 limit
(DV)(p— rsin Ag -0

(83)
We define the partial derivative with respect to ¢@
in spherical coordinates as

GV(I‘, ev (p) — limit V(r’ ev (p+A(p) _V(r! el (p)

e —

@ T 0p -0 X0)
(84)
to get the result
= — 1 aV(r, e! (p)
(HV)g = rsind 0Q (85)
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SUMMARY OF GRADIENT FORMULAS

Wecaollectin oneplacetheformulasfor thegradient
in Cartesian, cylindrical and spherical coordinates.

Cartesian Coordinates

OV(xy,2) = xaV + yaV + z%\z’ (86)

Z N
Z

Vsl

X

y y

X

Cylindrical Coordinates

6V eav oV 87
OV(r,ez) = f * T 58 262
Z
\2 ~
e
s
i
— . y
90—~ i
=~ |
|

Spherical Coordinates

-0V, 00V, © oV
OV(r8.0) = 150 + 50 * Tsine g

z (88)

EXAMPLES

Electric Field of a Point Charge
Let us now see explicitly how the formula for the
gradient in spherical coordinates, Equation (88),
makesit easy to calculatetheelectric field of apoint
charge, starting from the voltage formula

V() = kTQ (27) repeated
The formula for the gradient in spherical coordi-
natesis

~

_ 0V eav ¢
v = i)ar ae+rsm96(p

(88) repeat

While Equation (88) looks somewhat messy, the
thing to note is that V(r) has no dependence on the
variables 8 and @, thusthe partial derivativeswith
respect to these variables are zero

ov(r) ov(r)

30 =0 ; 30 =0 (89)
and all we areleft withis
= 6V(r)
OV == (90)

We havefor oV (r)/or

ar(er) = kQ %(r_l) = —1kr? (91)
thus we get
E=-0V :—(—rkr?): r‘f (92)

which is the correct answer.

The advantage of using spherical coordinates to
calculatethefield of apoint chargewasthat, two out
of three of thecomponentsof thegradient were zero,
and we had only asimple derivative for the remain-
ing component. This is the kind of simplification
you get when you use a coordinate system that
matches the symmetry of the problem at hand. Our
next example will be the calculation of the electric
field of alinecharge. That problem hascylindrical
symmetry, and ismost easily handled using acylin-
drical coordinate system.



Electric Field of a Line Charge

In the Physicstext, our first calculation of the elec-
tric field of an extended object wasto show that the
radialy directed electric field of a charged wire,
shown in Figure (24-27) repeated here, had a mag-
nitude

B = ZTi\ &r

(24-43) repeated

where A isthe amount of charge per meter on the
wireandristheradial distanceout fromthewire. To
smplify the constants, we will set k = 1/21g, so
that the vector formulafor E is

K= 1

By = ¢ KA .
E(r)—fT, _ﬂ

(93)
In the Physics text we never did say what the voltage
wasinthevicinity of achargedwire. Y ouwill seewhy
shortly.

\ \ A coulombs
\
\ /per meter

7
/

- =

Figure 24-27 (repeated)

Using Gauss' law to calculate the electric field of aline
charge. Draw the Gaussian surface around a section
of therod. Theflux all flows out through the
cylindrical surface.
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We can assume, because of the cylindrical symme-
try of the problem, that the voltage VV depends only
on the radial distance r out from the wire. That is,
that V = V(r). Thus the partial derivatives with
respect to the variables 6 and z (using cylindrical
coordinates) should be zero and we should be left
with

~ v L Bav() . L av()
‘DV“(? o "T a0 "oz

oVv(r)
or

where we used Equation (87) for the gradient in
cylindrical coordinates.

= ¢

(94)

Comparing Equations (93) and (94) for E we get

E=rkh - r(—a\gﬁr)) (95)

As aresult, the voltage V(r) should obey the equa-
tion

(96)

%0 - a3

The question we have now is, what function of r,
when differentiated with respecttor, gives1/r? The

answer, you may recall from Chapter 1 of the Cal cu-
lus text, isthe natural logarithm. Explicitly

%(In n=1 (97)
Thus the appropriate voltage V(r) is
V(r) = —=kAlInr (98)

Going back from this V(r) to E we have

F9 (—kAlnn)

?(_k)\agr”):?(w) (99)

Ov(r)

and
E(r) = —Ov(r) = 1 KA | (100)

Thisexplicitly checksthat thevoltage—(k A Inr) leads
to the electric field of aline charge.
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ThelogarithmIn(r) that appearsin Equation (100) is
aninteresting functioninthatitiszeroatr = 1, goes
to —co atr=0and+ o atr =c asshowninFigure
(13). Thus, for example, at r = 0 we get

V() _ = ~krin) = —kr(—co) = +oo (101)

and the voltage becomesinfinite. Thistellsusthat
it isnot physically reasonable to put afinite charge
density A on an infinitely thin wire. We had the
same problem with apoint charge. Theformula V
=kQ/r dsogoestoinfinity atr =0whichtellsuswe
have a problem with the potential energy of a point
charge of zero radius. (The modern theory of quan-
tum electrodynamics treats the electron as a point
charge of zero radius. Thetricky part of the theory
isto get around the infinities that result from this.)

In(x)

_
1 ]
0 X
G/

Figure 13

The function In(x) starts out at minusinfinity at x = 0,
goesthrough zero at x = 1, and slowly goes to plus
infinity at x = infinity.

At large distances, there is no problem with the
formulafor thevoltage of apoint charge. Atr=oo ,
thevoltageV = kQ/r goesto zero, whichiswhat we
wanted for the potential energy of a test charge
infinitely far away. But for aline charge, Equation
(94) gives

V(r) = —Kk A In(+ )

r=+ow

(102)

Thispredictsavoltage or potential energy of minus
infinity when we areinfinitely far away fromaline
charge! How did this happen?

Either the mathematics is wrong, or our physica
interpretation is wrong. The answer lies with the
physical interpretation. What iswrong is that you
cannot get infinitely far away from a line charge.
Any real physical piece of wire must have afinite
length. Thewiremay look infinitely long when you
are close to it, but as you move away, you will
eventually be able to see both ends. The farther
away you move, the shorter the wire looks. Move
infinitely far from thewire and thewirelookslike a
point chargeandthevoltageit producesgoesto zero.
Thus physically we will not encounter the infinity
that appearsat large distancesin theformulafor the
voltage of aline charge.

As we have often mentioned, in any formula for
potential energy, we can arbitrarily choose the zero
of potential energy (the floor) wherever we want.
For point charges, we usually choose the zero of
potential energy outat r = o . Wehaveseenthat we
cannot makethesamechoicefor alinecharge. What
we haveto do iswrite the formulafor the potential
energy in the more general form

V(r) = —k A In(r) + constant (984)

and adjust the constant so that V(1) is zero at some
convenient place. We can see how thisworksinthe
following discussion of acoaxial cable.



The Coaxial Cable

A physical example where our voltage formula
(98a) makes senseisthe coaxial cable. Supposewe
have a cable whose inner conductor hasaradius r;

andtheouter shield hasaninsideradiusr, asshown
inFigure (14). Assumethat theinner conductor has
a charge density A coulombs per meter, and the
outer conductor is grounded (i.e., we say that the
voltage V(r) iszeroat r =ry.) What isthe voltage
throughout the cable?

First of al, we know that the voltage inside a
conductor must be constant so that the field
E=—0V insideiszero. Sincethe outer conductor
Is grounded, the voltage throughout the shield (for
r>rqy) will be zero as shown in Figure (15). The
voltage on the inner conductor will have some
constant value V; (for r <r).

Between the conductors, in the region between r;
and rq, the voltage must have the logarithmic de-
pendence given by Equation (98a)

V(r) = —k A Inr + constant (103)
We can evaluate the constant by setting the voltage
equal to zero out at the grounded shield, at r =rg.
Thisgives

V(ro) = —kAlInrg+constant = 0

constant = kA Inr (104)
and V(r) becomes

V() = =kAlInr+kAlnrg (105)
Logarithms have the peculiar property

Ina—Inb = In(%) (106)

Figure 14
A coaxial cable, where theinner wirehasaradiusr,
and the outer grounded shield an inner radius ry,.
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Thus V(r) in Equation (99) can be more compactly
written

V() = kAl 0] (107)

With the constant k written out as 1/21mm g, (see
Equation 93), we get

o)

V() =

(108)

At the outer shield, at r =y, we have
In(rg/r) = In(1) = 0

and thevoltagegoesto zero. Thisiswhat wewanted
for a grounded shield.

As demonstrated in Exercise 4 below, Equation
(108) allowsusto calculate the charge density A on
theinner conductor of acoaxial cablewhentheouter
conductor is grounded and the inner conductor is
raised to some voltage V;.

Exercise 4

(a) For the coaxial cable of Figure (14), find the formula
for the charge density A when the inner conductor is at
a voltageV; volts.

(b) Suppose V=100 volts, r;=.5mm, rp=2mm and
recall that g,=9 x 107" . Then whatis A in coulombs
per meter?

(c) What is the general formula for the capacitance per
meter of the coaxial cable in Figure (14)?

V()

voltage constant

/inside conductor

Vi

0

Figure 15
Voltagein the coaxial cable.
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View 2

The Gradient from a

The Gradient

Geometrical Perspective

Inthefirst part of thischapter, we used therelation-
ship between force and potential energy to define
what we meant by the gradient vector. Wethen used
that relationship to derive the formulas for the
gradient in cylindrical and spherical coordinates.

What we want to do now isto approach the gradient
fromageometrical point of view. Thisisthepoint of
view we began to devel op when we constructed the
physical models of electric voltage like the one
shown in Figure (25-15) reproduced again here.
Oncewe have devel oped a geometrical definition of
thegradient wewill check that the gradient behaves
like a vector. To do that, we show that the compo-
nents of the gradient change or transform the same
way that the components of a displacement vector

when we rotate the coordinate system. Thisidea of
testing the vector nature of a new quantity will

become particularly important when we get to a
mathematically advanced discussion of special rela-

tivity.

This discussion of the gradient is designed to be
independent of the first part of the chapter, so that
you can start from either approach. Thisleads to
some repetition of definitions, but the points of view
aresufficiently different that someduplication should
not be a problem. We, of course, end up with the
same definition of the gradient vector from the two
points of view.
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Figure 25-15 (repeated)

Computer plot of the field lines and equipotentials for a
charge distribution consisting of a positive charge + 3
and a negative charge— 1. These lines were then used
to construct the plywood model.



SLOPE IN TWO DIMENSIONS

Imaginethat you are planning atrip in adesert with
hillsand valleys. One possibility istofollow apath
that heads due east through the desert. If you draw
the path on a contour map, and note where the path
crosses different contours, you can create a plot of
theheight (h) of the path asafunction of thedistance
(x) of the path. The result might look like a plot of
h(x) shown in Figure (1). This should at least
represent asmoothed version of theterrain you will
encounter.

Your curve h(x) tellsyou roughly how steep the
path shouldbeat any point x, . Mathematically, you
can define the steepness as the slope of the tangent
line at the point X, which is equal to the first
derivative of h(x).

h'(Xo)

dh(x)
dx X=Xq

slope at X

tan © 1)

Aslong asyou stay on the path, the dope at any point
isuniquely determined by Equation (1).

Figure 1

Imagine that you are walking due east (x direction) in
the desert. We will call h(x) the height of your path. At
some point X, the slope of your path is dh(x)/dx
evaluated at xq, which isthe tangent of the angle8.
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However the interesting part about going out in the
desertisthat you do not havetofollow any particular
path. If youdo not want to climbvery much, you can
walk along acontour line. If you are anxiousto get
to the top of a hill and want the stegpest climb
possible, you walk at right angles to a contour line,
along what we have called afield line, or what ski
instructors call the fall line. At any point you can
choose apath whose sloperangesfrom zero along a
contour linetothemaximumalongthefieldline. To
define the slope at some point, you haveto state the
direction you are traveling.

To handlethis new feature mathematically, wefirst
introduce a coordinate system (x,y), where the x
direction, for example, could be east-west and they
direction north-south. Theterrainisthen described
by afunction h(x,y) giving the height of the land at

any point (x,y).

To describe the slope of a one dimensiona curve
h(x) at some point X, , wedrew atangentlineat x

asshowninFigure(1). Todescribesopesfor atwo
dimensional function h(x,y), at some point (Xq, Yo)
we look at the tangent plane at that point. This
assumes that the function h(x,y) is smooth enough
that, aswe get closer and closer to the point (Xq, Yo)
the landscape looks smoother and smoother. It
assumesthat when we get very close, the landscape
looks flat and we are looking at the tangent plane.

Not all functionsh(x,y) are necessarily that smooth.
Curvesdescribing real landscapes, like the shape of
acoastline, look just as rough no matter how close
welook. Such curvesaredescribed by whatiscalled
fractal geometry. What we will be discussing are
curves, or surfaces that become smooth when we
look close enough. A sufficient mathematical crite-
riafor such smoothnessis that al derivatives with
respect to any variable arefinite.

If the terrain h(x,y) is smooth enough to have a
uniquetangent planeat every point, then our discus-
sion of the nature of slopes on a curved surface can
beginwith astudy of how slopesbehavein atangent
plane. What welearn from the study of one tangent
plane can then be applied to all tangent planesinthe
terrain.
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To visualize atangent plane at some point (X, Yo),
start by imagining that the point is on the surface of
atable, and construct acoordinateaxis(x,y,z) whose
originisat (Xg, Yo) asshownin Figure (2). Thexy
plane is the table surface and the z axis points
straight up. Let usassume that the x axisfaces east
and the y axis north.

To represent atangent plane, take athin flat object
like a piece of cardboard, and place it on the table
surface, tilted at an angle 8 asshown in Figure (3).
Orient the cardboard so that the line of contact with
the tableisthe x axis.

Itiseasy to seethat in our flat tilted surface, all lines
parallel to the x axis are contour lines, and that al
linesparallel tothey axisheaded northarefieldlines
with amaximum slope. Itisalso clear that thefield
lines are perpendicular to the contour lines.

Thesefeaturescarry over toasmooth curved surface
h(x,y). At any point (X, Yo) construct a tangent

zZup

X
east

y
north\

plane. Unless this tangent plane happens to be
horizontal, there will be aunique horizontal linein
theplanethat passesthroughthepoint (Xq, yo). This
horizontal line corresponds to the x axisin Figure
(3). Inaregion very closeto the point (xg, Yo) this
horizontal linewill coincidewiththe contour line of
h(x,y) that passes through that point.

Perpendicular to the x axisin the tangent plane will
be aline of maximum slope heading in the y direc-
tion of Figure (3). The field line of our curved
surface h(x,y) that passes through the point (Xq, Yo)
will bey oriented for asmall region around (X, Yo)-
Asaresult, inthissmall region the contour linesand
the field lines of the curved surface have the same
properties as the contour and field lines in the
tangent plane. In particular, even for curved sur-
faces, contour lines and field lines will always be
perpendicular to each other where the contour lines
arein the direction of zero slope and the field lines
in the direction of maximum slope.

tangent plane
through (X,Yo)
\/\

north

X
east

Figure 2
Our coordinate system.

Figure 3

The tangent plane. All linesin the tangent plane that
are parallel to the x axisarelines of equal height, or
contour lines. Linesin the perpendicular y direction

are lines of maximum slope, or field lines.



THE GRADIENT

When you have amathematical function h(x,y) that
describesasurface, the slope of that surfacein some
direction is given by the partial derivative in that
direction. Explicitly the slope in the x direction at
the point (X, Yo) isgiven by

slopein x
directionat \ = ahg)(('y) (29)
(X0, Yo) / X=X0Y=Yo

and the slopein they direction is
slopeiny
directionat | = Oh‘(ax,y) (2b)
(X0, Yo) / Y Ix=x0y=yo

What we will do now isto define aquantity wewill
call the gradient, and represent it by the symbol
Oh(x,y). Explicitly we define Th(x,y) by the
eguation

oh(x, oh(x,
(()>)<( iy ((;; y) 3

where X and ¢ are unit vectors in the x and y
directions respectively.

Oh(xy) = &

Thegradient Th(x,y) lookslikeavector withx and
y componentsequal totheslopeof h(x,y) inthex and
y directions. However a vector is more than a
quantity with somecomponents. Wesaw in Chapter
2 of thePhysicstext that avector hasabasic physical
significance that does not depend upon the coordi-
nate system used to definethevector. What weneed
todofor our gradientistofind thebasic significance
of the quantity Ch(x,y) and then show that the
physical picture does not change when the gradient
is evaluated in a different coordinate system.
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To seethe physical significance of the gradient, we
will evaluate Th(x,y) at some point (Xg» Yo), Using
acoordinatesystemwherethex axisisparallel tothe
contour line passing through that point. That isthe
same coordinate systemweused inour discussion of
thetangent planein Figure (3). Sincethex axislies
along a contour line at the point of interest, thereis
no change in height as we move a short distance in
the x direction, and thusthe partial derivativeinthe
x direction is zero.

for an x axis
ahgx,y) _. =0 lyingaong 4)
X [XZXo acontour line
Y=Yo
What remains of the gradient is
N oh(x, for an x axis
Oh(x,y) x=xg = 9 ((9 y) =x Iymgalong
Y=Yo y y;yg acontour line
(5)

For this coordinate system, the gradient ispurely y
oriented, which is the direction of the field line
through (Xq, Yo) - Alsothemagnitudeof thegradient
is equal to the magnitude of the steepest slope at
(Xo» Yo). Asaresult, physical significance of the
gradient, at least inthisspecial coordinatesystem, is
that it describes both the direction and magnitude
of the steepest slope.

Thusthe gradient has both amagnitude and adirec-
tion like the displacement vectors we discussed in
Chapter 2 of the Physicstext. |f thecomponents of
thegradient change(transform) inthesameway as
the components of a displacement vector, then the
magnitudeanddirection will bepreserved when we
go to a new (rotated) coordinate system. The
components will look different, but the magnitude
and direction will be unchanged.
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To see whether the components of the gradient
transform (change) like the components of a dis-
placement vector, let usfirst review what happensto
apurely y oriented displacement vector B whenwe
go to anew coordinate system (x',y') that isrotated
by anangle @ aboutthez axisasshowninFigure(4).
You can easily see that in the x',y’ coordinate
system, the components of B are

B, = Bsin
BX = BCOS(p (6)
y’ - (P
Exercise 1

(a) Show that for a purely x oriented vector A the
components of A in the rotated (x,y') coordinate
system are

A, = Acos
n ~ asng "
y = “Asing
(b) Now show that if you start with a vector
C = XA+JB = %C, +YC,
which has components C,= A in the x direction and

C, =B inthe y direction, theninthe rotated coordinate
system, the components of C are

Cyx = +Cycos@+Cysing

(8)
C

y = —Cysing+C, cos@

(Equations (8) are the general formula for the trans-
formation of the x and y components of a vector when
we rotate the coordinate system by an angle @ about
the z axis.)

Z axis up out of paper

Figure 4

When we rotate the coordinate system about the
zaxis, they directed vector B gets components
in both thex' andy’ directions.

When we go from the coordinate system (x,y) tothe
rotated coordinate system (x',y'), the gradient

. oh(x, oh(x,

Oh(xy) = & gxy) +9 ‘gyy) (3) repeat
becomes

o oh(x"y’' ,oh(x"y’

thicy) = 2 g g TN

To calculate the new components ah(x’,y')/ox’ and
oh(x',y')/oy' at some arbitrary point (x,y) we will
use our familiar tangent plane of Figure (3) repro-
duced hereasFigure (5). Wehaveasodrawninthe
rotated coordinate system (x',y') seen in the top
view of Figure (5). The coordinate axes x,y and
x"y" al lieinthetabletop surface, what we can call
the z=0 plane.

Thepartia derivative, for example oh(x,y)/dy , rep-
resentstherateof changeof theheight haswego out
along they axis. For therotated coordinate system,
the partial derivative oh(x',y')/ox' represents the
rate of change of the height h aswe go out along the
X" axis. We will use these ideas to calculate the
height Ah of thepoint A showninFigure(5), apoint
that isadistance Ax' down the x' axis.

z directed straight up

y' y
top view
(p 1
A X
N(p Ay’
X
AX

Figure 5

Our tangent plane of Figure (3) showing the
rotated coordinate system x',y', and the point
A, adistance Ax' down the x' axis.



Therearetwodistinct waystogettothepointA. One
istogodownthe x' axisdirectly, adistance Ax' . For
this route we get as the formulafor Ah

sopein distance we
Ah = | thex' x| gointhe
direction X' direction
_ oY)
Ah = —o 7 X X (10)

The other way to get to point A isto go down the x
axisadistance Ax , gaining a height Ah, given by

Ah, = ah((;)((,y) Ax

(11)

and then go out adistance Ay intheoldy direction,
giving us an additional height Ah,, given by

_ oh(x,y)
y = oy
Theheight Ah at point A will bethe sum of thesetwo
heights

Ah Ay (12)

Ah = Ah, +Ahy
_ oh(xy) oh(x.y)
= —ax AX + ay Ay (13)

z directed straight up

y y
top view
¢ \
A X
Mcp Ay
X
AX

Figure 5 repeated
Our tangent plane of Figure (3) showing the rotated
coordinate system x', y', and the point A, a distance
Ax down the x' axis.
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(Inour drawing of Figure (5), we have shown the x
axis as being horizontal, so that the slope
oh(x,y)/0x would be zero. Thismakesthe drawing
easier to interpret, but we do not need to assumethe
x slopeis zero for the current discussion.)

Thefinal step in calculating the height Ah of point
A fromthesecondrouteistorelate Ax and Ay tothe
distance Ax' traveledalongthe x' axis. Fromthetop
view of Figure (5) it is clear that

Ax = AX'cos @
Ay = AX'sin@ (14)
Using these valuesin Equation (13) give us
oh(x, , oh(x, .
Ah = éxy) AX'cos @ + éyy) AX'sin @
(15

We can now equate our two formulas, Equation (10)
and Equation (15) for theheight Ah at point A. The
factors of Ax' cancel and we are left with

oh(x,y)
oy

oh(xy") _ oh(x.y)
ox' ~ 0OX

(cosq@) +

(sng)

(16)
Comparing Equation (15) with Equation (8) for the
transformation of the x component of the displace-
ment vector C

Cy = Cicos@+Cysing

we see that the x component of the gradient trans-
forms (changes) in the same way as a displacement
vector when we rotate the coordinate system by an
angle @.

(8a) repeated

Exercise 2
Using similar arguments, show that the y' slope
oh(x',y')/ay" is given by

on(x',y") _ ohx,y) on(x,y)

oy 0x (=sing) + ay

(cosq) (17)

which is the same as the transformation of the vy
component of a displacement vector.
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Gradient as a Vector Field

What is the significance of our demonstration that
the quantity Clh(x,y) , defined by

oh(xy) _ . oh(xy)
ox *y oy

transformslike avector at each point (x,y) in space?
Aswe pointed out in Chapter 29 of the Physicstext,
a vector field, which is a vector at every point in
space, is uniquely determined if we have general
formulasfor thesurfaceintegral andthelineintegral
of thefield. There were four Maxwell's equations
because we needed formulasfor the surface and the
line integrals of both the electric and magnetic
fields.

Oh(x,y) = X

(3) Repeat

In the Physicstext and the first part of this chapter,
we knew that the electric field was a vector field
because of itsdefinition astheforcevector actingon
aunit test charge. The knowledgethat forcestrans-
form as vectors was sufficient to tell us that any
correct formulafor E gaveusavector field. Inthis
section with the definition of Equation (3), the
gradient is given ageometrical definition, which at
first sight might or might not make Ch(x,y) behave
as avector field. The demonstration that Th(x,y)

transforms as avector meansthat conceptslikeline
and surface integrals can be applied to any gradient
fields.

As we saw in the first part of this chapter, the
extension of Equation (3) to the gradient of athree
dimensional functionis

Oh(xy,2) = &h +y0Q,h +20,h (18)

where [ , and [, are the partial derivatives
0/0x , d/dy ,and 0/0z . Equation (18) hereisequiva-
lent to Equation (16) in the first part of the chapter
relating E to OV(x,y,2) .

Thiscompletesour discussion of thegradient vector
Oh(x,y,z) fromageometrical point of view. If you
have not done so aready, now isthetimeto look at
applications of the gradient vector to electric field
problems, starting with the discussion of the gradi-
ent vector just before Equation (16) of the first part
of the chapter.



View 3
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Pressure Force as a Gradient

We end the chapter with View 3, an application to
fluids, whereweseethat the pressureforce Fp acting
on the fluid particlesisthe gradient of the pressure
field p. Thisrepresentsastraightforward exampl e of
obtaining a vector field f, froma scalar field p.

PRESSURE FORCE AS A GRADIENT

In the Physics text, there were two main places
where we dealt with the concept of pressure. The
first wasin Chapters 17 and 18 ontheideal gaslaw,
and the second wasin Chapter 23 during our discus-
sion of Bernoulli's equation. In both cases we
mentioned that pressure had the dimensions of a
force per unit area, but was itself a scalar field
p(x,y, z) that did not point anywhere. We pointed
out that the pressureforceactingonanarea AA was
directed perpendicular to the area and had a magni-
tude

AF = pAA (1)

We will now use the concept of a gradient to show
that the pressureforce per unit volume fp ,actingon
the fluid particles, is equal to minus the gradient of
the pressure p(x,y,2)

Fp = —ﬁp(x,y,z) (2)

Thisisanalogousto the electric field being equal to
minus the gradient of the electric voltage

E = —0OV(xy.2) (3-19)
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which we saw back in Equation (3-19) of thischap-
ter.

Tocalculatethe pressureforce, westart withasmall
volume AV = AxAyAz showninFigure(1). This
volumeelement hasaleft facelocated at zand aright
faceat z + Az. Thecenter of thefacesarelocated at
(X,y) where the pressures are p(x,y,z) and
p(X,y,z +Az) respectively.

The pressure force AF 4 exerted on the left face of
AV isequal totheforceper unitareap,(x,y,z) times
the area AA | = AxAy of that face. The pressure
forceisdirected into thevolume, toward theright in
the 2 direction, as shown

AF; = 2p(x,y,2) AXAy (3)
Ontheright side, theforceisdirected back into AV ,
in the —z direction, and has avalue

AF, = —2p(X,y,z +AzZ) AxDy (4)
The net force on these two sidesis

(AR, + 27,

—Z[p(x,y,z +Az) — p(x,y,z)]AxAy

5| PXy,Z2+A2) —p(Xy.2)
Az

AxXAyAz
©)

Y ou canimmediately seethat whenwetakethelimit
that AV isan infinitessmal volume and Az goesto
zero, the quantity inthe square bracketsin Equation
(5) becomes the partial derivative of p(x,y,z) with
respect to z.

+ Az
Y AR adl @ | »of
! —=>(1)! < :
Ay :,/,)_______:___
b
é Z-lI-AZ z

Figure 1
The volume element AxAyAz.

op(x.y,2)
0z
(6)
Thus Equation (5) can be written in the somewhat
mixed form

limit
Az - 0

Az

p(X,y,Z +AZ) - p(X,y,Z)} -

w AxAyAz (7)

wherewewill shortly think intermsof thelimit that
AV = AxAyAz goesto zero.

(AR, +F,) = -2

Before we do, let us add in the pressure forces F
and F 4 acli ing on the bottom and top faces respec-
tively, and Fg5 and F g acting on the back and front
faces to get the total pressure force AF acting on
AV . Following the same steps used to derive
Equation (7), we get

AF,

= (Aﬁl +AF, +AF; +AF, +AF; +AF,

,0P(x.y.2) yap(x Y.2) , o 0p(Xy.2)

o7 ax AXAyAz

(8)
The quantity in the square brackets in Equation (8)
is the gradient [lp of the pressure field. Thus we
have, after dividing both sidesby AV = AxAyAz

AR,
N = —Op(x.y.,2) 9)

Werecognizetheleft sideof Equation (9) asthetotal
pressureforce acting on AV divided by the volume
AV . It is therefore the pressure force per unit
volume Fp(x,y,z) acting in that region of thefluid,
and we get our advertized result
pressure
force
per unit
volume

(2) repeated
With Equation (2) we have a powerful way of
calculating pressure forces, since we can evaluate
the gradient in any of the coordinate systems we
have been discussing, such ascylindrical or spheri-
cal polar coordinates.

fp(X,y,Z) = —ﬁp(x,y,z)
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The Operator 02 =

(The Laplacian)

Inour earliest discussion of vectorsin Chapter 2 of
the Physics text, we were introduced to the vector
dot product

AB = AB,+AB +AB, 1)

as having the special property of being a scalar
quantity. That is, the quantity ALB had the same
value no matter what coordinate systemwe used to
evaluate it. Having just seen that the gradient
operator [J operating on a scalar field h(x,y,2)
produces a vector field, one might wonder what we
get when we take the dot product of two gradient
operations acting on a scalar field. The answer is
that we get another scalar field.

The standard name for this dot product of two
gradient operatorsis del squared, written as

0% = 0 2)

It is often called the Laplacian operator after the
French mathematician Laplace. This operator is
essentially an extension to three dimensions of the

—

!

second derivativeweencounteredin Cal culusChap-
ter 2, during our discussion of the one dimensional
wave equation. Thuswe should expect [] 2t0 appear
when we begin to discuss three dimensional wave
equations in the next few chapters.

Fluid theory

Another area of physics where the operator [72
plays a prominent role is in fluid dynamics. For
common fluids like water and air, the viscous force
acting on the fluid particles turns out to be propor-
tional to the Laplacian of the velocity field, namely
[J%V . We will derive that result starting from an
assumption that 1ssac Newton made about the na-
ture of viscous forces.

Asan application of the theory of viscousfor ces, we
will look at the steady flow of a viscous fluid in a
pipe. Thisexampleprovidesaway to measurethe so
called coefficient of viscosity that appears in
Newton's theory. It also provides an example of the
use of the operator [7?acting on a vector field.
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Schrodinger's Equation

One of the glaring omissions in the Physics text
resulted fromour inability to calculate the electron
wave patterns in the hydrogen atom. All we were
able to do is show drawings of a few of the lowest
energy wave patterns, describe the electron's en-
ergy and angular momentuminthesewave patterns,
and then state that these patter ns came froma wave
equation called Schrédinger's equation. We were
neither able to write down or solve the equation
itself.

To handle Schrodinger's equation as applied to the
hydrogen atom, we needed two mathematical con-
cepts we did not then have. One is the operator
[J? which we are introducing in this chapter, the
other isthe concept of acomplex variablewhichwe
will introduce in the next chapter, Chapter 5. Once
we devel op these two mathematical tools, wewill be
ready to approach Schrédinger'sequationin Chap-
ter 6.

Whenweapply Schrédinger'sequationtothehydro-
gen atom, we are dealing with a system that has
spherical symmetry. Asaresultitismuch easier to
deal with the theory using a coordinate system that
has the same symmetry. The problem is that the
operator 002, which in Cartesian coordinates is a
straightforward extension of the second derivative,
becomes quite complex when we work in other
coordinatesystemslikespherical polar coordinates.
Thereason for the complexity isthat in any coordi-
nate system except Cartesian coordinates, the unit
vectors may change direction as we move fromone
point in space to another. This change in the
direction of the unit vectors complicates the formu-
lasfor (72

The Formulary

In the main part of this chapter we will simply state
the formula, in spherical polar coordinates, for
[J? acting on a scalar field (. Thisisthe formula
we will use in Chapter 6 in our discussion of the
hydrogen atom. In the appendix, however, we will
derive the formula, showing you exactly how the
changing unit vectors affect the results. \We have
placed this derivation in an appendix because it is
the kind of derivation you probably want to observe
only once in your life, to find out where the rather
messy results come from.

When you are actually working problemsinvolving
quantitieslike 72 in cylindrical or spherical coor-
dinates, you do not want to derive the formulas
yourself because the chances of your getting the
right answer are too small. You are not likely to
memorize them correctly either, unless you use a
particular formula often. Instead, the best proce-
dureisto look up the result in a table of formulas,
sometimes called a formulary. We provide a for-
mulary at the end of this text, one adapted from a
formulary developed by David Book of the Naval
Research Laboratory.

In our discussion of viscous forces in this chapter,
we usetheformulary to find the formulain cylindri-
cal coordinatesfor 02 acti ng on the vector field v.



02 IN CARTESIAN COORDINATES

We will first take a careful look at 02 = O in
Cartesiancoordinatesbeforeweapproachthespheri-
cal case. Using the unit vector notation for [l we

have
D—xa+y6y+zgz 3)

where R, ¥ and 2 are unit vectors pointing in the x,
y, and z directions respectively. The dot prod-
uctC] [T actingonsomefunctionf(x,y,z) should be
given by

Oof(x,y,2)

- (g9 ")E( Siatd
= (22 3 (x5 [(V )
+ EIZD+(2662)[(23;) )

Being very careful with our differentiation, wehave,
for example,

) of | _ o 0K Of , 4 0%
(15 423 = # E{ax ox ¥ axz} ©
We have been overly careful because the unit vec-

tors X, ¥ and 2 are constant in both magnitude and
direction, thus

o = (6)
and we are left with

d of 9% _ 04
("ax) E("ax) XX 5%z = ox2 (")
Similarly
9 of | _ a9 of 9%f
(%) 5y = + E(63xzay+57axay)
-3yt - g
B oxoy (8)

because 0y/0x =0 and X [ =0.
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As aresault, al we are left with, when we evaluate
0% in Cartesian coordinatesis

2
0%(x,y,2) = 6Xf2+6yf+ gzl; ©)

whichisanobviousextensiontothreedimens onsof
the second derivative 02f/dx2 that appeared in our
one dimensional wave equation in Chapter 2 of the
Calculus text.

02 in Spherical

Aswementioned, theresultsare not so simplewhen
we are working in other coordinate systems. In
spherical polar coordinates, whenJ?is acting on a
scalar function, we get thefollowing result whichis
derived in the appendix to this chapter.

szz%iz(rf)
116( eaf) 1 0%
2| 'sin@ 08 08 | sn% o¢?
(10)

wherer, 8, and ¢ are the polar coordinates shown
in Figure (1). Much of this complexity comesfrom
the fact that the unit vectors are not constant, and
have to be differentiated. You will see how this
works by going to the appendix.

(We should note that, in non Cartesian coordi-
nates, 0% acting on avector, e.g. °E , hasan even
morecomplex formula, whichisgivenintheformu-
lary at the end of the text.)

Z

p

~
= |
0 r |
|
|
~< i
< |
(p RN |
\\\ |
~No |
~N

Figure 1
Spherical polar coordinates.

Polar Coordinates
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NEWTONIAN FLUIDS

We now move on to our example of the use of the
Laplacian operator to describe viscosity in a
Newtonian fluid.

Newton proposed that viscous effects in a fluid
resulted from the shearing motion of one layer of
fluid over another. This shearing force can beintro-
duced asfollows.

Suppose we have asmple flow where dl thefluid is
movinginthex direction, andthevel ocity isincreasing
inthey direction as shown in Figure (2).

To analyzetheforcesinvolved, consider ahorizon-
tal plane indicated by the dashed line labeled by
A----B. Thefluid above the plane, which istravel-
ling faster, dragsthefluid below forward. Thefluid
below, whichis going slower, dragsthe upper fluid
back. Let T, betheforceper unit areaexerted by the
upper fluid on the lower fluid, and T_, the force
exerted by thelower fluid ontheupper. InFigure(2)
wehavedrawntheforces T, and T_ insidethefluids
upon which they act.

y

<)

T-
AeeedeeeC S ————- :]Z _____ B
T+

Figure 2
Diagram of a simple flow where the velocity field v is
x directed and increasing in the y direction.

This combination of oppositely directed forces on
opposite sides of the planeis called astress, in this
caseastressgenerated by theaction of viscosity. For
aso called Newtonian fluid, thestress r isassumed
to be directly proportional to the rate at which the
velocity field ischanging aswe move up, which for
our x directed flow is

oV, (Y)
Y%

(11)

T=H

The quantity p iscalled the coefficient of viscosity

M = coefficient of viscosity (12

For aNewtonianfluid, y isassumed to beaconstant
throughout thefluid. In many situations, both water
and air behave as Newtonian fluids.



VISCOUS FORCE ON A FLUID ELEMENT

Suppose again that we have a simple x directed
velocity field whose velocity profile is shown in
Figure (3). Now consider a small volume element
with sides Ax, Ay and Az, the bottom of whichis
located at (y) andthetop at (y + Ay ) isshown. The
fluidbelow theplaneA----B aty isdraggingthefluid
above, back with aforce per unit area 1_(y)

oV, (Y) force per unit
T(y) = -p—% area at the bottom (13)
oy of volumeelement

Thetotal forceat thebottomistheforceper unitarea
T_(y) timesthearea AxAz upon whichitisacting

AF_(y) = 1(y)AxAz
0Vy(Y)
oy

Up at thetop of the volume element, the faster fluid
above the C----D plane at (y +Ay), is pulling for-
ward the slower fluid below with atotal force

(14)
AXAz

AF,(y+Ay) = 1,(y+Ay)AxAz
( ) (15)
_ L 0% (y+Ay
= +|1TAXAZ
y
o
Ay
-
Figure 3

Calculating the viscous force on a fluid element.
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With Equations (14) and (15) we see that the total
viscousforceon thefluidin our volume element can
be written

AR, = AF_(y) +AF,(y+Ay)

AXAz

oV (y) | OV, (y+Ay)
—H ay +H ay

(16)
Multiplying theright side by Ay/Ay gives

OV (y+hy)  vyly)

oy oy
Ay AxAyAz (17)

AR, =

Thequantity inthe square brackets should berecog-
nized asthe second derivativeof v, (y) with respect
to y. Dividing through both sides by the volume
AxAyAz givesustheviscousforce per unit volume

AF viscous force per unit
X_ =f,  volumeactingon
AxAyAz the fluid element
0%y (Y)
fv X = UT;z (18)

This is the formula for the viscous force per unit
volume acting on thefluid particleswhen we havea
purely x directed flow of a Newtonian fluid whose
speed varies only in the y direction. In the next
sectionwegeneralizetheresult to threedimensional
flows.
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VISCOUS FORCE FOR THREE
DIMENSIONAL FLOWS

At first sight, there seems to be a rather obvious
extension of Equation (18) to three dimensional
flows. Inachapter devoted to discussing the opera-
tor 002, we might expect that the generalization of
our formulafor theviscousforce f,, per unitvolume
should be

f, = o (19)
To check that Equation (19) reducesto our resultin

Equation (18), when v isthe one dimensional flow
v, (y), we have

2 2 2
fox = HOPV(Y) = U(aaxz + a"yz + aazz)vx(y)
0%V, (¥)
= HV (20)

Thus we get the desired result for one dimensional
flows.

However, complications arise in three dimensional
flowsthat we did not consider in our analysis of the
simple one dimensional flow pattern. In three di-
mensions, fluidsflow around cornersand x directed
flows can becomey or z directed. The definition of
viscous stress we gave in Equation (11) ssmply
cannot handle changes in the direction of the flow.

Aneffectiveway to deal withviscousforcesinthree
dimensional flowsisto note that the resulting force
f,, per unit volume must be avector field. That is,
f,, must transform likeavector field when werotate
the coordinate system. (See the discussion of the
transformation of vector fields at the end of the
geometrical discussion of thegradientin Chapter 3.)

We will also require that fv be made up of some
combination of constantsand second derivativesof
the velocity field. These requirements on f, are
essentially what wemean by aNewtonian fluidwith
constant coefficients. If theviscousforcesaremore
complex, which they can be for something like a
liquid crystal, then we say that the fluid is
non Newtonian.

What we want is the most general combination we
can make out of constants, two derivatives 0, and a
velocity field v. Basically wehavethreevectors O,
O, v, and we must multiply them together to get a
single vector. To do this, we have to take the dot
product of two of them. Thepossihilitiesare (£ [T)) v

and O(D @) .* Asaresult, our most genera for-
mula for a Newtonian fluid with constant coeffi-
cientsis

fy = w(0m)v +p,0(0 W) (21)

where i 1 and p , areconstants. Thereis no other
combination of constants and second derivatives of
the velocity field that transforms as a vector when
we rotate the coordinate system.

If we are dealing with a constant density fluid,
(W =0 and we are left with
f, = p(OM)yv = pox (19a)

whichistheresult weguessed back in Equation (19),
with g1 = Q.

Equation (21) suggests that it is possible to have a
second kind of viscosity whenthefluidiscompress-
ible and 0¥ is not zero. This has in fact been
observed, and |1 , is sometimes called the second
viscosity coefficient. (Some texts use a second
viscosity coefficient definedasA =, —p.) Inthis
text we will only deal with incompressible fluids
wherethereisno second viscosity, and fv issmply
given by the Laplacian operator [J2acting on v,
namely f, =u0%.

* (You might also consider vector cross products
involving O, O, and V. The possibilities are
Ox(Om), OQdxv), and Ox(0xV). At the be-
ginning of Chapter 9, we find that the first two of
theseareidentically zero, and thethird turnsout to be

Ox(@xv) = O(0m) —(OMm)v
which involves only the two terms we got from dot

products. Thus we get nothing new by considering
cross products. )



Viscous Force in

Cylindrical Coordinates

Now that we have the formulafor the viscousforce
fv = uD2\7, which appliesto any fluid that we will
consider in this text, we are free to use genera
formulaswehaveintheformulary for 02 invarious
coordinate systems. We are about to study the flow
of aviscousfluidinapipe, aproblem that obviously
has cylindrical symmetry. Thus to analyze the
viscous forces, we should work with 0%V in cylin-
drical coordinates.

We mentioned earlier that 02 acti ng on a vector
field is more complex than 02 acting on a scalar
fieldinanything except Cartesian coordinates. Thus
evaluating 0% in cylindrical coordinateswill give
us some practice in correctly using the formulary.

From the formulary we find the following formtﬂ a
for 02 actingonascalar fieldf and avector field A.

sz — 10 (raf)+

10(,0f\, 10% , 0%
ror\ or

2992 972
vyhere the coordinatesr, 6, z arethe unit vectors t,
8, 2 shown in Figure (4).

(22)

z

Figure 4
Cylindrical coordinates.
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Looking farther down Ln the formulary we find for
the components of [ 2N

S 0Ag A

(O%R), = DZAr‘FzzTee‘Tzr (233)

2Ry = 2 20A; Ag
(0%A)g = OAg+ 29 - (23Db)
(0%R), = O%A, (23c)
where, for example, DZAZ means apply Equation

(22 to A,

) 40 OAZ) 10%A, 9%A,
DANﬂa‘rmbm 12002 T oz
(24)

All thislooks like a terrible mess. But suppose we
haveafluidflowing smoothly along apipeasshown
in Figure (5). Takingthe 2 direction down the pipe
and r the distance out from the axis of the pipe, we
can assume, for cylindrical symmetry, that v(r,0,z)
ispurely 2 directed and dependsonly ontheradiusr.

V(r,8,2) = 2v,(r) (25)

Now let uswork out 02V for thissimple case using
Equations (23) for 02 in cylindrical coordinates.
Because v, and vy are zero, we do not worry about
Equations (234) and (23b). From (23c) we have

(0%), = D4, (26)
Thusfor this case we do not haveto worry about the

extra stuff that comes in when we take 02 of a
vector.

rT >V ()
Figure 5

Velocity profile for the
uniform flow in a pipe.
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Next we notethat v, = v,(r) , thuswe can ignore the
0v,/08 and dv,/dz termsin (13a) and we are left
with

1 i r 0v,(r)
rorl or
whichisnot such adifficult thing to work with after
al.

0%), = (27)

Toget afeeling for what theviscousforcelookslike
for pipeflow, welook up in afluidstext what the so
called laminar (i.e., non turbulent) velocity profile
iIsinapipe. Theresult they giveis

parabolic
velocity

Vo (p2
vAr) = =5 (R°=r?)
‘ R? profile

(28)
where Ristheradiusof the pipe, V theflow speed
at thecenter, and r theradial distancefromtheaxis.
This is the parabolic profile shown in Figure (5).
Y ou can seethat at the edge of the pipe, wherer =R,
the velocity goesto zero. At the center wherer =0,
Vv, = Vgisamaximum.

To calculate the viscous force per unit volume for
this parabolic profile, we have

f, = po0% (29)
5 0| ov,(r
(f,); = H(E), = u%ar( 2 )) (30)
With Equation (28) written as
_ Vo,
VZ(r) = —?r +VO (28&)
we easily get
aVz(r) 2V0
or T R2 r
aVZ(r) = _% 2 (31)

Del Squared

Thus (0%), becomes

10 (ravz(r))

0%), =

Tor\' or
“Torl R
1(_2Voar?
T\~ R or (32)
1| 2V
-
Ther's cancel and we are left with
. 4V,
(O%), = -—2 (33)
The viscousforce f,, = p0% becomes
4\
[ = —u(RzO) (34)

We end up with the result that 1?\, pointsin the —2
direction (it hasonly anegative zcomponent) andis
constant in magnitude throughout the pipe. Thisis
awonderfully simpleresult considering the stagger-
ing mess of terms we faced in Equation (23).

Wewill seethat the physicsof the parabolic laminar
flow isthat thisuniform — 2 oriented viscous force
is balanced by a uniform + 2 oriented pressure
gradient downthetube. Thusthereisnonetforceon
each fluid element and the fluid moves down the
pipe without acceleration, i.e., at constant velocity.



Measuring the Viscosity Coefficient

If we havean apparatuswhereweknow the pressure
gradient, we can use that to measure the viscosity
coefficient p of the fluid. Such an apparatus is
sketched in Figure (6), a sketch taken from the
excellent fluid dynamicstext by Tritton.

Since there is essentially no viscosity acting in the
region between points(1) at thetop of thefluidinthe
container, and point (2) near theentranceto thepipe,
we can use Bernoulli's equation to get

p1+p71+pgh1 = pz+p 2 +pgh, (35)

Wlth V1:O and hl
P—P1 = p@lh—p—2 (36)

If weuseasufficiently long and small diameter pipe,
the pipeflow velocity will be sufficiently small that
we can neglect v,2 compared to gh. Noting that
both p;and p; are both atmospheric pressure and
thusequal, weget for thepressuredifference (p,—ps)
at the ends of the pipe

h,=h, we get

pressuredifference
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Thepressureforceonthefluid at thefront end of the
pipeis p,A,=p,A whereA isthe cross sectiona
areaof thepipe. Atthefarenditis—p3A, theminus
sign is used because the pressure force is in the
—z direction. Thusthe net pressure force pr is

Fo =2(p2A —p3A)

2(p2—p3)A
2pghA

(38)

If wedivide F, by thevolumeAL of the pipe, weget
the average pressure force per unit volume f ;.

S F 2
= 7p -
o= AL = aLPI™
R h average pressure
fo =2 N force per (39)
unit area

As we mentioned, for steady laminar flow, the
viscous force should be exactly opposed by the
pressure force so that there is no acceleration of the
fluid. Since the viscous force per unit volume is
uniform throughout the fluid for parabolic pipe
flow, the pressure force per unit volume should al'so

(Po—p3) = pgh between ends of (37) beuniform, with theresult that Equation (39) for fp
the pipe should apply at al points in the fluid in the pipe.
(Therewill alwaysbesomedisturbanceat thebegin-
R ning of the flow that we are neglecting.)
=\( overflow
e h
supply outlet to
atmosphere
(2)e = o)L~
long, small diameter pipe (3)
L

Figure 6
Apparatus to measure the viscosity coefficient.



Cal4-10 Calculus 2000 - Chapter 4

Saying that the viscous and pressure forces oppose
each other throughout the pipe flow gives us from
Equations (34) for f,, and (39) for f,

f)= -1,
pgh 4V

2T ‘[‘ R “]

pgh 4V

L Rgu 0

We are left with an equation involving measurable
constants and the viscosity coefficient p.

L ater inthetext, wewill seethat theratio pu/p,which
is called the kinematic viscosity coefficient v, is
more convenient for theoretical work. Equation
(40) gives usfor thisratio

kinematicviscosity
vz M ihxiz determined from
" P T L "4v,| parabolicpipe  (41)
flow

The only constant that may be a bit difficult to
measure directly is the stream velocity Vg at the
center. Thiscan be accurately determined by mea-
suring the flow rate which we will call @ (phi), and
thenexpressV  intermsof ®. Wehavecalled the
flow rate ® becauseit issimply the flux @ of the
fluid through the pipe, given by our old flux formula

v [dA
areaof
tube
andismeasured, intheMK Ssystem, incubic meters

per second.

°= | (42)

To calculate @, we divide the cross sectional area
intocircular bandsof radiusr, thicknessdr, asshown
inFigure (7). Theareaof abandis 2mrdr and the
flux d® through the band is

Del Squared

do = 2mrv(r)dr (43)

With v(r) given by the parabolic profile
(Vo/R?)(R?-r2) , we get for the total flux

R R
o® = fdd) = fvg(Rz—rz)andr
R
0 0
[ R R
= 21V, frdr—r\%zfr?’dr
0 0
R R
_ r r
= 2mo| 5 —qes
0 0
2 2] vV
® =21V, [F;_FH = 2 mR? (44)

Since VO(T[RZ) is the flux we would get if the
velocity wereauniform V, acrossthe pipe, we see
that the flow rate for a parabolic profile is half that
for auniform flow.

With Equations (41) and (44) we can now express
the kinematic viscosity v in terms of the easily
measured volume flux @ . From Equation (44) we
get

Figure 7
Theintegration area isthe
area 2nR dr of the band.



2
VO:26D .1 _mR

nRZ 'V, 20
and from Equation (41) we get

V:ﬁ
g

formula for
measuring
kinematic
viscosity

(45)

Although rather a mess of constants appearsin our
formulafor the kinematic viscosity v, all are quite
easily measured. Notethat by goingtothekinematic
viscosity, the result isindependent of the density of
the fluid.

Exercise 1

Show that the kinematic viscosity v has the dimensions
of meters?/second .
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The two fluids that we will most often use in any
discussion of fluid dynamics are water and air. At
room temperature and pressure, the kinematic vis-
cosity v of these two fluids are approximately

Vater = 1.0 x 10~ ®meter2/second

Var = 1.5 x 10~ “meterZ/second (46)

Intuitively you would think that air would be much
lessviscousthan water, but thetwo coefficients v,
and v, 4 arequiteclose, withair havingthegreater
value. What hashappenedisthat wehavedivided by
the density, which brings the viscosity coefficients
much closer together.
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Appendix: The Operator 2

in Spherical Polar Coordinates

SPHERICAL POLAR COORDINATES

Wewill beginwith areview of spherical coordinates
discussed in Chapter 3. In spherical polar coordi-
nates, thethree unit vectorsaret, 8, ¢ areshownin
Figure (A1) which is Figure (3-10) repeated. We
have acomplication in evaluating 0% in spherical
polar coordinates because these unit vectors change
direction aswemoveabout, and we can nolonger set
the derivatives of the unit vectorsto zero. Thuswe
have to evaluate derivatives of the unit vectors as
well as use the rather messy formula for Of we
derived in Equation (3-88)

L0of . @ of
o0 rsinb 0@

What wehaveto eval uateisthecompl eteexpression

Of(r0.¢) = P90 + (3-89)

0%(r,6,¢) = OODf(r,6,0)
3,60, 9 4
(6 +r06+rsm96<p)
A (A2)
of LBaf . @ of
EéfarJ’ra +rsme O(p)
z
p Ao
'\e F : )
| 9 y
SN I
0=~ o
\\\\\\I:/(p

Figure A1 (3-10 repeated)
Unit vectorsin spherical polar coordinates.

This product involves terms like
(e 0 )[é?af) frpor of , p 0t 0%
oo or 06 or  000r

il %(e%) Sromit s
Becausetheunit vectorsawaysremain perpendicu-
lar to each other as we move around in space,
BF =0 and the second term in Equation (A2) is
zero. However, when we change the angle 6, the
unit vector ¢ changes direction. For example, at
0=0, t points straight up, but at 6=90°, t is
horizontal. Thus d7/00 is not zero and has to be
evaluated.

(A2)

In order to evaluate Equation (A1) for 0%f , wewill
first calculate all the derivatives of all the unit
vectors, and then plug thewhole messtogether. We
findderivativeslike 0t /08 by evaluatingthechange
At as we make a change A6 and then taking the
limitas AB goestozero. Theninederivativesareas
follows.
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Derivatives of r 3) Change of f with @
1) Change of ¢ with r In Figure (A3), when we go from @ to @+ Ag, the
unit vector t goesto the unit vector t'. The projec-
o — Eﬁgﬂgzedﬁrde%?oﬂoéswe tionsof F and f* inthehorizontal planehavealength
or go out along a radius Msm(p: 1sing, and differ in direction by an angle

A@. Thechange Af = ' —t pointsin the @ direc-
tion, and has the same length as the change in the
horizontal projections of ¢ and ', which from the
small triangleis seen to be (sin@)(A@) . Thus

2) Change of r with 0

Figure (A2) shows Ar that we get when 6 increases
by AB . Weseethat Ar pointsinthe 6 directionand
has alength ‘Ef‘ =|7|A8=1xAB. Thuswe get

At = §(10) Ar = (sing)Ag
At - g of - A _ | j(sing) = 9F
=60 |9=0 (A3) Ao P(Sn9) = 5o (Ad)

Aris the change in the unit vector t
when we increase 6 by AB.

o Ar =620 Aris the change in the unit vector ©
N when we increase @ by Ag.
r+Ar i _

Unit vectors enlarged. |f] = [f+Ar] = 1

z

Unit vectors enlarged.

>

Figure A3
Evaluation of or/dg.

D
=}
)4/\
\

D

<

/
/
L __

Ar points in the 8 direction

Figure A2
Evaluation of or/00.
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Derivatives of 0

4) Change of 0 with r

None of the unit vectors change direction as we go
out along the radius, thus

D

=0 (A5)

¥

5) Change of 6 with 0

From Figure (A4) we see that aswe increase 6 to
8+ A6, the unit vector & goes to 8'= 6+A6.
From the small triangle, we see that the change AB
pointsinthe—f direction, and hasamagnitude A6 .
Thus we have

—

A8 = (-1)00
N _ | _; _ 9B
B =|-1=9 (A6)

Ad is the change in the unit vector 8
when we increase 6 by AB.

Unit vectors
enlarged.

@)
>

— A
AB =116
— . . A . .
AB points in the —r direction

Figure A4
Evaluation of 98/08.

6) Change of 0 with ¢

From Figure (A5), weseethat 6 changesto 8’ as ¢
goes to @+ A@. The change A points in the @
direction. To determine the magnitude of A8 , note
that A® and itsprojectioninthehorizontal planeare
the same. Sincethe projectionsof 6 and 8’ havea
length of cosB , and an angle A@ between them, the
lengthof AB iscosB A asseeninthesmall horizon-
tal triangle. Thus

AB = p(cosp) A
@ = . = 07/\
AQ (pcosO o0 (A7)

Derivatives of ¢
7) Change of @ with r

Aswe noted earlier, the unit vectors do not change
withr, thus

09 _
o 0 (A8
z
A
[
9
I
Iy
[
[
}
S, LG ’
7~ 4\(0\:%039
. xS

ABis the change in the unit vector 8
when we increase @ by Ag.

A8 points in the @ direction

Figure A5
Evaluation of 08/0¢.



8) Change of @ with 0
Aswecan seefrom Figure (A6), theunit vector ¢ does
not change direction when we changetheangle 6 .

For example, when T isinthe xz plane, @ pointsin
the +9 direction for all angles 6. Thus

~
% =0 (A9)

9) Change of @ with ¢

Finally, we haveto figure out how the unit vector @
changeswith theangle @. Thistimewewill takea
top down view as shown in Figure (A7). Whenwe
change @ to @+ A@, the unit vector ¢ goesto @'.
From the small triangle we see that the change A @
points toward the 2 axis and has a magnitude Ag.

In Figure (A8), we see that aunit vector 0 pointing
toward the z axisis given by

unit\(ector\

pointing _ ednn_ A
toward = —fsnB—06cosO
Z axis

Thus AQ = A@(—f sin@—BcosB) and we get

A0 _ —7sin@—06cosh = 90

2o 30 (A10)

The unit vector @ does not change
when we increase 0 by AB.
Figure A6
Evaluation of ogr 9.
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Z axis straight up

r
Ao

| r

)

E=X

X

ﬁp is the change in the unit vector @
when we increase ¢ by Ag.

— A
A =(-U)Ag

)

¢

Unit vectors enlarged. The unit
vector —U points toward the z axis.

Figure A7
Evaluation of 08/0dg.

0

|
[N .
I U= unit vector
I pointing toward

0 : z axis
|
|
|
[
|

= ’
07 T=~o
X
Z
ie ¢
|
]
r-0 plane
i = (-?)sin® + (-B)cos 6
Figure A8

The unit vector we call u that points toward the z axis.



Cal4-16 Calculus 2000 - Chapter 4  Del Squared

Summary of Derivatives of Unit Vectors Thetermsin Equation (58) withasinglelinethrough
In summary, we get them are zero becagse the unit vectors are orthogo-
nal:i.e, (B=0,08 =0, etc. Nextwe use our
ar _ 0: of _ - of _ @sinB summary, Equation (57) to evauate the following
or ' 00 ' 0@ t
erms.
8 _ . 90 _ .. 98 _; P = 0 because I =0 A13a
or =0 gg = —F g = Boostd or or (A13a)
09 _ . 0 _ . 0 _ .. g 29 = 0 because 9 =0 (A13b)
W_O’ Fr =0; a(p——?sme—ecose or or
(A11) - -
?Dg—(rp = 0 because %p =0 (A13c)
Calculation of 0%
We are now ready to calculate 0% given again by étg% =fMd=1 (A13d)
Equation (A1)
0%(r.6,¢) = DODf(r,6,¢) émg—g = Q(-F) = (A13¢)
;0,060 ., @ 9 5 ¢ aq
—(i’a+rae+rgnea(p) 65 = 0 because 95 = 0 (A13f)
Of L0, & of 96 = GL@sing) = sind (A13g)
or T 90 rsnd dg
Dng = @dpcosb) = cosd (A13h)

¢
[[3%+faf+a\%+e\gr\&\a&) ADFL

) 6$ = @(-7sin@ —Bcosb) =0 (A13i)

dg of , 7 1 of
+%§\\@\Q+ (p\a%\w Thetermsin Equation (A12) for 0%, that are zero

because of Equations (A13), have a double line

through them. We are left with
L 00 of L3 Zf+méa i
T B T 502 - 0% , 6 or of
rE[aear xﬁ 06 r 3a2 0% = rr S0+ ¥ OG5
of . 1 of 6 -0 b
+%ﬁ(‘pae FSne_00 TE’?"—Z rsne[%par
A 0 0 1 of ) O 9%
& |or af , % L 98 1 of +ogild .2 g
+rsmet[a(par+fa(p +6cpra rsiné o "a rsind 1sind g¢?

(A14)

9% ®§lﬁ of
+T6(p +acpr5| ¢

[ 1 o
* ‘p(r Sind a@ﬂ (A12)
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Using Equations (A13), Equation (A14) becomes
2 _ 0% _ 10f 1 0%
O = o2 T ar +ﬁﬁ

1 . Of 1 1 of
rsind Smeﬁ * Tsno COSGT%

1 9%
r2 sin20 02 (AL5)

This becomes

+

DZ.I:_ 02f+26f

o2 Tor

+ 1| cosb ﬂ + ai
r2| sinb 9o 92
1 9% (A19)

r2sin%0 ag?

In most textbooks, you will find the equivalent

formula
2
2 - 1 0
O-f r oy (rf)
1.1 o of 1 9%
12| siné ae(s'”eae )+ sin?0 97
(10)
which isthe result we stated earlier in the chapter.
Exercise 2
Show that Equation (A15) follows from Equations (A13)
and (A14).
Exercise 3

Show that Equations (A16) and (10) are equivalent.
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Calculus 2000-Chapter 5

Introduction to Complex Variables

A ROAD MAP

In this chapter you will see that the use of complex
variables greatly simplifies the analysis of RLC
circuits and other forms of sinusoidal behavior.
This chapter does not depend on previous chapters
of the Calculus text and may be studied directly in
connection with therelated material in Chapters27
and 31 of the Physics text.

This chapter is also background material for the
next chapter, Chapter 6, onthe Schrédinger'sequa-
tion. The wave equations we have discussed so far
can be solved using either real variablesor complex
variables. Schrddinger'swave equation isdifferent
inthat the equation itself invol ves complex numbers
and cannot behandled byreal variablesalone. That
iswhy this chapter isa prerequisite. Also, to solve
Schrodinger's equation for the hydrogen atom re-
quirestheuseof 72 inspherical polar coordinates,
which we discussed in the last chapter.

Once we finish Chapters 5 and 6 on complex vari-
ables and Schrodinger's equation, we return to
basic calculusoperations, discussing divergencein
Chapter 7 and curl in Chapter 8. We then apply
divergence and curl to electromagnetism in Chap-
ters9, 10, and 11, and to fluid dynamicsin Chapters
12 and 13.

INTRODUCTION

After introducing the concepts of imaginary and
complex numbers, wefind that an important feature
of acomplex number isthat it can be expressed asa
complex exponential. We then go on to two major
applications of complex variablesthat we just men-
tioned. One is the analysis of RLC circuits, which
can behandled using real variablesonly, but where
there is an enormous simplification if we use com-
plexvariables. Theninthe next chapter, we discuss
the Schradinger'sequation wheretheequationitsel f
involves complex variables.

There are other topicsinvolving the theory of com-
plex variables that we will not discuss in these
introductory chapters. It is possible to construct
fascinating maps of complex functions and distort
thesemapsinintriguingways(not completely unlike
the distortion of images one can create on the
computer). Complex variables are also useful in
finding the formulas for various integrals. These
advanced topics are usually covered in a graduate
level mathematical physics course.
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IMAGINARY NUMBERS

What number, when multiplied by itself gives (-1)?
The answer is none of the ordinary numbers. This
number,v—1 isnot one of the real numberslike 5,
-2, 3, etc. It belongs to a completely different
system of numbers which we call imaginary num-
bers. Thenumber v—1 isdenoted by theletter i, and
the square root of any negative number can be
written as areal number times i. For example

ST = VTXED) = VT XL e ”
= (7)) e

All numbers with one factor of i areimaginary.

COMPLEX NUMBERS

We can make things a bit more complicated by
adding together a real number and an imaginary
number, such as (4 + 3i). Such amixture with both
a real part (4) and animaginary part (3i) iscalled
a complex number. These two parts are distinct;
there is no way we can confuse the real and imagi-
nary parts because imaginary numbers are not part
of the real number system.

This is not the first time we have encountered a
quantity that has two distinct parts. In our strobe

=

Figure 1
The coordinate vector for a two
dimensional strobe photograph.

Complex Variables

photographs showing the motion of aball, we noted
that the position of theball could be described by the
coordinatevector 7, asshowninFigure(1). Forthe
strobe photographs, which only show two dimen-
sions, thecoordinatevector r wascompletely speci-
fied by its (x) and (y) components. Thus two
dimensional coordinate vectors and complex num-
bers are similar in that they both consist of two
independent components.

Thissimilarity suggeststhat we can treat acomplex
number in the same way we handle a two dimen-
sional coordinatevector, plottingthereal andimagi-
nary parts along different axes. It is traditional to
plot thereal part along the x axis and theimaginary
part along they axis. Thus, for example, the com-
plex number (4 + 3i) can be represented by a point
whose coordinate vector has an x component of 4
and a y component of 3 as shown in Figure (2).

In this chapter you will see that in some casesthere
is considerable simplification of the mathematics
and much greater insight when we use complex
numbers. Thisisillustrated in our analysis of the
RLC circuit where we will see that a sinusoidal
oscillation and an exponential decay can both be
handled by one simple complex function.

imaginary

c T R

real

_b._______________

Figure 2
Plot of the complex number (4 + 3i), wherethe real
part is plotted along the x axis and the imaginary part
long they axis.



EXPONENTIAL FORM
OF THE COMPLEX NUMBER

Oncewe start plotting complex numberson x andy
axes, we will find that any complex number can be
expressed inthe exponential form rel ©. How weget
to this rather remarkable result can be seen in the
following way.

L et usgo back to Figure (2), showing the plot of the
complex number (4 + 3i). Oneway to describe that
pointistogiveits x andy coordinates(x =4,y =3i).
An equally good description, shown in Figure (2a),
isto givethe distance r from the origin to the point,
and theangle 0 that T makeswiththex or real axis.
From the Pythagorean theorem we have

r2=x2+y2 = 42+32=16+9 = 25
r=5 (2

The tangent of the angle 0 is the opposite side y
divided by the adjacent side x

tane=¥=%=.75 @)

Entering.75in our calculator and pressing the tan—1
button gives 36.9°. Thus the point is located at a
distancer =5fromtheorigin at anangle 6 = 36.9°.

It is traditional to use the letter (z) to describe a
complex number. Thusif acomplex number (z) has
ared part (x) and animaginary part (iy), we can write

Z=X+iy 4

imaginary

P e itk e R

Figure 2a real
Plot of the complex number (4 + 3i),

showing the angle 6.
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Now let usexpresszin terms of the variablesr and 6
rather thanx andy. Sincefrom Figure (2a) we seethat

X=rcos6

y=rsin® (5)
we can write (z) as

z=Xx+iy=rcosO+irsin@

Z=r(cosB +i sinB) (6)

It is the function (cosB +i sinB) that we wish to
study in detail.

Let usfirst ook at thederivative of (cosB +i sinB) .
Since
d

_ _ann dg —
@cose = —dno; @sme = cosH (7)
we get
%(coseﬂsine) = _sn@+icosh

Since (— 1) =2, this can be written

i2sin@ +i cosO

%(cose +isn0)
(8

i (cosB +isinb)

To express this result more formally, let us write
f(8) = (cosB +i sinB) (9)

Then Equation (8) becomes

%f(@) = if(0) (8a)

Towithinaconstant (i), thefunction f(0) isequal to
its own derivative. What function that you are
already familiar with, behavesthisway? Theexpo-
nential function! Recall that

d _

&eax = ae (10)
Thusif we replace (x) by 6 and (a) by (i) , we get

d 4i6 = b

dee e (11)

Comparing Equations (8) and (11), we see that the
function (cos8 +i sinB) and the function e'® obey
the same rule for differentiation.
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When two functions (cos8 + i sinB) and e® have
thesamederivatives, doesthat meanthat they arethe
same functions? It will if we show that both func-
tionsstart off withthe samevaluefor small valuesof
0. Thenasweincrease 8, if both functions havethe
same derivative or slope, they must continue to be
the same function for all values of 6.

Small Angle Approximations
We can show that (cos8 + i sinB) and e® have the
same values for small 8 by using the small angle
approximations for sin®, cos® and e®. In our
discussion of the exponential in Chapter 1 of the
Calculustext, (Cal 1, Eq. 136), we had

= 1+x+2%

: ° 4 oo0 (1-136)

X2,
2! 3
Whilethisexpansionistruefor any value of X, itis
most useful for small values of x where we do not
have to keep many termsto get an accurate answer.

Setting X =10 gives

i2 3
8% . i%0
St ooo
(Since our previous discussion of exponents only
dealt with real numbers, wecan consider Equation
(12) as the definition of what we mean when the

exponent isa complex number).

el® = 1+ig+ (12)

What wedid not discussearlier werethe expansions
for cosB and sinB. Let usstatethemand check their
accuracy now. They are

cos® = 1- %+%+ 000 (13)
3 5
sne=6-9"+8, oop (14)

I

where 8 isin radians. Again these expansions are
valid for any value of 8, but most useful for small
values where we do not have to keep many terms.

Complex Variables

Let us check the accuracy of these expansions for
0 =.1 radians. We have, keeping three terms,

cos(.l) = 1- (;,)2 (24
_,_.01_, .0001
2 T4x3x2
= 1-.005 +.0000004166 (15)
= .995004166

Changing our cal culator from degreesto radiansand
taking the cos(.1) gives

cos (.1) = .995004165 (16)

We see that we get amost a nine place accuracy by
keeping the first three terms of the expansion.

For sin(.1), keeping the first three terms, we have

3 5
sn() = 1- (34 L

1— 001 .0001
SXZ Ex4x3x%x2

.1—-.000166666 + .000000083

= .009833417 @an
The calculator gives
sin(.1) = .099833416 (18)

which is again accurate to amost nine places.

If you can't figure out how to get your calculator to
work in radians, you can convert .1 radians to
degrees by using the conversion factor

360 degrees/cycle
2mradians/cycle

degrees

= 57.29577951 (19)




Now that we have checked the expansions (13) and
(14) let usseewhat theexpansionfor (cos6 +i sinB)
is. We get, replacing — signs by i, and using
i‘=+1,
_ . 0% et _ ., %% i‘e*
C0s® = 1-or+gr = 1+ 5+
3 5 1303
isng = i(e—g!+g!) = ie+%+?
(20)

i°9°

Adding these gives
(cosB+isinB) = 1+i0+-——+-—-—

(21)
which isjust the expansion we had for e'® in Equa-
tion (12).

Comparing Equations(20) and (21), you can seethat
the expansions for cos© and isin® fit together to
produce the much more regular expansion of ei®.
Wewill also seethat it is often much easier to work
with the complete function e'® than with cos® and
Sin 0 separately.

In summary, if we define acomplex exponential by
the series expansion of Equation (12), then we have
shown that

e'® = cos@ +isin® (22)

Even though we checked the sin and cosine expan-
sions for a small value of 6, the fact that e'® and
(cosB + i sinB) havethe same derivative properties
means that Equation (22) holdsfor all valuesof 6.

If wereplace 8 by —6 in Equation (22) we get
e% = cos(—0) +isin(-0)

Since cos(—6) = cos0, sin(—8) =—-sing, thisgives

e% = cosB—isind

(23)
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If we add Equations (22) and (23), the sin@ terms
cancel, and we are have, after dividing through by 2,

eif + o0

cosf = — 5 (24)

Subtracting Equation (23) from (22) cancels the
cosO terms, leaving, after dividing through by 2i,

. gi® _g-i0
sinb = — (25)
If we note that
i 2 -1
we can write Equation (25) as
. . elf_gio
sn@ = (—|)T
. . e19_¢gif
SnB = i——5— (253)

Equations (22) through (25) give a complete pre-
scription of how to go back and forth between cos6,
sing, e'® and e1°,

Finally returning to our complex function

Z=x+iy

imaginary

rcos@+irsin®

r(cos®+isin®) |

we now have

z=rel®| (26) X e

as the other way of expressing a complex number,
wherer isthedistancefromtheoriginand 6 theangle
the coordinate vector ¥ makeswith thex or red axis.

Exercise 1
(a) Construct a series expansion for e~ /0.

(b) Using the series expansions for e® and e /@ in
Equation (25a), show that you end up with the series
expansion for sin(6).
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The Complex Conjugate Z*

The complex conjugate of a complex number is
defined asthe number weget by replacing all factors
of (i) by (4) in the formula for the number. We
generally denote the complex conjugate by placing
an asterisk after the number. For example, if

Z=X+iy

then

z* = xX—iy (26a)
If we start with

z =re®
then

7t = rei® (26b)

Themainreasonfor definingacomplex conjugateis
that the product of a complex number z with its
complex conjugate z* is always a real positive
number, equal to the square of thedistancer that the
complex point is from the origin. For our two
examples above, we have

7"z = (x—=iy)(x +iy)
= x2—ixy +iyx —i%y?
and
75z = (re'9)(rel®) = r2
switch
/\ -
Ve= 2 [==c R=|\k=iR
Figure 3

The RC circuit. When we walk around in the
direction shown by the circular arrow, we go
with V¢ but against Vg, giving V-—Vg asthe
sum of the voltage rises.

Complex Variables

DIFFERENTIAL EQUATIONS
FORR, L, C CIRCUITS

One of the most convenient uses of complex vari-
ablesisinthe analysisof electric circuitsinvolving
resistors, capacitorsand inductors. Wewill seethat
using complex variables unifies the analysis and
greatly simplifies the work involved.

The RC Circuit

Let usbeginwiththeRC circuit showninFigure(3).
If we charge up the capacitor to a voltage V,, and
closethe switch, acurrent flowsout of the capacitor
through the resistor, and the voltage V. on the
capacitor decays exponentially.

Theformulasfor thecapacitor voltage V- andresis-
tor voltage Vr are

Vo= vg=iR 27)

ok
where Q is the charge on the capacitor, C the
capacitor's capacitance, (i) the current through the
resistor and R theresistor'sresistancein ohms. Itis
assumed that C and R are constantsand that (i) isthe
rateat which chargeQisleavingthecapacitor. Thatis,

. dQ
b= - (28a)
Setting thesum of thevoltagerisesaroundthecircuit
equal tozero (seeEquation 27-41inthePhysicstext)
and using (284) for i, gives us

Vec-Vg =0

Q_ir=Q,9Qpx -

c |R-C+dtR 0 (28b)
Dividing through by R, we get

dQ, Q _

H+R—C =0 (29)

asthedifferential equation for theamount of charge
Q remaining in the capacitor.



An Aside on Labeling Voltages

To avoid worrying about minus signs like the
i =—dQ/dt for the discharging capacitor, we will
obtain the differential equationsfor our L, R, and C
circuits by sketching the voltages when the rate of
change of chargein the capacitor and change of the
current inaninductor areall positive. If wehad an
increasing current running down through three cir-
cuit elementsR, L, and C, all 40
thevoltageswould point up as =Tt
shown in Figure (4). There-
sistancevoltage Vg isalways
directed opposite to the cur-
rent. If the downward current
is increasing, then the induc-

tor opposes the increase and _
poi nts upward. \{Vith.aposi- L TVL: L%
tive current flowing into the
capacitor, the current isequal
to +dQ/dt . If the capacitor C__TV _Q
started off with zero charge, | ¢ ¢

then the upper plateis becom-
ing positively charged by the
positive current flowing into it.

Figure 4
Direction of the
voltages for an
increasing
downward
current.

Using these conventions for
the current and voltages, we
can construct an RC circuit
from Figure (4) by pulling out the inductor and
connecting the back side of the circuit asshownin
Figure (5). Setting the sum of the voltages to zero
around Figure (5) gives (walking around the circuit
counterclockwise as shown by the circular arrow)

VR+VC =0

iR+2 =0

S (30)
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With i = +dQ/dt , thisgives
dQ.,Q_,. dQ_,  Q _
**c Y @trc O (9

Thisisjust the same as Equation (29) for the dis-
charge of the capacitor.

Figure (5) appears less intuitive than Figure (3)
because we have drawn a current flowing into the
capacitor, while we know that the current actually
flowsout. But the fact that we analyzed the circuit
in Figure (5), assuming the wrong direction for the
current, does not affect the resulting differential
equationfor thecircuit. WhenusingKirchoff'slaws
to analyze a circuit, you do not have to know the
correct direction for the currents ahead of time. If
you make the wrong guess, the resulting equations
will fix things up by giving you a minus sign.

While Figure (5) islessintuitive than Figure (3), it
ismuch more straightforward to stick with al posi-
tive quantities and always label our circuit element
voltages and currents as shown in Figure (4). With
more complex circuitsit isthe only way to maintain
sanity and get the right differentia equation.

i i = %%
Figure 5
The RC circuit for a
positive increasing R TV iR
currenti. R

c __T V= %
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Solving the RC Circuit Equation
Solving the differential equation
dQ, Q _
d *re "0
for the capacitor discharge was quite straightfor-
ward. Wefirst looked at the circuit experimentally
and saw that the voltage Q/C appeared to decay
exponentially asshown in Figure (27-44c) from the
Physics text, reproduced here. This suggested that
we try, as a guess, a solution of the form

(29) repeated

Q = Qe ™ (31)
%—? = —aQpe ™ (32)
Plugging our guess into Equation (30) gives
e at
—aQOe—O‘t+Q%C 20

The constants Q, and the functions e~ cancel,
and we are left with

1
-0+ = 2
a RC 0

We can satisfy the differential equationif a hasthe
value

1
4= Re (33)
The formulafor Q becomes
- —t/RC
Q QOe (34)

We seethetime constant for the decay of the charge
QisT=RC. l.e.,whentgetsupto T = RC, thevalue
of the charge has decreased to e-1=1/e of its
original value.

Vv

R = 10K, d =2mm

Figure 27-44c

Discharge of our aluminum plate capacitor
(separation 2mm) through a 10K Qresistor.
Theinset isthe experimental data and the
solid curve is drawn from that data.

Complex Variables

The LC Circuit

We will construct an LC circuit from Figure (4) by
taking out the resistor and connecting the back side
as shown in Figure (6). Setting the sum of the
voltage rises around this circuit equal to zero gives

V +Ve =0 (35)
d,Q _,~. :_ ,dQ
Ldt+C—0, =+ (36)

Writing di/dt = d®>Q/dt? , and dividingthrough by L
gives

dQ, Q _,

dtZ2  LC ~ (37)

Now suppose we naively try the same exponential
decay solution we had for the RC circuit

Q=Qet; W= _ageat  (guesy

Plugging our guess (38) into the differential Equa-

tion (37) gives

Qoe—at
LC

Againthe Qy'sand e~ 9t's cancel and weareleft with

a2Qe 0t + 20

2, 1 2
o+ [C ? 0 (39)
The differential equation will be solved if we can set
2 - _ 1
%= -6 (40)
_ 1
o= ———v-1 41
e (41)
i
_ di
Figure 6 L TVL_ LE
The LC circuit.
C__TVC=%




When we tried this in the Physics text, we noted
thata comesout imaginary. We also noted that the
L C circuit oscillated rather than decayed. Thuswe
concluded that we had guessed the wrong function,
and tried asine wave

Q = Qg sinut

instead. When you plug the guess (42) into the differ-
entiad Equation (37) you end up with

(42)

2 1 . -1
W= c’ %7 ic (43)
which avoidsimaginary numbersand givesaresultin
agreementwithexperiment. Thequantity w, = Y/VLC
isthe resonant frequency of the LC circuit. (If youdo
not remember plugging the guess Q = Qg sin(wyt)
into the LC differential equation, do so now.)

K nowing moreabout handlingimaginary numbers, let
us see what happens if we take our guess Q = e~ at
serioudly for the LC circuit. We ill have to satisfy
Equation (40),

a2=-1/LC
Writing /L C = wy?, we get
a2 = -0y’ (44)
which has two solutions, namely
a = iwy (45a)
a = —iwy (45b)

You can see this by noting that both i2=-1 and
(H)?=—1. Thusthe possible solutions for Q are

Q; = Qe Wit (463)

Q, = Que i Wit (46b)
While Equations (46a, b) are both mathematical
solutions to the differential equation for the LC
circuit, both arecomplex functions. But theamount
of charge Q in the capacitor must be described by a
real number. No imaginary charge resides there.
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However in Equations (24) and (25) we saw that we
could construct the real functions cos6 and sin@
fromthe complex functions e'® and e~'®. Replacing
0 by uwyt, we have

coswgt = %(ei wot + e—iwot)

(478)

snwgt = 'é(e-i Wot — gl wot) (47b)
Oneof thefeatures of differential equationslikethe
one for the LC circuit®* isthat if the equation has
more than one solution, any combination of the
solutions is also a solution of the equation. In our
case the two solutions are Q;=Que!®t and
Q, = Qe i®et, Thus the combination

Q = aQ;+bQ, (48)
must aso be asolution, asyou will check for yourself

in Exercise 2. Choosing the constants a = 1/2,
b=+1/2 gives

a,b,constants

Q = Qg cosuyt (49a)
and choosing a=-i/2, b=1i/2 gives
Q = Qg sinuyt (49b)

These areboth real functionswhich can describethe
electric charge in the capacitor.

Thuswe seethat for both the RC and the LC circuit,
we can usethe sametrial function Q = Q,e9t. For
the RC circuit, o wasareal number, which gave us
the exponential decay Q = Q,e~t/RC. For the LC
circuit, a turned out to beimaginary which gaveus
real oscillating solutions like Q = Qucosuyt. By
using complex numbers, we are able to handle both
the RC and the LC circuits with the same trial
function. Whether a turnsout to be real or imagi-
nary tellsuswhether the circuit decaysor oscillates.

*Thisisan exampleof what iscalledahomogenousdifferential
equation. We will have more to say about them shortly.
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Inthe next section wewill consider the RLC circuit,
which is an LC circuit with resistance included.
Experimentally we saw that such a circuit could
have a decaying oscillation. When we plug the
guess Q = Qque 9t into the equation for the RLC
circuit, a will turnout in some casesto becomplex,
i.e., have both area and an imaginary part. The
imaginary part will describe the oscillation of the
circuit while thereal part will tell us how the oscil-
lation decays. But beforewe get tothe RLC circuit,
weneedtodiscussasimpler way toget real solutions
from complex solutions of differential equations.
Beforethat, do Exercise2toseethat Q = aQ4 + bQ,
isasolution of our LC equation.

Exercise 2
The differential equation for an LC circuit is
dQ, Q _
i ol 0 (87) repeated

This is called a homogenous differential equation be-
cause it contains only terms involving Q or its deriva-
tives. An example of a non homogeneous differential
equation will be
dQ_ Q

== +—= = asinwt

at>  LC (°0)

This will represent an LC circuit that is being forced to
oscillate at some frequency w, . The appearance of the
term (asinw;t) with no factor of Q makes this a non
homogeneous equation. We will discuss this equation
shortly, to show what effect the non homogeneous term
has. For now we will limit our discussion to homoge-
neous equations.

You have seen that Q; =ae/®! and Q, =be~@0t are
both solutions to Equation (37) when a and b are
constants and w,=1//LC . Now explicitly plug in

Q = ae/@ot + pe—/®ot (51)
into Equation (37), and show that thisis a solution for any

constant values of aand b. This demonstrates that any
linear combination of e/®ot and e~/ is also a solution.

Complex Variables

A FASTER WAY TO FIND REAL SOLUTIONS

When we got the complex solutions e* @t and
e~ 1wt for the LC circuit differential equation, we
were careful to construct real combinations of these
complex solutions. You might think that it was
lucky that wejust happened to know that the combi-
nation 1/2(el ot —e~1®ot) was the real function
cosuyt. Y oumight beconcerned that for someother
differential equations you would not be so lucky.

Don't worry. If you find a complex solution for a
homogeneous differential equation, you can simply
takethereal part of the complex solution and throw
away theimaginary part. Thisworks because both
thereal part and the imaginary part must separately
besolutionsof thedifferential equation. (Y ou could
also keep the imaginary part without the (i) and
throw away the real part.)

To see why both the real and imaginary parts are
solutions, let uswrite the complex solution for Q in
the form

Q = Qreal + iQimaginary (52)
where both Qey and Qjaginary arereal functions.

Plugging Equation (52) into the LC differentia
equation gives

dZQ +g _ 7d2Qrea| + Qreal

d2 LC | dt2 LC

| 2
+i d Qimaginary + Qimaginary
dt2 LC

=0 (53)

Since both Qe and Qjaginay aereal functions,
their derivativesmust also bereal functions, and the
guantities inside both sgquare brackets in Equation
(53) must bereal. Asaresultthefirst square bracket
ispurely real, and the second square bracket with its
factor of (i) must be purely imaginary. Theonly way
you can add purely real and purely imaginary func-
tionstogether to get zero isfor both functions to be
separately equal to zero.
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That is, we must have

dzQreal Qreal —

? + T - 0 (54a)

d2Qimaginary + Qimaginary =0
dt? LC

Equations (54) tell usthat both functions Q,¢y and
Qimaginary Must be solutions of the LC differential
equation. If we want a rea solution, we can use
either Qreq » Qimaginary OF Ny linear combination of
thetwo. A similar argument appliesto the solution
of any homogeneous differential equation.

(54b)

Asanexplicit examplefor our L C equation, suppose
we had come up with the solution

Q = Qpe'®dt (55)
and had not noticed that Q = Q e~ Wt was also a
solution. Instead of hunting for another complex
solution and then trying to find real combinations,
wecouldjust break el @ot intoitsreal andimaginary
parts using €' = cosO +isind to get

Q = Qe Yot = Qycoswyt +iQusinuwgt (55a)

Then we immediately know that the real functions
Qocoswt and Qgsinwyt are solutions of the LC
differential equation. Wecan useeither oneor some
linear combinations of the two. (Using a linear
combinationisequivalenttousinganarbitrary phase
angle, like Q=Qgsin(uwyt +@). See the Physics
text, pages 15-17 or 16-31.)

Figure 7
The RLC circuit. T

Complex Variables  Cal 5-11

THE RLC CIRCUIT

Adding aresistor toan LC circuit givesusthe RLC
circuit showninFigure(7). If theresistanceRisnot
too large, we get a decaying oscillation like that
shown in Figure (31-A9) taken from the Physicstext.

The equation for the RLC circuit is obtained by
settingto zerothesum of thevoltagerisesaroundthe
circuit, giving

VR+V +Vc =0 (56)

iR+Ld 4R =0 (57)
Setting

- 9Q . d_dQ

w0 dt T e (58)
and dividing through by L gives

d’Q , Rd _

ﬁ +[§ +% =0  Uraon (59)

Asatrial function, suggested by the decaying oscil-
lation of Figure (31-A9), we could try the solution

Q = Qpe “tcoswt guess (60)

mental data

exper

Figure 31-A9 - Ringing like a bell

We hit the RLC circuit with a square wave and the
circuit responded like a bell struck by a hammer.
We are looking at the voltage across the capacitor.
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If you plugtheguess(60) into Equation (59), you get
many termsinvolving both sin wt and cos wt .

Q = Que~“coswt guess  (60) repeated
2
d& + Bdg + g =0 (59) repeated

di2 L dt LC
To see where the terms come from, consider

%—? = Qu(—0) e %tcoswt + Qe 9t (—sinwt)

(61)
where we had to differentiate the two terms e~ 2t and
coswt separately. Differentiating again we get four
terms for d°Q/dt2 , two with a coswt and two with a
sinwt. Whenweplug thisall back into Equation (59),
weendupwithseventerms, fourwith cos wt andthree
with sin wt . Inorder for al thistobeequal tozero, you
have to separately set the sinwt and the coswt terms
equal to zero. Thisleadstotwo equations, fromwhich
you can determineboth theconstantsa and w . If you
arecareful, your chancesof getting theanswer without
making a mistake may be as high as 50%. In other
wordsthisisthe hard way to solve the problem.

Exercise 3

Try finding the coefficients 0 and W by using Equation

(60) as a trial solution for Equation (59). Then check
your answer with the one we get in the next section.

Figure 31-A9 (repeated)
We are looking at the voltage across
the capacitor in an RLC circuit.

Complex Variables

The Easy Way

Working with separate sines and cosines is the
difficult way to handle the RLC circuit. Using
complex variables which provide a unified treat-
ment of both decay and oscillation isthe easy way.

For atrial solution, let us use

Q= Qe %—? = —aQue
2
93 = Qe (62)

It looks much easier already. Substituting thistrial
solution into the LCR differential equation gives

sz I RdQ I Q _ 59 ted

dt2 L dt LC 0 ( )r
_ Qo€

aZQOe—at——aFQoe at+7?_ 20 (63

The function e~@ and constant Q, cancel and we
are left with

2_aR, 1 5
a 3 +LC 2 0 (64)
Thisis astandard quadratic equation of the form
X2+bx+c =0 (65)
whose solution is
[n2_ A
X = —b+ 2b —4c (66)

For our case,~b=R/L,c=1/LC, thus(a) isgiven by

2|L L2 LC

- R4 R _ 1 (67a)
2L\ g2 LC

=2FE1\/(—1)(L1C—R2) (67b)

Setting 1/LC = wy?, where y, is the resonant fre-
guency of the undamped (R = 0) circuit, and taking
v—1 outside the square root as afactor of (i) gives

- R i /w2 R%
a_ZLiI (Q)O 4L2)

(68)
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We now introduce the notation

- R
=20
(69)
2
w = 2_Re _ 7 g2
\/TM W
So that
a=-o0ziw (70)
and our trial solution Q = Que~& becomes
Q = Que(@xint
Q= Qoe—dteiioot SR?_IgiCc;?CfﬁE the (71)
where
a =5 ©=yw’-a? | (69)repeted

For the case where w, is bigger than a,
W=/ wy?—a? isarea number, the real part of
e!®t s coswt and we get the real solution

Q; = Qe “tcoswt (72)
Theimaginary part of el®tisproportional to sinwt,
which gives us the other real solution

Q2 = Qoe_ats. nowt (73)

Asinthe case of the LC circuit, the sine and cosine
waves can be combined as a sine wave with an
arbitrary phase angle ¢ to give the general solution

damped oscillation
of anRLC circuit

(74)
Equation (74) represents a damped oscillation of

Q = Qoetsin(wt + )

frequency w= \/ wy? — a2 andadampingtimecon-
stant T given by
-1 _ dampingti
T=h=A ST

Imagine that we start with an RLC circuit that
initially hasnegligibleresistance, and that wegradu-
alyincreasetheresistance. WhenR=0,thena =0
and the oscillation frequency is w=\/wy? = wy,
where wy, is the undamped fregquency.

Complex Variables Cal 5-13

AsR and a =R/2L are increased, the oscillation
frequency w = 4/ w2 — 02 decreasesuntil wereach
o =y . Atthat point, w=4/wy?—0a2 =0, oscilla
tion ceases, and we have what is caled critical
damping. The time constant for decay at critical
damping is just the length of time it takes the
undamped circuit to go through one radian of oscil-
lation, or 1/21t of acompletecycle. Y ou can seethat
result from dimensions. We have

1 — _1 seconds (76)
radians Gy radian
wosecond
and at critical damping, where a = w,,
_ 1 _ 1 seconds
T=a-7 Wy radian (77)

At critical damping, there is only one unique solu-
tion for the RLC circuit. Aswe increase theresis-
tance beyond critical damping, when a = R/2L be-
comes larger than wy, the solution becomes
overdamped. For a > wy, itiseasiest to go back to
writing the solution in the form

Q = Qe & (from Eq.62)
- R R _ 1 _ Y.
a=-= 22 1C at yoZ-—wy
(from Eq.67a)

and we seethat we now havetwo exponential decay
solutions

Q, = Quer[a+/oZ-cf ) (782)
Q, = Qoe-(“—vaz—w&)t (78b)

If we increase the resistance so much that «§ is
completely negligiblecomparedto a2, thenthetwo
solutions become

Q; - Qpe2t (79a)
Q2 - Que’ = Qg (79b)

Inthislimitweeasily seethat thesolution Q,; damps
morerapidly than Q, . Forthe Q, solution, wehave
increased the resistance so much that no charge
leaves the capacitor and the charge remains at Q.
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We can get a better insight into the solution Q, by
assumingthat w,? issmall but not quitezero. Inthis
case we can write Q, as

QZ:Qoe—a(l—x/l_mg/az )t

Since W§/a2 << 1, we can use the approximation
formula

Vi—x = 1-%

We get, for x = 08/n2,

(80)

x<<1

> v)

1— e P PR P
oo /oo
:(]7&g :lo\%l
202 2"V

With g =1/LC and o = R/2L, we get

-1 1 2L
=2¥c*R
_ 1

RC (81)

Thusfor a2 >> g we have

Q, = Qe URC a2>>wf (82)

Thisisjust thesolutionfor thedecay of anRC circuit
with atime constant T = RC.

The condition a2 >> w3 can be written as

2 2
R7>> 1 or E>>1

a2 LC 4L (83)

Wecan meet thiscondition for finitevaluesof R and
C by making L small enough.

Complex Variables

Exercise 4

To make our study of the RLC circuit more concrete,
suppose that in the circuit you use a 0.10 microfarad
capacitor and one millihenry inductor, so that

L =10 3ny

C = 10~ 2farads

(a) What is the resonant frequency wgradians/second
and fy cycles/second, when R = 07

(b) What is the length of time it takes the R = O circuit to
go through one radian of its oscillation?

(c) What value of resistance R¢ should you use for
critical damping?

(d) What is the time constant for the decay at critical
damping?

(e) Suppose you raise R from its critical value R up to
V2Rc. What are the time constants Ty and Ty for the
decay ofthe solutions Q4 and Q, respectively? (Partial
answer: Qo takes twice as long as Q4 to decay when

R=v2R¢.)
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IMPEDANCE

Circuits commonly encountered are AC circuits
where the current has a sinusoidal form

i = igsinwt (84)
For standard American households, the household
current has a frequency of 60 cycles/second, or
w =21 x60 radiang/second. In much of therest of
the world the standard household frequency is 50
cycles per second. World War 1l aircraft used a

standard frequency of 400 cycles per second which
resulted in smaller and lighter transformers.

The concept of impedance, whichinvolvescomplex
variables, provides an easy way to handle the volt-
ages across R, L, and C circuit elementsin an AC
circuit. To demonstrate the advantage of the com-
plex variable approach, we will first analyze these
voltages using our standard real variables, and then
see how much the calculations are smplified by
complex variables.

Supposewehavethreecircuitelements,anR, L, and C,
connected in series as shown in Figure (8), and run
an AC current through them. In the diagram we
show the formulafor the voltage across each circuit
element. What we wish to calculate is the total
voltage V across all three elements.

I = igsinwt

A = iR = igRsinwt (859)

V=2 .

= L% = igLwcoswt
(85h)
Ve=Q=1 f idt
— C C
= jlcosoot
Co (85¢)
Figure 8

AC voltagesin the R, L, and C circuit elements.
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Theindividual voltages were cal cul ated noting that

dsnwt _

g = weoswt

: R
fsmwtdt = — ¢5C0swt.

The voltage V across al three elementsiis just the
sum of the individual voltages

\Y

io(Rsinoot + Lwcoswt — Clwcosoot)

Ig|RSINWL +(Lw—wlc)coswt

V = ig[Asinwt + Bcoswit] (86)
where
_ D _ 1

Wewant to expresstheterm [Asinwt + Bcoswit] as
asingle sine wave with an amplitude which we will
cal Zy, and aphase angle ¢

[Asinwt + Bcoswt] = Zgsin(wt+¢@)  (88)
To do this we use the trigonometric identity

sin(a+b) = cosbsina+ sinb cosa
to write

sin(wt + @) = cos@sinwt +singcoswt (89)
Multiplying through by Z gives

Zysin(wt+ @) = (Zgcos@)sinwt + (ZySing) coswt

= Asinwt + Bcoswt (90)
where
A = Zycoso; B = Zysing (91)
B _ Sng _
b _ =t 2
A " coso ang (92)

A% +B? = Z,(cos2@+sin?g) = Zy*> (99)
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Applying Equations(91), (92), and (93) toour formula

V = ig[Asinwt + Bcoswit] (86) repeated
gives
V = igZysin(wt+ @) (94)
where from Equations (92) and (87)
- B - Lw—1wC
tang A R (95)
and from Equation (93)
2 2 1 \?
2¢? = R+ (L= L) (96)

After afair amount of calculation, we see that the
voltageacrossall threecircuit elementsisstill propor-
tional to sinwt. Its amplitude Z, is given by
Equation (96) and thereis a phase shift by an angle
@ that is given by Equation (95).

i=igel
A
R TVR = iR = ijRel®t
V=72 H . .
. TVL = LS = Ligiw)el®
Ve = Q = 1fidt
c—= c C
= o Lot = _j o giot
icoCe IwCe
Figure 9

AC voltagesin theR, L, and C circuit
elements, using complex notation.

Complex Variables

Now let us see how much more quickly we can arrive
a the amplitude Zy and phase shift @ using the
complex variables shown in Figure (9).

InFigure(9) wehaveacurrent i givenby theformula
(97)

and the resulting voltage across the three circuit
elementsisthesum of theindividual voltageswhich
can easily be written in the form

i = et

V =i el ot (98)

i _ 1
R+|(Loo ooC)

The quantity in square brackets is the complex
number R +i(Lw— 1/wC) graphed in Figure (10).
It can berepresented by anarrow whoselengthis Z,
given by the Pythagorean theorem as

2

72 = R2+(Lw—wlc) (99)
and is oriented at an angle ¢ whose tangent is

tan(p = % (100)

Notice that the formulas for Z, and tan ¢ are the
same as in Equations (96) and (95), which we got
after so much more work.

imaginary
Lw A
1
[ P S
wC Co '
¢ S
‘R real
_1ly
wC
Figure 10

Graph of the complex number R+i(L w—1/@wC).
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From our earliest work with complex variables we
saw that the complex number

Z=X+iy (4) repeated
could be written as the exponential
z =rel® (26) repeated

where z is graphed in Figure (2a) repeated here.

Thus the complex number R+i(Lw—-1/wC),
graphed in Figure (10) can also be written in the
exponential form

R+i(Loo—1) = 7,6® (101)

wC

where Z isthe distance from the origin and ¢ the
angle above the real axis.

Using Equation (100) for the square brackets in
Equation (98) for the voltage V gives

i R+i(Lw—w1C)

io[zoei (p] el wt

V = igZel (@t + @)

(102)
2
Z2 = R2+(Loo—wlc) (99) repeated
tan@ = % (100) repeated
ima_c_;inary
Yimomeeemm e ,
7 i
LA
' " X real

Figure 2a (repeated)
Plot of the complex number (4 + 3i),
showing the angleg.

Complex Variables Cal 5-17

Equation (102) isour complex formulafor thevoltage
acrossthethree circuit elements.

Tofind thereal voltage, we ssimply take thereal (or
imaginary) part of the complex voltage. Choosing
theimaginary part (without thei) to get asinewave,
we get

V = ioZOSin((k)t+(p)

(103)

whichisthesameanswer, Equation (94), that we got
from the real analysis.

The main advantage of the complex analysisisthat
all the voltages had the same factor el @t, so that we
could ssmply add the voltages without using the
fairly messy trigonometricidentities. Alsonotethat
the main result of all the work of the real analysis
was to calculate the amplitude Z, and the phase
angle @. We got Z, and ¢ immediately in the
complex analysis, as soon as we graphed the com-
plex coefficient of e ®tin Figure (10).
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Impedance Formulas

The concept of acomplex impedancewhichwewill
now introduce, allows you to determine the ampli-
tude Z, and phase angle @ by inspection, without
doing hardly any calculation at all.

In Figure (11), we have redrawn our three circuit
elements, introduced a complex current i = iyel @,
and expressed voltage in terms of | and the complex
impedances Zg, Z, , Z defined by

Zr =R (1049
Z =iwk (104b)
= _ i
Zc =T (1040)
In terms of these Z's, the voltages are
Vg = iZg
vV, =iz,
_ (105)
Ve = 1Z¢
The sum of the three voltages V becomes
V = Vg+ V| +V;
= (Zgr+Z_ +Z¢c) (106)
i =ipelt
A
R TVR = (ipe! YR = (i)Zg
V .
L V. = (ipe'Liw = (i)Z,
c—/—— = (i i wt _I> = (i
Tvc (0e™)| 5] = 02
Figure 11

The voltages Vg ,\{ ,and \[; expressed
in terms of impedances Z.

Complex Variables

If wedefinethetotal impedanceZ of thethreecircuit
elements connected in series by the equation

Z = Zp+Z, +Z¢

(107)

then our formulafor the complex voltage is

V =iz

(108)

Comparing thiswith Ohm's law for asingleresistor

Vg = iR Ohmis law (Physics 27-1)
we seethat we canthink of Equation (108) assimply

acomplex form of Ohm's law.

When we graph the complex impedance Z we can
immediately read off the amplitude Z, and phase
angle ¢, as shown in Figure (12). We have

_ . 1) _ i@ complex
Z = R+'(|—°°—wc) = 208 {ipedance
(109)
where
2 .
2 _ p2 1 magnitudeof
29? = RP+(Loo- | e (1109
- Lw-1/wC phase of
tang = R impedance (1106)

In Equation (109), we introduced the exponential
form Z,e'? for the complex variable Z.

Figure 12
The complex impedance can be pictured as an arrow of

length Z =/ ZZ44 + Zinay Oriented at an angle ¢.
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The Driven RLC Circuit

Our first demongtration in the physics course was the
driven RLC circuit, which could be used to measure the
speed of light without looking at light. (Thiswasacrucia
pointinour discussionof special relativity.) InChapter 31
we cal cul ated theresonant frequency of anL Ccircuitand
wrote down some formulas for the driven RLC circuit.
But we did not derive the formulas because the work is
messy whenwehavetouserea functions. However with
the complex analysis we have developed in this chapter,
we get, almost by inspection, not only the formulas but
considerable insight into the behavior of the circuit.

In the lecture demonstration, we drove the LRC circuit
by wrapping acouple of turnsof wirearound the outside
of the inductor and attaching the wire to an oscillator.
The oscillating magnetic flux produced by these few
turns induces a voltage Vj,q in the coil and drives the
circuit to oscillate.

The important thing is that we did not put the oscillator
directly in the circuit, for the oscillator has its own
internal resistance, capacitanceandinductancethat could
completely alter the behavior of the circuit. Theideais
to give the circuit a gentle voltage shove of the form

Ving = Vel (111)
as indicated in Figure (13), and see how the circuit

responds. i

&=

_ jot
Tvind_ VOe

Figure 13
Thedriven RLC
circuit. Photo is
Figure (1-10) from
the Physics text.

Complex Variables Cal 5-19

Setting the sum of the voltage rises to zero around
the circuit in Figure (13) gives, (waking counter

clockwise),
VC + VL + VR _Vind =0 (112a)

i Zg+iZ +iZc = Vet (112b)

Solving for the current i in the circuit gives

. Vgl ot
| = 70
Z (113)

where Z = Zg+Z +Zc = Zy€el?isthetotal im-
pedance of the circuit.

Using the exponential form for Z in Equation (113)
for the current i gives

i = [ Vold(wt-g
| (Zo>e

T Zyee’

(114)

Equation (114) tells us that if we drive an RLC
circuit with an induced voltage Vg = Vo€ @t the
circuit will respond with a current 1 that has an
amplitude (Vy/Z,) and aphase (— @) relativeto the
driving voltage. We get this result almost without
doing any calculation. To get the same result using
real functions sinwt and coswt would have taken
severa pages of agebraand trigonometric identities.

imaginary
Lo
1
Lo-ac T ;
10 |
I
P ol
. "R real
Z = Zoel(p
_1y
wC
Figure 14

Complex impedance for an RLC circuit.
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L et uslook at the physicscontained in Equation (114).

i = (Vo)ei (wt—0)
Zy
For very low frequencies, for sufficiently small w,
the quantity 1/«wC ismuch larger than either Lw or
R, the impedance is essentially al capacitive as
indicated in Figure (15). For this case,

(114) repeated

~ 1.

Zo wC’

and the formulafor the current in the circuit caused
by the induced voltage V4 is

¢ =-90°=-7 (115)

current
at low

i = VOwCei (wt+172)
frequencies

(116a)

complex

induced

Ving = V&' @
voltage

(116b)

Taking thereal part of Equations (116) gives usthe
real current for areal induced voltage

I = VowC cos (wt + 11/2)
small w

Ving = Vpcoswt (117)

imaginary

4

real

Figure 15
Z for small w.

Complex Variables

From Equations (117), we see that at low frequen-
cies, the phase of the current is T2 ahead of the
inducedvoltage, and theamplitudegoesto zeroas w
goes to zero.

Theother extreme, at high frequencieswhere wL is
much bigger than R or 1/wC , we have

Zo = L (118)
@ =+90° (1/2) (119)
And we get
: t
i = Yoa(@-m2  ghign (120)
Lw frequencies

Taking the real part gives usthereal current

\Y/
—0 cos (wt—T11/2)
Lw

large w
121
Vi nd ( )

Vcoswt

Weseethat at highfrequenciesthe phase of the current
is 1172 behind of theinduced voltage, and theamplitude
goesto zero as w goesto infinity.

imaginary

Lco%
1

Figure 16
Zforlarge w.
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Thereis a specia frequency, call it wy, wherethe  Taking thereal part of Equation 24 gives
capacitiveimpedance Z - = — 1/ay,C just cancelsthe
inductive impedance Z, =Ly, leaving us with a - bcos i
pure resistive impedance Zg = R, as shown in Fig- = R CO5%
ure (17). ?ésonance (125)
Vind = VCosuxt
This happens when
We see that, at resonance, the current and the in-
Z =-Zc duced voltage are in phase with each other, and the
1 only thing that limits the current isthe actual resis-
wol- = +@ (122) tance R in the circuit.
s _ 1 Comparing Equations (117, 121, and 125), we see
“p” = LC (123) that thephaseof thecurrent shiftsby 180 degrees( )

This special frequency is the resonant frequency
wp=WWVLC of the RLC circuit. We now see that
theresonance occurswhenthe capacitiveandinduc-
tive impedances cancel, leaving only the resistance
to dampen the current in the circuit. Also note that
at thisfrequency the phase angle @ is zero, and the
current 1 isgiven by

i = Yog(y g (124)
R resonance

imaginary

Log

Y

1
wC

Figure 17

At resonance, the capacitive and inductive
impedances cancel, and we are left with only the
resistive impedance.

as we go from well below to well above the reso-
nance. The smaller the value of R, the sharper the
resonance, and thefaster thisphase shift occurs. The
shape of the resonance curves, for three different
values of R were shown in the Physics text, Figure
(14-31) repeated here.

Vo

Zy

V =

= —

0.8 1.0 1.2 1.4

ww, 0.6
frequency

Figure 14-31

Amplitude of the oscillation for various values of the
resistance R. The peak occursat w = a, because the
inductive and capacitive impedances cancel at the
resonant frequency a.
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TRANSIENTS

While the above discussion of the driven RLC
circuit describeswhat you most likely will scewhen
you study the circuit in the lab, it is not the whole
story. There are other solutions for the circuit,
solutionswhich dieout astimegoeson, andthusare
called transient solutions. To see where the tran-
sients come from, we need to go back to the differ-
ential equation for the driven circuit. We get the
equation from Figure (18) which is simply Figure
(13) with somelabelschanged. To makethecircuit
more nearly what we deal with in the lab, we are
writing the induced voltage as a real function
Vcos wyt, where we are now calling the driving

frequency wy.

Particular Solution
Setting the sum of the voltages around the circuit

equal to zero gives

VR +V| +V¢ = Vg (110) repested

iR+ Lg't +Q = = Vycoswyt
Thistime, let us express everything in terms of the
current i rather than the charge Q, by differentiating
Equation (126) with respect to time and using
i =dQ/dt. We get, after dividing through by L

(126)

%, Rdi, i - (—Vowd

wtid e L )S‘”“’dt (127)

where we used d(cos wqyt)/dt = —wy Sinwgt.

i - dQ
Tt

<
- de— \V/ 0COS Wyt

Figure 18
Thedriven RLC circuit again.

Complex Variables

Equation (127) is an example of a non-homoge-
neous differential equation. It is non-homoge-
neous because of the driving term
—Vwy/L | sin wgt which does not have afactor of
the variable (i) or aderivative of (i). Thisiscalled
the inhomogeneous term.

In the previous section, we found that Equation
(127) has the solution

ip = ZS ¢ (0= | P 114) repest
where

Z,2 = R2+(Lw—&)2 (99) repested

tang = % (100) repeated

The value of iIO from Equation (113) is called the
particular solution of thedifferential equation (127).

Transient Solutions

To seewhat the other solutionsare, let uslook at the
homogeneous differential equation

2 .
d<i +Rd i -0

dt2 Ldt LC (128)

which represents an RLC circuit with no driving
term. l.e,, itis Equation (127) without the inhomoge-
neous term.

As areview, let us see how quickly we can solve
Equation (128). Using thetria solution

di _ d%

— 2t
dt ~ dt2_ae

i=iged; —aea;
gives
2 R, 1 _
F-paric =0

This is a quadratic equation in a, of the form
a?+ba+c = 0 which has the solution

W2 ae
q=PEVb -4c _ b, /b%_,
2 2 4
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Withb=R/L andc=1/LCweget
R, /R_1

a° 4.2 LC

_I_
:ﬂ+i 1 R2
2L

Thus the solution to Equation (128) is
so called

transient
solution

ir = igeatetiot (129)

Where

_R. ,-./1_R
a0 @ LC g2
We can write w intheform

where

_ 1
“ = e

is the resonant frequency. Equation (129) is just
Equation (71) expressed in terms of the current i
rather than the charge Q. We are calling this a
transient solution i;. Thereason for the name will
become apparent shortly.

Combined Solutions

L et usnow go back to Equation (127) for the driven
circuit, and write i4 for the constant (— V gug/L ) in
order to ssimplify the equation's appearence

d% , Rdi , i

Now try the solution
Inew = Ip+air (130)

where ip IS the particular solution (113), iy isthe
transient solution of Equation (129), and (a) is an
arbitrary constant. We know that

¢ip) , R dlip) , (ip)

non-homogeneous equation
d“(ar) . R d(air) + @) _ 0 (132)

dt? L dt LC

homogeneous equation

Complex Variables Cal 5-23

Adding Equations (131) and (132) together gives
d*(itay) g diiptar)  (ip*air)
+ = +
dt? L dt LC
= igSinwgt (133)

and we see that i,q,=(i,+ai;) obeys the same
equation as i, alone. Thus i, isasolution of the
equation of thedriven RLC circuit, for any value of
the constant (a).

This result tells us that to the driven or particular
solution i,, we can add any amount of the homoge-
neoussolution i+, and westill haveasolutionfor the
driven RLC circuit.

The solutions i+ for the homogeneous equation are
fundamentally different from the particular solution
ip- Thedriven solution

.= Vo iwt-9

| =

p Z 0 e

goeson at aconstant amplitude V/Z, for aslong as
thedriving voltageisattached. Thetransent solution

(113) repeated

ir = igeatelot (129) repeated
dies out exponentialy with atime constant T = 1/a .
Because such solutions do not last, they are cdled
transent solutions.

What you will observe in the lab is the following.
When you first turn on or suddenly change the
driving voltage Vycos wgt , youwill seenot only the
particular solution i, but also sometransientsmixed
in. If you wait for severa time constants T = L/a,
and keep the driving voltage amplitude Vj con-
stant, the transients will die out and the pure driven
solution will appear on your oscilloscope. If you
want to see the transient solutions, you haveto ook
within atime constant /a of thetimeyou changed
the driving voltage.

This finishes our discussion of the application of
complex variables to the analysis of circuits. We
now move on to the use of complex variables to
describe wave motion.
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SOLUTIONS OF THE ONE
DIMENSIONAL WAVE EQUATION

In Chapter 2 of the Calculus text we discussed the
one dimensional wave equation applied to both

waveson aropeand soundwaves. Appliedtowaves
on arope, the equation was

Pyy _ oy
atz wave axz

(134)

(Calculus 2-73)
where y(x,t) represented the height of the rope
aboveitsequilibrium position at some point x along
therope at sometimet. (For asound wave, replace
y(x,t) by p(x,t) wherep(x,t) isthechangein pressure
due to the sound wave at some point x and timet.)

(Recall that when we are working with more than
one variable, like x and t, we use the notation
of (x,t)/dt to mean the derivative of f(x,t) with re-
specttot, holding x constant. Thisiscalled apartial
derivative with respect to time).

Wesolved Equation (134) with atrial function of the
form

y(x,t) = A sin(kx — wt) (135)
02 02
SEEoKY SEe-wy (139
to get
—Wy = _szvavekzy
_ w2
Viave = W2
Viave = T (137)

Inthesolution sin(kx — wt), w is, aswehavenoted
many times, the angular frequency, of the number
of radians per second. The quantity k, which is
called by the rather bland name wave number is
actually the spacial frequency or the number of
radians per centimeter. Whenwetaketheratio w/k
we get

w _ radians/second  _ w centimeters

k Kk second  (139)

k radians/centimeter

whichisclearly avelocity.

Complex Variables

As we saw in Chapter 15 of the Physics text and
Chapter 2 of the Calculus text,

sinewave moving

y; = Asin(kx —wt) totherightata  (139)
speed Vyyqve = Wk
sinewave moving

Yy, = Asin(kx +wt) totheleftata (140)

speed Vyyqve = Wk
If weadd y; and y, we get the standing wave

standing

y1t+Y, = 2A sinkx coswt  yave

(141)

You can use the trigonometric identity
sin(a+b) =sinacosb + cosasinb, noting that
sin(—b) =—sinb, and cos(—b) =cosb to check
Equation (141).

Rather than use the real function sin(kx — wt), we
can, asatrial solution to the wave equation, use the
complex function

y = Ael (kx—wt) (142)

g—}: = ikAel (kx—ab). %3{ = (i) Ael (kx—at)

2
‘;)(32’ = (ik)2Ael (kx-wt) = K2y
0% _ (ion2nal (Kx—) = o2
52 (-lw)“Ae = —w4y (143

where (=i)%=-1.

Wearenow right back to Equation (136) and get the
same solution vZ,e=w2k?. In this case it is
actually easier to work with the real function
sin(kx —wt) rather than the complex function
el (kx=wt) pecause you do not have to take the real
part of the complex function at the end. Working
with the real variables was not difficult in this case
because the wave equation did not mix up sine and
cosine functions as the RLC equation did.
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For completeness we have
complex sine wave

yr = A dilkx—ot) = movingtotheright ~ (142)
at a speed wk

) complex sinewave
yo = A gi(kx+ wt) = movingtotheleft (143)
at a speed wk

The standing wave solution is
Ysanding= Y1+ Y2 = A[ei (kx —t) + @i (kx + oot)]
= A[ei kX g—i wt 4 @i kX @i oot]

- i kx
= 2Ae 5

= 2A el kXcos wt

= 2A (coskx + i sinkx) coswt
= 2Acoskx cosoot+i[2A sinkx coswt

(144)
The imaginary part of Y standing is

(Y stending) rmag = 2A Sinkx coseot (145)

which is the standing wave solution we got using
real variables. Using complex variables to get the
standing wave solution was not easier than using
real variables.
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Introduction to the
Schrodinger Wave Equation

Intheintroductionto Chapter 37 of the Physicstext,
we quoted the following story from an address by
Felix Block to the American Physical Society in
1976.

“Once at the end of a colloquium | heard Debye
saying something like: ‘ Schrédinger, you are not
wor king right nowonveryimportant problems...why
don’'t you tell us some time about that thesis of de
Broglie, which seems to have attracted some atten-
tion?" So in one of the next colloquia, Schrédinger
gave a beautifully clear account of how de Broglie
associated awavewith a particle, and how he could
obtain the quantization rules ... by demanding that
an integer number of waves should befitted along a
stationary or bit. When he had finished, Debye casu-
ally remarked that he thought this way of talking
was rather childish ... To deal properly with waves,
one had to have a wave equation.”

Aswe mentioned, Schrddinger took Debye’ sadvice,
andinthefollowing monthsdevised awaveequation
for the electron wave, an equation from which one
could calculate the electron energy levels. That
wave equation is now the foundation of chemistry.

In this chapter we sketch the ideas that led
Schrodinger to formulate an equation involving
complex variablesto describethe el ectron. Wethen
go on to solve that equation for the lowest energy
spherically symmetric wave functions for the elec-
troninahydrogen atom. Thisisenoughto showthat
the Schrédinger equation, without any extra as-
sumptions, is enough to explain the quantized en-
ergy levels of hydrogen.
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SCHRODINGER'S WAVE EQUATION

Schrédinger's approach to finding a wave equation
for the electron was roughly as follows.

De Broglie, suspecting that the e ectron, like the pho-
ton, had awavenatureaswell asaparticlenature, went
back to Einstein's formulafor the energy of a photon

E = hf 1)

wherehisPlanck'sconstant, (f = ¢/A ) thefrequency
of thephotonand A itswavelength. Setting E = mc?
where m is the mass of the photon gives

2: = g' :L
mc hf h)\, m AC

Since photons travel at the speed c, the photon's
momentum p should beitsmassmtimesitsspeed c, or

b = me = (1)

p=1 @

Equation (2) isthefamousdeBroglieformulafor the
relationship between the wavelength and momen-
tum of any particle. De Broglie explained the
guantization of angular momentum in the Bohr
theory by assuming that the allowed Bohr orbits
were those in which exactly an integral number of
wavelengths fit around the orbit.

Schrddinger'sjob wasto find awave equation based
on thetwo fundamental relationships E = hf for the
particleenergy and p=h/A for the particle wave-
length. Because we have been writing wave
equations in terms of the angular frequency
w radians/second rather than the regular frequency
f cycles/second, and the wave number (spacial fre-
guency) k radians/cm rather than the wavelength
A cm/cycle, let usfirst re-express E and p in terms
of w andk rather thanf and A . Using dimensions
we have

cycles _  wradians/sec _ wcycles

fsecond ~ 2mradians/cycle ~ 21 second

1 _ 1cycles _ k radians/cm
Acm/cycle A €M

~ 2mradians/cycle

_ k cycles
- E.[ cm (3)

Introduction to Schrédinger's Equation

Using the standard notation

hz D o (4)

21T
we get

E=hf = h® = ho
2TT

=h_pk -
P=X h2T[ hk
Thuswe get the very smple formulas

E=hw; p=hk (5)

as the relationship between a particle's energy E and
momentum p, and its wave's frequency w and wave
number k.

Schrodinger's first attempt at finding a wave equa-
tion was to start with the relativistic relationship
between the energy and momentum of a particle.
That relationship, as we saw in the section on par-
ticleaccelerators, page 28-24 of the Physicstext, is
relativistic

relationship (6)
betweenE and p

where m isthe rest mass of the particle.

To see how to construct awave equation, let us start
with the simple case of a zero rest mass particle,
namely the photon. For the photon, we have simply

zerorest mass (7)

2 — 2r2
E® = p% particle

Wewill seethat the one dimensional wave equation
that leads to Equation (7) is

2 2
ﬂ = C267L|J (8)
ot? ox2

where ) (psi) isaGreek letter to represent thewave
amplitude. (For rubber ropewaves ) =y, thewave
height. For sound waves y =p, the excess pres-
sure.) To check that Equation (8) is the correct
equation, use the trial function

b = el (xon ©

which, aswe saw at the end of the last chapter (see
Equation 5-142), representsawavetravellingto the
right at a speed w/k.
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We have
P = quei (kx — wt)
0 . 92 .
G = iows 23 = Ciot = -y
0 . 02 .
= -iky s TE = il = -k
Plugging these values into Equation (8) gives
02 02
at‘f - CZOX"; (8) repeated

~wA = Ak
Thefactor — cancelsand we get
w2 = c2k? (10)

Multiply through by h? and noting that E = hw
and p = hk we get

h2w? = c2(h%k?)

which is the result we wanted.

(11)

Exercise 1

For a traveling wave, use the trial function
P = Ppsin (kx — wi)

and show that you get the same result.

Y ou can seethat theprocessisquitestraightforward.
For eachfactor of w youwantfromyour differential
equation, you put a /0t into the equation. For each
factor of (k), you include a 0/0x .

If weset ) = E or B in Equation (8) weget thewave
equations

9%E

2*)
ol

0°B _ 20°B

ot2 G
These turn out to be the differentia form (in one
dimension) of the el ectromagnetic wave we discussed
in Chapter 32inthePhysicstext. (Theseare Equations
(244) and (24b) of Chapter 9 of the Calculustext, if we
set ¢2 = 1/pgeq ) This should not be surprising, be-
cause an electromagnetic wave just represents the
wave nature for the zero rest mass photon.

(12b)
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Now that we have some experience constructing
waveequations, let usgofor theequationfor aparticle
with rest mass. This time let us first convert the
rel ationshi p betweentheparticleenergy Eand momen-
tum p into arelationship between w and k. We have

E2 = p2c2 + my2ch
Setting E=hwand p=hk gives
h?w? = h%k32c2 + my2c
Dividing through by h? gives

my?c?

w2 = c2k?+
h2

(13)

Using a d/ot for each w and a d/0x for each k
suggests the wave equation

at2 x2  p?

Wy

(14)

Plugging in the trial solution
P = quei (kx — wt)

GR 5 R
_— = —(L) ’ _— =
ot2 v

0x2
gives

_ kqu

mq2c?
W V-2

(15
cancelling the factor of — ) gives

my2c?

w? = ck?+ o2 (16)

which is the result we wanted.

Equation (14) is the one dimensional form of
Schrodinger's relativistic wave equation. Thisis
the first wave equation Schrédinger found, but he
ran into trouble with it.
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Consider the case of a particle at rest, or nearly at
rest, so that we can neglect p2c2 compared to
m0204 . Thenthe square of the energy E isapproxi-
mately equal to the square of the rest energy m002

for
small p (17)

This equation has two solutions

E2 = my2c?

E. = myc?
1 0 (18)
E2 = - m002
Solution (2) appears to represent a particle with a
negativerest energy, avery un-physical thing. The
corresponding wave solutions are

hw, = E; (29

Py = Poel K=+ hey, = E, (20)

When you encounter two solutions to a physical
problem, and oneisnonsense, you usually throw the
bad solution out. For example, the hypotenuse of a
right triangle is given by the equation

2 = a2+b? (21)
which has two solutions

c; = +Va2+b? (22)

c, = —va2+b? (23)

Since you know that you cannot have a negative
hypotenuse, youjust throw out the un-physical solu-
tion c,.

Schrédinger tried to throw out the un-physical solu-
tion Y, of hisrelativisticwaveequation, but raninto
the following problem. If he started with pure 4

waves for the electrons, and let the electrons inter-
act, P, waveswere generated. In other words, if he
threw out the un-physical p, waves, the equations
put them back in. Wedid not havethisproblemwith
the Pythagorean theorem.

Schrodinger gave up on the relativistic wave equation
and decided to use the nonrdativigtic relationship
between the kinetic energy E and momentum p of a
dowly moving particle.

Introduction to Schrédinger's Equation

That relationshipis
KnICE = %mv2 =1 (m2v2)

wherev isthe speed of the partlcl e, mtherest mass,
and mv = p is the momentum. Thus E and p are
related nonrelativistically by
(mv)? _ p?

2m  2m
Writing E=hw, p=hk, the nonrelativistic rela-
tionship between w and k is

(24)

E =

(25)

2 2 nonrelativistic
hoo = hok= relationship

2m between w and k (26)

Schrodinger went to the nonrelativistic form be-
cause the relationship E = p2/2m does not involve
negative rest masses.

Toconstruct awaveequationthat givesthisnonrela-
tivistic relationship between w and k, we need one
time derivativeto givethe onefactor of w, and two
x derivativesto give thefactor of k2. What works,
aswewill check, is

onedimensional
Schrédinger's

equation for (27)
a free electron

2 132

ot~ 2m ox2

With the trial solution
P = quei (kx — wt)

m——mm;aw-—mu (29)
we get

ih(—iwy) = quJ

—i2ohy = h—zkzm (29)

2m
The y's cancel, and with —i2= 1, we areleft with
the desired result
_ h%?
hw = om (26) repeated

Equation (27) is the one dimensional form of
Schrédinger's equation for afree particle.
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In Chapter 2 of the Calculus text, we saw that the
equationsfor ropewaves, sound waves, and el ectro-
magnetic waves all had second derivatives of both
space and time. That is how we got the oscillating
solutions. In our study of the RLC circuit, we saw
that the presence of afirst derivative, the Rtermin

dZiQ+Bd7Q+g =0

2 La e (5-59) repeated

led to an exponential decay.

Onemight wonder, sincethereisonly afirst deriva-
tive with respect to time in Schrodinger's equation,
shouldn't that lead to an exponential decay with
time, of the wave amplitude ¢ ? It did not do so
because of the explicit factor of (i) in Schrodinger's
equation. With thetrial solution g = el (kx—wt)
the () from thefirst derivative with respect totime
wasturned into a 1 by thei inthe 0/dt term. Thus
by having an (i) in Schrodinger's equation itself, we
can get an oscillating solution with a first time
derivative.

Thereason we haveintroduced Schrédinger'sequa
tion after a chapter on complex variables is that
factor of (i) in the equation itself. With the other
differential equations we have discussed so far, we
had the choice of using real or complex variables.
But we cannot write, let alone solve, Schrédinger's
equation without the use of complex variables.
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Exercise 2
In three dimensions, the momentum vector

B =(py, Py p,) has a magnitude p given by the
Pythagorean theorem as

P2 = (py2+py2+P,?) (30)

With P =hK, we have

p? = h2(k 2+ k 2+ k,2) (31)

We got the one dimensional wave equation by replac-
ing k§ by 9°/0x2. This suggests that the extension of
Equation (27) to describe three dimensional plane
waves should be

ot~ 2m

ax2 9y? 0z2

2 2 2
ihov _ hz("‘“ﬁ“’ﬁ‘“) (32)

As a trial solution, try the guess

W = e/’(RE{—wt) = el (Kx + Ky + K,z — wt) (33)

and show that the guess implies
oo 2 2
how = ﬁ(kx +Kj +k%)

and
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POTENTIAL ENERGY &
SCHRODINGER'S EQUATION

The relationship E = p2/2m=mv2/2 is for a free
particletraveling at aconstant speedv. If theparticle
has a potential energy V(X), like spring potential
energy

spring

metd (@

where K isthe spring constant, then the formulafor
the total nonrelativistic energy E is

V(x) = —%Kx2

E=1m2+vi) = 24y 36
= ImvZ+V() = o +V(0  (36)
Interms of w and k we have
_ h%?
hw = o +V(X) (37)

and the corresponding one dimensional wave equa-
tion should be

one
2 92 dimensional
W = PO o | Sredngar
ot 2m 9x2 equation
(38)

If you did Exercise(2), itisclear that the three dimen-
siona form of Schrodinger'sequationisexpectedtobe

iho¥ = _"‘2("2‘“ LM, 0%

R T v v +V(x,y,2) W

(39)
In Chapter 4 of the Cdculus text, we discussed the
combinationof derivativesd2/dx2 + 92/0y2 + 3%/9z2
and gave them the specia name

2. 0%, 0%, 0%
ox2  oy?

definition

of O 2 (40)

072
With this notation, the three dimensiona form of
Schrodinger's equation can be written in the more
compact and familiar form

., oy h2 2 ful -
ih—= = — 09 +V(Xy,z Schrédinger
ot 2m P Viyy equation

(41)

Wecanimmediately get back totheonedimensional
Schrodinger'sequation by replacing 02 by 92/0x2 .
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THE HYDROGEN ATOM

The reason Schrodinger developed hiswave equation
was to handle the electron waves in hydrogen in a
mathematically rigorousway. To apply Schrodinger's
equation of thehydrogenatom, you usethefact that the
electron is bound to the proton nucleus by a Coulomb
force of magnitude e2/r2 whose potentia V(r) is

_e2 Coulomb
V() = == potential (42)
energy
Withthispotentia energy, Schrodinger'sequation (41)
for the hydrogen atom becomes
2 Schrodinger's
h (ZleJ = h* zljJ - eTZ 1] equation for
I ot 2m hydrogenatom
(43)

Solving Equation (43) isnot easy. Thefirst problem
we encounter is the fact that we have been writing
002 = 32/0x2 + 3%/9y2 +0%/9z2 using Cartesian co-
ordinates x, y, z, whilethe Coulomb potential —e2/r
has spherical symmetry. Thebest way to handlethe
situation is to use a coordinate system that has the
same symmetry as the potential energy.

The coordinate system of choice is the
spherical polar coordinate systemthat hasaninherent
spherical symmetry. This coordinate system is de-
scribed in Chapter 4 of the Calculustext and indicated
inFigure (1). Instead of locating apoint by giving its
X, Y, and z coordinates, we locateit by the r, 6 and ¢
coordinates. The quantity r is the distance from the
origin, O the angle down from the z axis, and @the
angle over from the x axis, as shown.
4

Figure 1
Spherical polar coordinates.
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Intheappendix to Chapter 4 of the Cal culustext, we
calculated 02 in spherical polar coordinates. The
result was

2y = 19 gy + 1 a(sinea‘“)

I or2 r2sind 00 00
1 0%y
+ — 44
r2sind gq¢? (44)

This surely does not look simpler than
02 = 0%9x2 + 02/9y2 +02/8z2 , but it does allow
you to find solutions to Schrodinger's equation for
the hydrogen atom.

In the appendix to this chapter, we calculate some
spherically symmetric solutions to Schrédinger's
equations. These are solutions that depend only on
r, namely @=y(), so that op/06=0 and
oY/op =0, which eliminates the second and third
termsin Equation (44). The solutions we get, (we
solve one and leave the second as a homework
exercise) are

P, = e geiongt (45)
= 1_L e—rlzaoe—i(x)zt
V2 ( 230) (46)
where ag has the value
h hr rad 47
= — B |
ap 2 ohr radius (47)

Thisquantity ag istheBohr radius, theradiusof the
smallest orbit in the Bohr theory of hydrogen. (See
Exercise 7 in Chapter 35 of the Physics text.)

Exercise 3

Goto Appendix Il of this chapter (page 6-14) and study
the stepsthatled to the solution g1 . Thenwork Exercise
5 to find the solution Y, . After that return here and
continue reading.
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A gpecial feature we discover when we solve
Schrodinger's equation in Appendix I, isthat in
orderfor Y1 and |, tobesolutionsof Schrédinger's
equation (43), the frequencies w; and w, haveto
have the following values

4
ho, = =€M - _136eV (48)
P17 e

he, = —€'M = _360ev (49)

8h?
You canimmediately seethat hw, istheenergy of the
electroninthelowest hydrogen energy level, and hw,
isthe electron energy in the second energy level. Just
looking at the spherically symmetric solutions begins
totdl | usthat Schrodinger'sequationisgoingtoexplain,
inanatural way, the hydrogen energy levels.

As we mentioned in our discussion of the hydrogen
atomin Chapter 38 of the Physicstext, thereare many
alowed standing wave patterns for the eectron in
hydrogen. In Figure (38-1), reproduced on the next
page, we show sketches of the sx lowest energy
patterns Yy, ¢ 1, |abeled by their energy quantum num-
ber (n), angular momentum quantum number (¢) and
Z projection of angular momentum quantum number
(m). We noted that al the zero angular momentum
patterns ({ = 0) aresphericaly symmetric. By solving
Schrddinger'sequationfor spherically symmetricstand-
ing waves, we began to generate the { =0 patterns.
Explicitly, the waveswe got are

Wi00 = Wy (of Equation 45)

Wpo0 = W, (of Equation 46)

Tosolvefor thenonsymmetric patternslike Y, 4 ; that
haveangular momentum, you haveto beabletohandle
angular termsinvolving 6 and @ inthe formula (44)
for 02. Differential equations involving 02 have
been studied for well over a century, and the angular
terms, which are common to many of these equations,
have been carefully worked out with standardized
notation. Theangular dependenceof thenon spherical
standing waves involve what are called spherical
harmonicswhicharebriefly discussedin Appendix |1
of this chapter.
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There are 8 more n = 3 patterns
in addition to the one shown.
The { and m quantum numbers
are

1, m=10-1
2

1
2,1,0,-1,-2.

E =-1.51eV

m
m

~—
I

n=3, /=0 m=0

3
o
S
(40}
|
1l
L

n=2 ¢=0 m=0

_ I\ —r/2a
Nn=(1-—|e
P(r) ( 280
n=2 ¢=1 m=1 n=2 ¢=1 m=0 n=2 ¢=1 m=-1

>
0]
O
a2) . I
7 Py(r) = e "%

1l
w

(a)

n=1 /=0 m=0

Figure 38-1 (page 38-3 of the Physics text)
The lowest energy standing wave patternsin hydrogen. The intensity is what you
would see looking through the wave. We have labeled 1 and ¢, on the diagram.



Calculus 2000 - Chapter 6

INTERPRETATION OF SOLUTIONS
TO SCHRODINGER'S EQUATION

Bohr's theory of the hydrogen atom, although quite
successful, was based on Newtonian mechanics with
the ad hoc assumption that angular momentum was
quantizedinunitsof h. DeBrogli€'stheory suggested
that the reason for the quanti zation of angular momen-
tum was due to the wave nature of the electron, but he
a sotreatedtheel ectronwaveinarather adhocmanner.
If one assumesthat Schrodinger's equation rather than
Newtonian mechanicsprovidesthebas ctheory for the
electron in hydrogen, then all the quantized energy
levelsfollow adirect consequence of the theory. No
extraassumptions haveto befed in. Schrodinger had
found the theory to replace Newtonian mechanicsin
describing atoms.

But questions remained. The e ectron's wave nature
waswell established, but what wasthe meaning of the
electron wave? The answer to that was provided a
coupleof yearslater by Max Born, whowascal cul ating
how e ectron waveswould be scattered by atoms. The
calculations suggested to him that the electron wave
should be interpreted as a probability wave, as we
discussed in Chapter 40 of the Physics text.

One of the main features of a probability waveisthat
it hasto berepresented by ared, positivenumber. Y ou
cannot have negative probabilities or imaginary prob-
abilities. But so far, our electron waves are described
by a complex variable s, obtained from an equation
that was itself complex. How do we get real positive
numbers from the complex i ?

Weranintoasomewhat smilar probleminour discus-
sion of eectromagnetic radiation. Maxwdll's equa
tions predict that light waves consist of eectric and
magneticfiddsE and B . Yetmost of thetimeweare
concernedwiththeintensity or energy density of alight
wave. To predict theintensity from Maxwell'stheory,
wehavetoknow how tocal culatetheintensity fromthe
vectors E and B. The answer isthat the intensity is
proportional to thesquareof E and B. If weusethe
correct units, the intensity is proportional to
(E [E + B [B). Thesedot products E [E and B [B

are always positive numbers and therefore can repre-
sent an energy density or intengity.
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If we can get apositive number for avector field by
taking the dot product of the vector with itself, what
do we do to get a positive number from a complex
Y ? Theanswer, aswe mentioned at the beginning
of Chapter 5 (see Equation 5-26), isthat we get areal
positive number from a complex number by multi-
plying by the complex conjugate. To remind you
how thisworks, suppose that we have separated
into its real and imaginary parts

W= Wrea * ilI—’imag (50)

whereboth Yoy and Wimag arereal numbers. Then
the complex conjugate, which we designate by
is defined by changing (i) to ()

U = Wrea — 1 Wimgg (51)

To calculate the complex conjugate Y* you do not
haveto separatethefunctioninto real andimaginary
parts ahead of time. You get the same result by
replacing al (i) by (=) in the complex formula.

When you multiply a complex number by its
complex conjugate Y, the result isareal positive
number, as you can see below

gy = (queaI ol LIJimag) (queaI + il-|Jimag)
= l1-’rea|'~|—'real + iwrealwimag
_quimagLIJreaI _iquimaquimag

Thei ;e Wi mag termscancel, andwith —i% = 1weget

Y = '~|Jr2eal + Lpizmag

(52)

and thus Y+ isareal, positive number.

For electron waves, the positive number Y+ ) repre-
sentstheintensity of thewavein muchthesameway
that (E LE + B [B) represented the intensity of the
el ectromagnetic wave.
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Normalization

In describing probabilities, one usually representsa
probability of 1 as being certainty, and that the
probability of an event as being allowed to range
from zero to one. If the wave function { isto
represent aprobability wavefor anelectron, wehave
toincludetheideathat the probability of something
ranges from zero to one.

Theintensity Y Y isadensity that variesover space.
If youhaveanenergy density, call it E , thenthetotal
energy E is the integral over all of space of the
energy density E . Wecanwritethissymbolically as

E = f E (xy,2)d%V (53)
all space

where, if we are using Cartesian coordinates, the
volume element d3V would be (dxxdyxdz) .

If wearetointerpret U* Y asaprobability density, then
the total probability should be the integral of the
probability density over al space. Wecanwritethisas

E)?toatl)ability = f TN Y
all space
Thequestionis, thisisthetotal probability of what? I
wearetalkingabout theel ectronwaveinhydrogen, and
wethink of Y”" d3V asthe probability of findingthe
dlectron in some small volume element d3V | then if
we sum these probabilities over al space, we should
end up with thetotal probability of finding theelectron
somewhere in space. If the hydrogen atom has one
electron, andyou ook everywhere, you should eventu-
aly find the electron with aprobability (1). Thusthe
total probability should be given by the formula

(54)

1= f g W a3V (55)

all space

The wave functions 4 and , that we presented
you in Equations (45) and (46) do not have this

property.
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Let usseewhat theintegral of YW, over all space
is. We have

P, = e Magegiwt (56a)

Py = e Magetiogt (change —itoi) (56D)
so that
Wi, = e ragetingt g=rl/agg—iwjt

Wi, = e 23

(57)

The el @1t's cancelled and we end up with a real
positive density.

Tointegrate Y* Y over al space, we notice that since
Y Y issphericaly symmetric, wecantake d3Vv asthe
volume of the spherical shell shown in Figure (2), a
shell of radiusr and thicknessdr. That volumeis

d3v = (4mwddr (58)
because 412 is the area of a sphere of radiusr.
Throughout the shell, Y has the same value
e~ 239 | thus our volume integral is simply

| wwdv = [ eleo@na
r=o0
Being somewhat lazy, we look up in our short table
of integrals, the integral of r2e—Ar, After some
manipulation shown in Appendix 1, we get

(59)
all space

4T[f r’e-22odr = m(ay)3
0
Theresult isthat theintegral of *  over all space
is T1(ap) instead of the desired value of 1.

z

(60)

spherical shell
of thickness dr

)

X
Figure 2

We can use as the volume element d3V the spherical
shell of radiusr and thickness dr.
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To fix this problem, we use a so-called normalized
wave function (Y1) qormalizeq: Whichissimply g,
multiplied by an appropriate normalization constant
C. Tofind out what C should be, write

(W) normalized = CW1 (61a)

(qu)normalized =C qu
where, if we want, the normalization constant can be
complex. Thenwe have

(61b)

(qJ*l) normalizeo(LlJl) normalized — (C* C) l]J’il]J 1

1= (L|J*1) normalized (w 1) normalized d3V
all space
= cC f W g dV (62)
al space
= C'Crn(ay)®
Thus
cc=—1 : (63)
T1(an)
The simplest choiceisto take C real, giving
C = 1 normalization (64)

constant for ¢4

V i(ag)®

As aresult our normalized wave function becomes

n(ag)®

(l.|J1) normalized —

(65)
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When you look at tablesof wavefunctions, youwill
see factors like 1/,/1(ap)® or v3/8m. They are
merely the normalization constants. In one sense,
the normalization constants just make the formulas
look complicated. Most of the physicsin our equa-
tionfor Y, iscontainedinthefactor e~ a0 . Ittells
usthat theelectron wave decaysexponentially aswe
go out from the proton, decaying by afactor of 1/e
when we go out one Bohr radius ap. Theintensity,
or probability Y*y is proportional to e=2"8y and
thus drops off by afactor 1/e2 when we are aBohr
radius from the proton. We also calculated the
energy levels E; and E, without worrying about
thenormalization constants. Itisniceto haveatable
that gives you the normalization constants, but you
get a better insight into the shape of the standing
wave patterns if you have another table without
them.

Exercise 4

At what finite radius is there zero probability of finding
an electron when the electron is inthe n = 2, { = 0,
m = 0 standing wave pattern? Explain why and sketch
the intensity 5 o oW2 00
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THE DIRAC EQUATION

Our story isincomplete if we stop our discussion of
particle wave equations with Schrédinger's equa-
tion. Assuccessful asthat equation is, it still does
not handle relativistic effects. As we saw,
Schrodinger could avoid the negative rest mass
solutionsby startingwiththenonrelativisticformula
E=p%2m rather than the relativistic one
E2 =p2c2 + my2c .

It appeared to Dirac that the reason Schrodinger
could avoid thenonphysical solutionsisbecausethe
nonrelativistic equation involves only the first de-
rivative with respect to time dy/dt , rather than the
second derivative 92y/ot2 that appeared in the
relativisticequation (seeEquation (14). Diracthought
that if he could develop arelativistic wave equation
that avoided second time derivatives, then perhaps
he could avoid the un-physical negative mass solu-
tions.

By 1929, when Dirac was working on the problem,
it was known that the electron had two spin states,
spin up and spin down. It wasthese two spin states,
along with the Pauli exclusion principle, that led to
an understanding of the structure of the periodic
table. These spin states are not included in or
explained by Schrddinger's equation.

Slightly earlier, Wolfgang Pauli had introduced a
new mathematical quantity called a spinor to de-
scribe the spin state of the electron. Spinors are
quantities, involving complex numbers, that areina
sense half way between a scalar number and a
vector. The existence of such amathematical quan-
tity wasunknown until itsinvention wasrequired to
explain the electron. Pauli was able to modify
Schrodinger's equation with the use of spinors to
include the effects of electron spin.
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Dirac found that by using a certain combination of
spinors, he could write arelativistic wave equation
for the electron that had only a first order time
derivative dy/dt . Hehopedthat thisequationwould
avoid the un-physical negative mass solutions.

Dirac's equation was successful in that it not only
included all the results of Schrédinger's and Pauli's
equations, but it also correctly predictedtiny relativ-
istic effects that could be detected in the spectra of
hydrogen. However, Dirac soon found that his
equation also led to the apparently negative mass
solutions.

Dirac could not throw his equation away becauseit
successfully predicted relativistic effects that were
observed by experiment. Instead he found a new
interpretation of the previously undesirable solu-
tions. Hefound that these solutionscould bereinter-
preted as the wave for a particle whose mass was
positive but whose el ectric charge was of the oppo-
site sign.  The equation led to the prediction that
there should exist aparticle with the samerest mass
as the electron but with a positive electric charge.
That particle was observed four years later in Carl
Anderson's cloud chamber in the basement of the
physicsbuilding at Caltech. It becameknown asthe
positron.

Wenow know that any rel ativisticwaveequationfor
aparticlehastwo kinds of wavesfor asolution. One
represents matter particles, and the other, like the
wave for the positron represents antimatter. If you
have arelativistic wave equation, even if you start
only with matter particles, the equation containsthe
mechanism for particle-antiparticle pair creation.
Y ou let the matter particlesinteract, and antimatter
hasafinite probability of being created. Thatiswhy
Schrodinger and Dirac could not suppress the anti-
matter wavesintherel ativistic equations. However,
by going to anonrelativistic equation, representing
situations where not enough energy is available to
create electron positron pairs, Schrodinger could
avoid the antimatter waves.
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Appendix | - Evaluation of a Normalization Integral

Our normalization integral is Theexponentia decay isso powerful thatinthelimit
00 of large R, aterm of the form R"e~aR goesto zero
f PP d®V = 4am| r2e?/@dr  (59)repeat  foranyvalueof nforpositive(a). Thusall termswith
53l space =0 ae—@R gotoO0asRgoestoinfinity. With e0 =1, we
are left with
L ooking for theintegral of r2e—A" in our short table o
of integrals in the formulary, we find instead f r2e—ardr = % (68)

J x2e-dx = L(a?2+ 2ax +2)e X  (66) °
a Now set a= 1/ 2a; and we get

If weset x =r andintegratefrom O toinfinity, we have

. 41'[2

(2/29)°
f ree~adr = %(azr2 +2ar + 2)e .
5 a 0 1(30)

= L (a?R2+ 28R + 2)e-aR
3
a R=o

[oe]

4nf r2e-2rlagdr
0 (69)

- %(61202 + 2ax0 + 2)e~a0
(67)
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Introduction to Schrédinger's Equation

APPENDIX 11 - An introduction to Schrodinger's
Equation Applied to the Hydrogen Atom

The Hydrogen Atom

Schrodinger's first major success with his wave
equation was to solve for the electron standing
waves in hydrogen, and to determine the electron
energiesin each of the standing wave patterns. For
an electron in hydrogen, the potential energy is
given by Coulomb'slaw as

V(r) = —%2 (42) repeated

where —e is the charge on the electron and r is the
separation of the electron and proton. Thus the
equation Schrodinger had to solve for hydrogen is
the three dimensional equation

2 Schrodinger's
ih%qJ =_h mg —Tezlp equation for
t 2m hydrogen atom
(43) repeated

Quiteafew stepsare required to obtain solutionsto
Equation (43). Thefirst isto look for solutions of
definitefrequency w or energy E = hw by usingthe
trial function

P = Y(xy,2) e it
= W e et

wherewewill usetheboldfacex tostandfor (x,y,z).
Plugging this guess into Equation (43) gives

(70)

ih(—iw)P(x)eiot = _Zh;[mzw(x)]e—iwt
— %zl.lJ(X) e it

Thefactor e~ it cancels and we are |eft with

2
how) = 0200 - Cweg  (71)
With hw = E, this becomes
2
9 = I [02p| - Fo (72

The next gtep is to note that it is not convenient to
handleaspherically symmetricpotential V(r) = —e?/r
using Cartesian coordinatesx, y, and z. Inthe Chapter
4 of the Calculustext wederived theformulafor (1< in
spherical polar coordinates r, 0, @ which are shown
in Figure (1) reproduced here. In these spherical
coordinates we show, after considerable work, that
thp isgiven by Equation (4-10) as

10°

1 a(- an)

+ ~~SN6—~

2snp 08\ 98
1 0%
r2sin’0 o¢?

(Note: many texts write the first term as

1/r2 8/or (r20y/ar) whichisan equivalent but usu-
ally less convenient form.)

D2 = (ry)

(4-10)

/
L

Figure 1 (repeated)
Spherical polar coordinates.
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If we look at only the spherically symmetric solu-
tionswhere

spherically

= metri

Y(xy,2) = Y(r) vgv/ame ric (73)
then oy(r)/06 =0, dY/op=0, and only the radia
part of (J<Y(r) survives. Schrédinger's equation for
thespherically symmetric wavesof energy E becomes

2 2
ey =~ 110y -y

2mT 352 (74)

Multiplying through by 2mr/h?, Equation (74) can
be written in the form

02 a _

25w +(F+bjry = 0 (75)
where

_ 2me? . _ 2mE

e PN o
If we define the variable u(r) by

u=ry; p=4Y (77)
our eguation for u becomes

°u , (a _

ﬁ+(7+b)u =0 (78)

Exercise 5
Derive Equation (78) starting from Equation (74).

Equation (78) isadifferential equation we have not
encountered before. Neither of our familiar guesses
forasolution, likeu = e~ 9" or u = sinwr , will work,
asyou cancheck for yourself. What doeswork isthe
function we will call u; , whichis

uy(r) = re-ar guess (79)

Plugging our guessinto Equation (79) gives

duy
— = e r—qre-ar
dr

2
d7u; _
dr?
2
d uq
dr2
—20e 9T+ 02re=ar + &re-0r + pre-ar =

_ae—ar_ae—ar + a2re—ar

Thus +(2+bJu = 0 becomes
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The common factor e~ & cancalsand we areleft with

[—2a+a]+r[0(2+b] =0 (80)
The only way we can satisfy Equation (80) for
arbitrary values of r is to set both square brackets
separately equal to zero, giving

20 =a; a=a?2 (81a)
a2 = -b (81b)
Squaring Equation (81a) gives
2 - &
a 4 (81c)

For Equations (81b) and (81c) to be consistent, the
constants (a) and (b) must satisfy the relationship

Toseewhat Equation (82) implies, let usput back in
the values of (a) and (b)

_2me? . a% _ 1., 4m%*
a——hz L4 4><7h4 (83a)
b = _iTE (83b)

Thus Equation (82) requires
_2mE _ m%*
h? h?
or
4
E=-M€ - _136ev 84
oh? (84)

In our study of the Bohr theory, we found that the
lowest energy level of the hydrogen atom was
E; =—me?#/2h? which turns out to be —13.6 elec-
tron volts. We now see that if the hydrogen wave
amplitudeisgiven by thesolution uy , or @1 = uqr,
then the energy of the electron in this wave pattern
must be the same as the lowest energy level of the
Bohr theory. Thisisa prediction of Schrodinger's
wave equation without any arbitrary added assump-
tions like assuming angular momentum is quan-
tized.
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To see what the wave pattern isthat correspondsto
theenergy level E4 , notethat theBohrradius ag , the
radius of the smallest Bohr orbit in the Bohr theory,
isgiven by

- b hr radi 85
ag = e Bohr radius (85)
Thusour constant (a) in Equation (77) can bewritten
_2me? _ 2
Thus Equation (81a) requires that
= = ; - = L
a=2a 2 a 3 (87)
and the wave function 4(r) isgiven by
wy(r) = W < el ear
Py(r) = e "% (88)

The electron wave decays exponentially as we go
out from the nucleus, decaying by a factor of 1l/e
when we go out one Bohr radius. Wehavejust used
Schrddinger's equation to solvefor the ground state
wave function, the lowest energy level standing
wave pattern in hydrogen.

Introduction to Schrédinger's Equation

The Second Energy Level

In the following exercise you will find another
spherically symmetric solution for the hydrogen
atom.

Exercise 6
Try the guess

Us(r) = (r+crd)e 9" | u, = ry, (89)

as a possible solution to Equation (78) where (c) is an
unknown constant. Show that for (89) to be a solution,
you have to satisfy the conditions

—-20+2c+a =0 (90a)

a2 —4ca +ac+b =0 (90b)

a2c +bc =0 (90c)
Then show thatthis requires a2 =-b as before, andthat

_ 2-4

b =% 0 2hrr21E2 - 116X4r24e (1)
or

E, = —1( me4) =136V _ 360ev  (92)

4 2h2 4

Then show that Lp2(r) is given by

Yo = (1 —Qfgo)e‘ "/2ag

E2 =-3.6eV (93)
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IntheBohr theory, theenergy levels E,, aregivenby

E, = Ei _ 136ev

2 2 (94)

The second energy level E, isthus

E, Ey
= — = —==-36¢eV
NG
Thusthewave pattern you solved for in Exercise(8)
is the spherically symmetric standing wave pattern
inthe second energy level. Itiswhat we havecalled
the n =2, { = 0 wave pattern. Note that in the
solution

= — L r/2
W) (1 o )e— %  (93) repeated
when we are at adistance
L — - —
20 1; r=2a (95)

thewave patternin Equation (93) goesto zero. This
means that the standing wave ,(r) hasaspherical
node out at adistance r = 2ay . Thisisthe spherical
nodewesaw inthe y(n=2,0=0) patternshownin
the Physics text, Figure (38-1) repeated here.

Figure 38-1a
Hydrogen atom
standing wave
pattern for
n=27/¢=0.

Figure 3
Tacoma Narrows
bridgeinann=2
second harmonic
standing wave
pattern.

(Movie. Press esc to stop)
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If you try a guess of the form
ug(r) = (1+cor +cgrd)ear (96)

you end up with aspherical wave pattern Y5(r) that
has two spherical nodes, and has an energy
Eq

32

which isthe third energy level.

Es = (97)

Y ou can now seethepattern. Wecan generateall the
spherically symmetric { =0 wave patterns by add-
ingtermslikecyr3, cgr, Tt "1 toour guessfor
un(r) . Solvingfor al the constants, we end up with

Es

E. =
n n2

(98)

whichistheenergy level structure Bohr discovered.

Figure 38-1i
Wave pattern for n =3,/ = 0.
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Non Spherically Symmetric Solutions
It wasfairly easy to handle the spherically symmet-
ric solutions to Schrédinger's equation for hydro-
gen, becausewedid not haveto deal withtheangular
termsinvolving © and ¢ in Equation (4-10) for 02,
To find non spherically symmetric solutions, we
have to work with the complete equation

2
EY = —I D%+ V()Y

2
02 = +95(w)

1 0(q a‘“)
" r2dng ae(s' 050 )
1 0y
r2sin%e o¢?

Differential equations involving 02 in spherical
coordinates have been studied for along time and
standard procedureshave been carefully worked out
to handlethe angular dependence of the solutions of
theseequations. Aslongastheequationhasno other
angular terms except those that appear in 02, then
the solutions are of the form

f(r8,@) = Rym()Yim(6.9)

where Rym(r) arefunctionsthat dependonly onthe
variable (r), and the Y,,(8,¢) arefunctionsonly of
theangles 8 and @. Thesubscriptsn, { and m can
take on only integer values.

(100)

When we are dealing with Schrodinger's equation,
the solutions are of the form

l-IJ(r!e!(p) = ljJan(r)YQm(G,(p) (101)

where each different alowed integer value of the
subscripts n, ¢, and m corresponds to a different
allowed standing wave pattern for the electron.

Introduction to Schrédinger's Equation

Thefunctions Y,(8,¢) , which arecalled spherical
harmonics, start off quite smply for small ¢, m, n,
but become morecomplex as{ andmincrease. The
simplest are

Yoo06,9 =1 no angular dependencel
Y10 = cosB
Y,, = —Lsnge®

' V2

- 1 Gpei
Yi_1 = ——=snfe'? 102
1-1= /5 (102)
Since Y o hasno angular dependence, all solutions
of the form

Wnoo = Wn(N Yoo = Wn(" (103)

are the spherically symmetric solutions we have
aready been studying. We calculated y4(r) and
had you calculate Yi5(r) , which corresponds to the
valuesn =1 and n = 2 respectively.

When we worked out the solution 4(r) we found
that it represented an electron in the lowest, n =1,
energy level. You were to show that x(r) repre-
sented an electroninthe second, n=2, energy level.
We can see that for the symmetric solutions, the
integer subscript nistheenergy quantum number for
the electron.

It turnsout that theinteger subscripts{ and mdefine
theamount of angular momentumtheelectronhasin
a particular wave pattern. When ¢ =0, m =0, the
electron has no angular momentum. Thusthe sym-
metric solutionsrepresent an el ectron with no angu-
lar momentum.

The quantum number ¢ isrelated to thetotal orbital
angular momentum of theelectron, and mispropor-
tional to the z component L, of orbital angular
momentum. Explicitly

L, = mh (104)
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The fact that the numbers {, m and n have to have
integer valuesis simply a consequence that for any
confined wave, there is an explicit set of allowed
standing wave patterns. The electron in the hydro-
gen atom is confined by the Coulomb force of the
proton. When you work out the mathematics to
handle 02 inspherical coordinates, youfindthat the
allowed standing wave patterns can beidentified by
theintegers ¢, mand n.

There are certain rules for the possible values of {
m and n. When n = 1, there is only one solution
which we found. It correspondsto ! =m=0. For
n = 2, the possible solutions are:

n 0 m

possibleval ues of
2 0 0 fandmforn =2
2 1 0
2 1 1
2 1 -1

In general, n ranges from 1 to infinity, ¢ can have
valuesfromOupton- 1, and m canrangeininteger
stepsfrom +0 downto -t . These are the rules that
define the possible standing wave patterns of the
electron in hydrogen.

Introduction to Schrédinger's Equation
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Divergence

In the Physicstext we pointed out that a vector field
wasuniquely deter mined by formulasfor thesurface
integral andthelineintegral. Aswe havementioned
several times, that is why there are four Maxwell
equations, since we need equations for the surface
and line integral of both the electric and magnetic
fields. Thedivergence and curl arethe surface and
line integrals shrunk down to an infinitesimal or
differential scale. Wewill discussdivergenceinthis
chapter and curl in the next.
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THE DIVERGENCE

Aswe mentioned, the divergence is a surface inte-
gral shrunk down to aninfinitesimal or differential
scale. To see how thisshrinking takesplace, wewill
start with the concept of the surface integral as
expressed by Gauss law and see how we can apply
it on avery small scale.

We begin with Equation (29-5) of the Physics text

EA = 2
closed (29-5)
surface

Equation (29-4) saysthat for any closed surface, the
integral of E (WA over the surface isequal to 1/g,
timesthetotal charge Q;,, insidethevolumebounded
by the surface.

The interpretation we gave to this equation was to
cal E (WA theflux of thefield E out through the
area element dA . The integral over the closed
surface is the total flux flowing out through the
surface. Wesaid that thisnet flux out was created by
theelectric chargeinside. By calculating theflux of
E out through a spherical surface centered on a
point charge, we found that the amount of flux
created by acharge Q was Qg .

Thefact that Equation (29-4) appliesto a surface of
arbitrary shapefollowsfromthefact that theelectric
field of a point charge is mathematically similar to
thevelocity field of apoint sourceinanincompress-
iblefluidlikewater. We described apoint source of
avelocity field as some sort of "magic" device that
created water molecules. The physical content of
Gauss law applied to water wasthat thetotal flux of
water out through any closed surface had to beequal
to the rate at which water molecules were being
created inside.

Of course for areal situation there are no "magic"
sources creating water molecules, with the result
that there is no net flux of water out through any
closed surface, and thevel ocity field of water obeys
the equation

Jdo _ VA = 0 (1)

surface

Equation (1) istheconditionthat thevelocity fieldis
apurely solenoidal field like the magnetic field.

Back to Gauss law, Equation (29-5). Before we
shrink thelaw toaninfinitesmal scale, wewouldlike
to change the right hand side, expressng the total
charge Q;,, intermsof the charge density p(x,y,z)
that is within the volume bounded by the closed
surface.

We do this by considering a small volume element
AV; = (Ax Ay Az), . If the charge density at point
(i) is p(x;,y;,z;) then the amount of charge AQ; at
AV; is

JAVA AV

AQ; = p(X;,yiz)AV; ry (9
AX

Adding up al the AQ; that resideinside the surface
givesus

Qin = 24Q; = 2 pAV,

= 2 p(X;yi,2) Bx; By Az,
|

3)

Taking the limit asthe Ax, Ay and Az go to zero
gives ustheintegra

Qn= | pixy.2)cxaydz

volume
bounded by (4)

closed surface

To shorten the notation, let V' be the volume bounded
by the closed surface S, and introduce the notation

d3v = dxdydz (5)
Then Equation (4) can be written

Qi = [ pixy.2)dV ©
Vv

Using Equation (6) in Gauss law (29-5) gives us
| BreA = L[ pxy.2)dv (7)
S V

Equation (7) is a more genera integral form of
Gauss law, relating the surfaceintegral of E over a
closed surface Stothevolumeintegral of p over the
volume bounded by S. It is Equation (7) that we
would now like to shrink down to an infinitesmal
scale.



Weknow how to goto thesmall scaleversion of the
volumeintegral of p, justundothesteps(2) through
(6) that we used to derive the volume integral. In
particular we will focus our attention on one small
volumeelement AV, = Ax; Ay; Az; andapply Gauss
law to this volume

L . AQ
El@A = 5+ = ?]bp(xi1yi’zi)AVi
bounding (8)

AV
Itisclear how we got the total charge Q;, whenwe
added up al the AQ; insidethevolumeV. But how
dowehandlethe surfaceintegral of E ? How dowe
interpret adding abunch of surfaceintegralsover the
small volume elements AV; to get the surface inte-
gral over the entire surface S?

Theway to pictureitisto remember that the surface
integral over the surface of AV; isequal to the flux
of E created inside AV; . From this point of view,

thetotal flux flowing out through the surface of the
entire volume will be the sum of the fluxes created
within each volume element. To calculate this sum,
we first have to caculate the flux flowing out of the
volume element AV; .

In Figure (1), we show the volume element AV,
located at (x;,y;,z;) , with sides Ax, Ay and Az.
Flowing through thisvolume element isthe electric
field E(x,y,2) .

Alsoin Figure (1) we have drawn the surface area
vectors AA | ,and AA, for theleft andright vertical
faces. Recall that for a surface integral, the area
vector AA or dA is perpendicular to the surface,

—_\
AA;
y4
v
! 4
RN : ,/ RN
DA <—1- | T DA,
¥ el
, Ay «

i ¥, Z) T Ax

Figure 1
The volume element Av; .
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pointing out of the surface. Thus AT\Z Isx directed
withamagnitudeequal tothearea AyAz of that side,
while AA; points in the —x direction and has the
same magnitude.

We can formally write

AA| = —DyAz ; DA, = XAyAz (9)

where R istheunit vector inthex direction. Similar
formulas hold for the areavectorsfor the other four
facesof AV . For example, onthetop face we have
AA 5 =20xDy .

Tocalculatethetotal flux of E out of AV , wehave
to calculatetheflux out through each of thesix faces.
For the two x oriented areas AA, , and AA, , only
the x component of E will contribute to the dot
products ECAA . Let E,(x,y,z) be the average
value of E, at face 1, and E,(x +Ax,y,z) be the
averagevalueof E, atface2, whichisadistance Ax
down the x axisfrom face 1. Theflux out of face 2
will be

flux out
of face2

E,(x +AX,y,z)AA,
(10)

E,(x +AX,y,z)AyAz

Atface 1, where AAl =—XAyAz , the dot product
ECAA can be written

EBA,

(REx+YEy+2E,) [(-RAYAZ)
(11)

whereR [X=1,9[X=2[X=0. Wewrotethefull
dot product in Equation (11) so that you could see
explicitly where the minus sign came from.

Combining Equations(10) and (11) for thetotal flux
out of the two x directed faces of AV , we get

flux out
O X wed = | Ex(X +X,y,2) — E,(xy,2) |AyAZ
faces

(12)
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If we multiply Equation (12) by Ax/Ax =1 we get

flux out EX(X+Ax,y,Z)—EX(X,y,Z)

of x _
directed = Ax AXAYAz

facesof AV

(13)

At thispoint, E,(x +Ax,y,z) and E,(X,y,z) arethe
averagevaluesof E, , averaged over the x directed
facesat x + Ax and x respectively, while the func-
tionswithout averaging, namely E, (x +Ax,y,z) and
E,(x,y,z) arejustthevaluesof E, at thelower front
corners of the x oriented faces as shown in Figure
(2). Any difference between the average values of
E, and the corner values E, will beduetoy and z
variations of E, over the area AyAz.

In Equation (13) weseethat thechangeof E, , aswe
move in the x direction, is going to become very
important. It should beclear that wearegoingto get
apartial derivativeof E, withrespecttox. What we
aregoingtodonow issay that variationsof E, inthe
x direction areimportant but variationsof E, inthe
y and z direction are not, and as a result we can
replace the average values of E, with the corner
values E, .

The above paragraph was intended to sound like a
questionable procedure. If we do it, Equation (13)
immediately simplifies, aswe will see shortly. But
how do we justify such astep? The answer, which
wework out in detail intheappendix to thischapter,
is that when we take the limit as AV goesto zero,
contributions due to y and z variations of E, goto
zerofaster thanthecontributionfromthex variation.
Neglecting the y and z variations turns out to be
similar toneglecting a2 termscomparedto o terms
in an expansion of (1+a)" when a is a small
number.

4
AX Ay
Az
EX(X’ y’ Z) EX(X+AX’ y’ Z)
X
(x,y.2)  (x+Ax,y,2)

Figure 2
Electric field at the lower front corners.

We put this discussion in the appendix because it
takes some effort which distracts from our goal of
reducing Gauss law toadifferential equation. How-
ever it isimportant to know how to figure out when
certain terms or dependencies can be neglected
when we take calculus limits. Thus the appendix
should not be skipped.

Assumingthat wecanreplace E, by E, inEquation
(13), noting that AxAyAz = AV , and taking the
limit as Ax goesto zero gives us

O _timit | Exx#xy.2) —Ey(xy2) |,
facesof AV OX-0 Ax

(14)
The limit is clearly the partial derivative
0E,(X,y,z)/ox and we get

flux out of E
x directed = ax(ax’y’Z)Av (158)
faces of AV X

Similar equations should apply to the y and z faces,
giving us

flux out of 0E,(X,y,2)
ydirected = yaiAV (15b)
faces of AV y
flux out of OE (X,y’z)
zdirected = ZaiAV (15¢)
faces of AV z

Exercise 1

Draw the appropriate sketches and reproduce the
arguments needed to derive Equation (15b) or (15¢).




When we add up theflux out of all six faces, we get
the total flux out of AV

total flux —
out of AV

0E, OE, 0E,
X ¥ ay ¥ 0z av. (19)

Y ou should spot immediately that the notation in
Equation (16) can be simplified by introducing the
partial derivative operator

- 0 0 0
0= (Xax”yay”az)
(17)
= (ROx+90, +20)

From the definition of the vector dot product we have

:( : y— 2— )MXE +9E +2E,)
0

Ex + aEy + aEz
ox dy o0z
whereweused X [X =1, X [ =0, etc., and noted
that the unit vectors are constants that can be taken
outside the derivative. For example,
0E,

X
Usingthenotation of Equation (18), weget for thetotal
flux out of AV

(18)

a‘ix(x E,) = % (182)

total flux — (A

out of AV (HE)AV
Equation (19) applies to each AV; at each point
(X;, ¥i» z;) within any volume V bounded by a
closed surface S. The total flux out through the
surface S, whichisthesurfaceintegral of E , will be
equal to the sum of all the flux created insidein all
the AV;. Thuswe get

(19)

EMA = IZ (DE)AV, (20)

surface
boundingV
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Aswetakethelimit at AV; goesto zero Size, thesum
becomes an integral, and we end up with

divergence

theorem (21)

EMA = fD[Ed3v

closed surface
bounding

volumeV

where we are using the notation of Equation (5) that
d3v =dxdydz.

Equation (21) isknown asthe divergence theorem,

and thequantity [ O isknownasthe divergenceof
thevector field E . We saw the same operator Ol in
the Chapter 3whenit acted onascalar field f(x,y,z).

Then we had what was called agradient

= gradient of
U G scalar fied
(22)
== divergenceof
D a vector field

You can see that O operating on a scalar field
f(x,y,z) createsavector field Of . Incontrast, thedot
product of O with avector field E createsascalar
field O [E that hasavalue at every point in space
but does not point anywhere.

Equation (21), the divergence theorem, is an ex-
tremely useful result for it allows usto go back and
forth between a surface integral and avolume inte-
gral. In Equation (7) reproduced here,

f EmA = & f o(xy.2)dV  (7) repeated
V

we had a mixed bag with a surface integral over a
closed surfaceontheleft and avolumeintegral over
theenclosed volumeV ontheright. Back then, there
was not much more we could do with that equation.
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But now we can replace the surface integral of E
with avolumeintegral of [I[E to get

fﬁﬁﬂﬂ = Slof p(x,y,2)d>V  (7) repeated
s v

f e = & f o(xy.2)dV 23)
V

V
Sinceweareintegrating over thesamevolumeV for
both integrals, we can write (23) as

= ) | 3y =
UOE(X,Y,z) — d’v =0

. (24)

p(x.y,z
0

Y%
The next argument is one often used in physics.
Sincetheintegral in Equation (24) hasto be zero
for any volume V we choose, the only way that can
happen isif the integrand, the stuff in the square
brackets, is zero. This gives us the differential
equation

Gauss
= p(X,y,Z) i
TE(xy2) = 2222 | lawin (29
form

Equation (25) isthe differential equation represent-
ing Gauss law. When Maxwell's equations are
written as differential equations, thiswill be one of
the four.

Exercise 2
Another of Maxwell's equations in integral form is
BWA =0
closed

surface

What is the corresponding differential equation?

Electric Field of a Point Charge

Until now, in both the Physics and Calculus texts,
when we obtained a new differential equation, we
illustrated its use with explicit examples. Thistime
we do not yet have a good example for our new
Equation (25) O[E = pley. Thisisthe differential
form of Gauss' law, and our best examplefor theuse
of Gauss' law wasin calculating the electric field of
a point charge. The problem is that, at the point
chargeitself, the field E and its partial derivatives
areinfiniteand theassumptionswemadeinderiving
Equation (25) do not apply.

Whenwearedealing withtheelectricfield of apoint
charge, the field E is well behaved and all partial
derivatives arefinite, except at thecharge. Theway
we can handle point chargesisto use Equation (25)
O[E = ple, everywhere except in a small region
around the charge. In that region we revert to the
integral form of Gauss' law which allowsustowork
just outsidethe point chargeand avoid theinfinities.

Hereisan outline of the way we handlethe problem
of apoint charge. Weareworking with Equation (25)

P(X,y,2)

OmE(x,y,z) = £ (25) repeated

and everything is going well until we come up to a
point charge located at the point (Xq.Yo.2p) - 1N a
small region surrounding the point charge, we inte-
grate Equation (25) over the volume, getting

OE v = f 2 gy (26)
0
volume volume
surrounding surrounding
charge charge

Thevolumeintegral of thechargedensity p overthe
region of the point charge is simply the charge Q
itself, thus we can immediately do that volume
integral, giving us

O ddv = 8% 27)
volume
surrounding

charge



Westill havethe problemthat OE isinfiniteat the
charge itself. But we can avoid this problem by
converting the volumeintegral of CI[E to asurface
integral of E using the divergence theorem, Equa-
tion (21)

OEdV = EdA
I f
surrounding enclosing (21) repeated
charge charge
to get
EA = 2
0

surface (28)
surrounding
charge

In Equation (28), which werecognize astheform of
Gauss law we started with in the Physics text, the
electric field is evaluated only at the surface sur-
rounding the point charge, and not at the charge
itself. Away from the charge, thefield isfinite and
we have no problem with Equation (28).

Thereisamathematical problemwiththe concept of
a point charge, where a finite amount of chargeis
crammed into a region of zero volume, giving us
infinitechargedensitiesandinfinitefieldsthere. We
havejust shown how theseinfinities can be avoided
mathematically, at least for Gauss' law, by convert-
ing the volume integral of CI[E at the charge to a
surfaceintegral of E out from the charge. Wasthis
just a mathematical exercise, or in physics do we
really have to deal with point charges?

The theory of quantum eectrodynamics, which de-
scribes the interaction of eectrons with light (with
photons), is the most precisaly verified theory in sci-
ence. It explains, for example, the very smallest
relativistic correctionsobserved in the spectrum of the
hydrogen atom. This theory treats the electron as an
actua point particlewith afinite amount of massand
charge confined to aregion of zero volume. Thetrick
we just pulled to handle the eectric field of a point
chargewasquite smplecomparedtothetricksthat the
inventors of quantum electrodynamics, Feynman,
Schwinger, and Tomonaga, had to pull to handle the
infinite mass and energy densities they encountered.
The remarkable accomplishment was that they suc-
ceeded in congtructing a theory of point particles, a
theory that gave finite and correct, answers.
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The question that remains unanswered, is whether
the electron istruly a point particle, or doesit have
somesizethat isso small that we have not been able
to see the structure yet? The important feature of
guantum electrodynamics is that it makes testable
predictions without any reference to the electron's
structure. We get the same predictions whether the
electron has no size, or is some structure that istoo
small to see. Our handling of the electric field of a
point charge is your first example of how such a
theory can be constructed. By converting to a
surfaceintegral surrounding the charge, it makesno
difference whether the charge is truly a point, or
confined to some region too small to see.

By the way, in the current picture of elementary
particles, inwhat isoften called the standard model,
the true elementary particles are all point particles.
These elementary particles are the six electron type
particles called leptons (they are the electron, the
muon, thetau particle, and three kinds of neutrinos)
and six kindsof quarks. Thestandard model makes
many successful predictionsbut appearsto haveone
critical flaw. The problem is that no one has yet
succeeded in constructing a theory for the interac-
tion of point particles with gravity, the so called
guantum theory of gravity. Every attempt to do so
hasthusfar led to infinities that could not be gotten
rid of by any known mathematical technique.

Thisfailure to devel op aquantum theory of gravity
in which gravity interacts with point particles, has
led to theories such as string theory where the
elementary particles have a finite, but tiny size.
String theory appears to avoid the infinities in the
gravitational interaction, but thestrings, fromwhich
particlesareassumed to bemade, are predicted to be
so small that no way has been found to test whether
they actually exist or not. Itisinteresting that sofar
our only evidencethat elementary particlesactually
have structureisour failureto construct atheory of
gravity.
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THE 6 FUNCTION

Whenwe applied thedifferential form of Gauss' law
OCE = ple, tothefield of apoint charge, weavoided
the problem of mathematical infinities by integrat-
ing the equation over a small volume surrounding
the charge. We never did say what the charge
density p(x,y,z) wasfor apoint charge Q, because
we knew that if we integrated p(x,y,z) over the
region of the charge, the answer would be smply Q
itself.

In physics we often run into quantities like the
chargedensity of apoint chargewherethedensity at
the chargelooksinfinite, but when we integrate the
density over theregion of thecharge, weget afinite,
reasonable answer. There is a convenient way to
handle such problems by using what is called the
delta () function.

The one dimensional o function is a curve with a
unit area under it, but all the areais confined to a
region of zero width. We obtain such a curve
mathematically through the use of alimiting process.

Consider the curve shown in Figure (3) that is zero
everywhere except in the region around the point
Xg - Inthat regionitisarectangle of width Ax and
height 1/Ax. The areaunder thiscurveis

(29)

areaunder — 1) _
rectangle (AX)(AX) =1

—| AX |«

H

Xo

Figure 3
When we take the limit as Ax goesto zero,
we get a one dimensional delta function.

Now take the limit as Ax - 0, and we end up with
acurve, whosetotal arearemains1, but whosewidth
goesto zero and height goestoinfinity. Wewill call
this curve d(xg)

of the curve of width

O(Xg) = A!(irp Ax and height 1/Ax, ) (30)

centered at X,

Eventhough &(x,) isinfinitely highat the point X,
itsintegral over any regionthat includesthepoint x,
isjust the number 1

X greater than Xy
o(Xp)dx = 1

x lessthanxq

(31)

Actually the only important property of the & func-
tionisEquation (31). Thecurvedoesnot haveto be
a rectangle, it could be the limit of some smooth
curvelikethat showninFigure(4). Aslongas,inthe
limit that Ax — 0O, the curve becomes infinitely
high, infinitely narrow, and hasaunit areaunder it,
itisa & function.

In three dimensions, the & function 8(Xq,Y.2p) iSa
guantity that is zero everywhere except at the point
(Xo:Y0,Z0) » but whose integral over that regionis1

d(XogYopZo)dV =1

any volume
includingthe

point (Xo,Y 0,20)

(32)

Anexampleof sucha d functionisthefunctionwhose
valueis zero everywhere except within adistance Ax
of Xq, Ay of yq,and Az of z,. Inthat regionthevaue
is (/AX)(1/Ay)(1/Az) , so that the total volumeiis 1.
ThentakethelimitasAx - 0,Ay - 0,andAz - O.

1
AX
AX

Xo

Figure 4
We have a delta function aslong asthe area
remains 1, and the width goes to zero.



We can now use the & function to describe the
charge density of a point charge. If apoint charge
has a total charge Q and is located at the point
(X9:Y0:Zg) , then the charge density p(x,y,z) is

chargedensity
p(Xy,z) = Qd&(XqYqZg) of pointcharge (33)
at X0, Yo 20
The differential form of Gauss' law applied to this
charge density is

OF = p(xéy’Z)
° (34)
O = 2)50(01)/0’20)

To handle Equation (34), we use our old trick of
going back to the integral form by first integrating
over avolume that includes the charge

J OEdv = f S)B(xo,yo,zo)dv (35)

volume
including
charge

volume

including point

Xo Yo 20

Since Q/g isaconstant, it can betaken outside the
integral on the right side of Equation (35), giving

5Q0 O(XpYoZ)dV = ngxl

volume
including point

X0 Yo 20
where we used the fact that the integral of the
function was 1. Now convert the volumeintegral of
OCE to asurfaceintegral

(36)

J ArE av =f A 37)
volume surface

including point surrounding

X0 Yo 20 X0 Yo 20

Using (36) and (37) gives

EmA = 2
0
closed surface
includingQ

which isour integral form of Gauss law.
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From this example, you can seethat the & function
allowsustowritean explicit formulafor the charge
density of a point charge, and you can see that the
only things we have to know about a & functionis
that d(X,Yq,Zo) IS zero except at (Xq,Yq,Zg) and
that itsvolumeintegral aroundthat pointis1. Asyou
go farther in physics, you will encounter the o
function moreand moreoften. Itisrather niceinthat
there is no function easier to integrate.

Exercise 3

Explain why the following mathematical relationship is
true for any continuous function f(x,y,z)

f f(x,y, z)6(xo,y0,zo)d3V = f(X0,Y0,20)
any volume (38)

includingthe
point (Xo,Y0.20)
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DIVERGENCE FREE FIELDS

It may seem abit discouraging that we did all this
work to derive the differential form of Gauss' law
O [E=pley , and then end up, when we want to
actually solve a problem, going back to theintegral
form of the equation. At thispoint, that isabout all
we can do to solve for explicit field patterns E .
However, the differential form begins to tell us
about some general features of avector field aswe
shall now see. With a lot more practice with the
differential form of thefield equations, and perhaps
a computer thrown in, one can begin to solve for
complex field shapes. In thistext we will focus on
what we can learn about general features and leave
thesolution of compl ex field shapestoalater course.

To see what we can learn about general features of
afield, supposethat wehaveavelocity field v(x,y,z) ,
whose divergenceiszero, i.e., it obeysthe equation

d(x,y,z) = 0 (39)

Wesay that such afieldisdivergencefree. What can
we say about the properties of such afield?

Toanswer that question, wewill again go back tothe
integral form, by integrating Equation (1) over some
volumeV to get

Owdv =0
volumeV

Now use the divergence theorem to convert this
volume integral to a surface integral, giving

(40)

VIA = 0

closed
surface

Equation (41) is our old equation for a vector field
that hasno sourcesor sinks. Itistheequationfor an
incompressible, constant density fluid, a real one
like water where water molecules are not being
created or destroyed. Thus the condition that a
vector field be divergence free, i.e,03i=0 or
OE=0 or O (B =0,isthat thefield behaveslike
the velocity field of an incompressible fluid.

(41)

What kind of solutionsare possiblefor adivergence
free field? What are the solutions to the equation
OO0i=07?

Theanswer isat |east as complex asthe behavior of
water. Y ou have seen water flow smoothly inalazy
river. That is called laminar flow. Such laminar
flow is one solution to 0¥ =0. But in a fast
flowing stream there can be complex eddies called
turbulence. Turbulent flow isalso asolution to the
equation 0 07 = 0.

Y ou can now see that the equation T 37 = 0 putsa
restriction on the field v, but still allows an enor-
mous range of solutions. Because of your familiar-
ity with theflow of water you have someinsightinto
what these solutions can be.



APPENDIX — DERIVATION
OF FLUX EQUATION (14)

Earlier in the chapter we had the following formula
for the flux out of the x directed faces of the small
cube AV = AxAyAz

flux out E —-E
of X difected = Ex(x+axy.2) —By(xy.2) AXAYy Az
facesof AV AX

(13) repeated

where E, (x+AX,y,z) and E,(X,y,z) weretheaverage
valuesof E, onthetwo x directed faces of the cube.

In Equation (14) wereplaced theaveragevalues E,
by the values E,(x+Ax,y,z) and E,(X,y,z) at the
lower front cornersasshownin Figure(2), repeated
here giving

flux out _— _
Ut e = limit |Exx+AXy.2) ~E,(Xy.2) |\,
facesof AV AX-0 AX

(14) repeated
What wearedoingisingoing from Equation (13) to
(14) istoneglect they and z dependenceof E, while
developing an equation for the x dependence. This
step needs justification.

To seewhat effect they and z dependence has, let us
start by approximating theaveragevalueof E, over
the entire x faces by the average of the top and
bottom values of the front side of AAy, i.e., the
average of E, at points (1) and (3) on the left and
points(2) and (4) ontheright asshowninFigure(5).

Thisisarather crude approximation for the average
over the face, but begins to show uswhat the effect
of they and z dependence of E, is.

Z
AX Ay
Az
Ex(X7Y,2) Ex(x+AX,Y,z)
> >
(x,y,z)  (x+AX,y,z)

Figure 2 (repeated)
Electric field at the lower front corners.
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Toevauate E, at (X,y, z+ Az), upat point (3), we
can use a Taylor series expansion. So far we have
discussed a Taylor series expansion only of afunc-
tion of asingle variable f(x). The expansion was,
from Equation (2-44 of Calculus Chapter 2)

10%
2! 9x2

(2-44) repeated
which is good for small steps (x—Xg) .

f(x—xg) = (xg) + 91 (x—x0) + 2L (x—x)*+ (I

What we are doing when we go from point (1) to
point (3) inFigure(2), iskeeping thevauesof x and
y constant, and looking at the change in E, aswe
vary z. Thusingoing up, we have afunction E,(z)
that is only afunction of z, and we can use our old
Taylor series expansion to get

Ex(X.y,z+Az) = Ey(Xy,2)
N 0E,(x,y,2)
0z
N lazEX(x,y,z)
2  0z2

+ [
where Az is analogous to the step (x—xg) in the
Taylor series formula.

(Az)

) ) (42)

Because we are eventually going to take thelimit as
Az goesto zero, we will be able to neglect terms of
order (Az)2 compared to Az. Because of that, itis
sufficient to write

E(xY,2+02) = E,(xy.2)

+ EAZ

+ terms of order Az

(42a)

Ey(X,y,z+Az)

E (X+AX,Y, z+AZ)
©) >F—T—>
)
WVE

X(X’ y’ Z) EX(X+AX1 yi Z)

Figure 5
Electric field at four positions.
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When we take the average of E, at points (1) and
(3), aresult we will call Ey(x), 3, we get

E,(X,y,2) + E,(X,y,z+AZ)

EX(X)l,3 = 2
= E(xy,2) + 16EX((;(’y'Z)Az + O(Azz)
2 V4 (43)

where O(Azz) means terms of order (Azz).

A similar argument givesthe average E, (X +AXx) 24
at points (2) and (4)

E,(X+AX,y,z) + E,(X+AX,y,z +AZ)
2

1 0E,(Xx+AX,y,2)

2 0z

EX(X+AX) 24 =

Az + O(Azz)

(44)
Using our 2 point averagesin Equation (13) for the
flux out of AV givesus

= E, (x+AX,y,z) +

flux out of

x directedface —
of AV for 2

point average

E,(x+AX) 24~ Ex(X) 13
AX

AV

AV

0E, (X+AX,y,z
Y 1 x( y )AZ

E,(Xx+AX,y,z) + > 5

10E,(X,y,2)

—-E,(x\y,2) — 5 oz Az + O(Azz)

E,(X+AX,y,z) — E,(X,Y,2)
AX

AV

0E,(x+AX,y,2)  0E,(Xy,2)
0z 0z
AX

+

N~

AZAV  (45)

+ O(AZA)AV

Whenwegotothelimitthat Ax goestozero, wesee
that we get the partial derivatives

limit | Ex(+AXy,2) —Ex(xy.2) | _ 0E,(X.y.2)

(46)
0E,(x+Ax,y,2)  0E,(X.y,2)

limit 0z 0z _ 0%, (X,Y,2)

Ax-0 Ax 0x0z
(47)

Thus Equation (45) istaking on the form
flux out of 2
OE, O0°E
i T >
MWioro = AV| G + gz 2 + O(bz)
point average

(48)
We see that corrections due to the z dependence of
E, are of magnitude Az times the partial second
derivative 9°E,/dxdz . Aslongasall derivativesof
E, are bounded, stay finite as we take the limit as
Ax, Ay, and Az go to zero, then the Az term in
Equation (48) becomes negligently small, which
means that in the limit we can neglect the z depen-
denceof E, , at least in thistwo point approximation.

Our 2 point approximation to theaverage of E, can
be improved by using more points. If we included
the back pointsat (y+Ay), we would add terms to
Equation (48) of the form

0°E,
oxoy

terms which would go to zero in the limit Ay - O.
All points we add in to the average will give terms
proportional to Ax or Ay or somecombination, and
al thesetermswill goto zerowhenwetakethelimit
asAx , Ay ,and Az goestozero. Thus, itisanexact
result that, in the limit that Av - 0, only the X
dependence of E, has to be taken into account,
provided al derivatives of E, arefinite.

Ay + O(Az?) (49)
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Curl

ABOUT THE CURL

In the Physics text, we saw that a vector field was
uniquely determined by formulas for the surface
integral andthelineintegral. Inthelast chapter, we
saw that the divergence, such as [J[E , represented
the surfaceintegral shrunk down to aninfinitesimal
scale. Inthischapter, we study the curl, whichisthe
lineintegral shrunk down to aninfinitesimal scale.
Here our emphasiswill be on the application of the
curl to electric and magnetic fields. In the final
chaptersof thistext, Chapters12 and 13, wedevel op
anintuitive pictureof thecurl appliedtothevel ocity
field of fluids such as water and superfluid helium.
The curl of the velocity field is called vorticity, a
concept that plays a fundamental role in under-
standing such phenomena as quantum vortices and
turbulence.
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INTRODUCTION TO THE CURL
The partial derivative operator

d
98 oy T 2oz
hasnow appearedin our formulasfor thegradient of
ascalar field f(x,y,z)

D_sz"

Of(x,y,2) = X yaf +2af Q)
in the divergence of avector field E(x,y,2)

~ - _0E, OE, JE,

DEE_ax+ay+az (2

and in the Laplacian

0% | 0% | 0%
oz ay "oz 3)

While T isan operator in the sense that it only hasa
valuewhen operating on somefield, weseethat it acts
very much like a vector. This suggests that we may
encounter other vector like operationsinvolving C.

Omf = 0% =

In our discussion of vectors in Chapter 2 of the
Physics text, we saw that there were two kinds of
vector products, the scalar or dot product

AR = scalar
C=AB= (AXBX+AyBy+AZB product 4
and the vector cross product
C=AxB vector cross product (5)

where the formulas for the components of C were
Cy = AyB,—A B,
C, = ABy-A\B, 6)
C, = A,B,—AB,

We saw that the vector C = A x B was oriented
perpendicular to the plane of thevectors A and B,
the choice of which direction being given by the
right hand rule as shown in Figure (1). The magni-
tudewas C = AB sin 8 whichismaximumwhen A
and B are perpendicular and zero when parallel.

Thevector crossproduct seemslikearather peculiar
mathematical construct, but it plays an important
rolein physics, particularly in describing rotational

motion. You will recall that the angular analogy to
Newton's second law was
_dC
U= "% (7)

where thetorque, T = ¥ x F, is what we called the
angular force, and L = F x p is the angular momen-
tum. Despite the appearance of two cross productsin
Equation (7), the equation led to a very successful
prediction of the motion of a gyroscope at the end of
Chapter 12 in the Physicstext (see pagel2-18).

With this background, we seethat thereisone more
natural vector product involving the operator T . It
isthecrossproduct of T with somevector field like
E, B, or V. Thecrossproduct, for examplewith B,
iscalled the curl of B.

—

OxB = (0,B,-0,B,)
+ y(Dsz - Dsz)
+2(0,B,—0,By)

curl 8)

Withall thesederivativesintheformulafor O x B , the
concept of the curl looks rather formidable. Later in
this chapter we will discusstheformulafor thecurl in
cylindrica coordinates. That formulalooksevenworse
than Equation (8). However whenweapply thecurl in
cylindrica coordinatesto a problem with cylindrical
symmetry, we end up with a smple, easly applied
formula (which we will seein Equation 58).

RN

C=AxB C=AB(sind)
B
6 >A

Figure 1
Right hand rule for the cross product.
(Discussed in Physics 2000, page 2-15.)



Aswe have mentioned several times now, to deter-
mineavector field we need formulasfor the surface
integral and thelineintegral. Inthelast chapter we
saw that when we go to the small scale limit, the
volumeintegral becomesadivergence. Anexample
was Gauss' law which in the integral form was

=~ _ Qp
It became the differential equation
2 _ P
Ok = £ (10)

In this chapter wewill seethat the differential limit of
thelineintegral isthecurl. Wewill see, for example,
that the old form of Ampere'slaw (when dE/dt =0)

Bl = i, (12)
becomes the differential equation
OxB = poi(x.y,2) (12)

where T(x,y,z) isthe current density.

Inour discussion of divergence, oneof theimportant
results was the divergence theorem

|EmA = [OrEdy  feene
S \Y

theorem

(13)

whereV isthe volume bounded by aclosed surface
Sand d® = dxdydz. The divergence theorem
allowed us to immediately go back and forth be-
tween surface integrals and volume integrals.

Animportant result of thischapter iswhat onecould
call thecurl theorem, but whichisknown as Stokes
law. Itis

% Bl :f (0 x B)aiA | Sokes (14)
around g(?ge%fpath

closed path

whichrelatesthelineintegral of B aroundaclosedpath
toanintegral of thecurl of B over any areabounded
by theclosed path. Anexampleof aclosed pathisthe
wire loop shown in Figure (2). One of the areas
bounded by this closed path isthat of the soap film.

Our discussion of the curl will proceed through the
remaining chapters of the text. In this chapter we
will focuson deriving Stokes theorem and applying
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that theorem to the theory of electricity and magne-
tism. Thisalowsusto finish translating Maxwell's
equations from the integral to the differential form.

In Chapter 9 we derive aset of equations called vector
identitiesthat s mplify working with formulasinvolv-
ing thecurl. Wewill usethe vector identitiesto show
that Maxwell's equations in empty space become the
wave equations for electromagnetic fields.

In Chapter 11 we find that the wave equation for
electromagneticfieldsinthepresenceof eectriccharge
and current is consderably smplified by expressing
themagnetic field asthe curl of anew kind of avector
fild called the vector potential A. Thisis arather
technical subject, the study of which can be put off for
awhile. We placed thismaterial wherewe did so that
you could see what happens to the electromagnetic
wave equation when sources are present.

In Chapter 12 we apply thecurl tothevelocity field v .
It isin that chapter where you can develop the best
intuitive picture of thecurl. If youwant to put off for
awhilestudyingthewaveequationfor electromagnetic
fields, you can go directly from thischapter to Chapter
12 and build your intuition for curl.

In caseyou werewondering about Chapter 10, it dedls
with the extension of the continuity equationto handle
compressibleconserved flows, liketheflow of eectric
charge. Wediscover from thiswork arather remark-
able result, namely that Maxwell's equationsrequire
that electric charge be conserved. Thisisone of the
first completely new physica predictions we get by
going to the differential form of Maxwell's equations.

Figure 2
Example of a surface bounded
by a closed path (wire loop).
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STOKES' LAW

Aswenoted, Stokes' law, Equation (14) allowsusto
convert from aline integral around a closed path to
asurfaceintegral over theareabounded by the path.
Once we have derived Stokes' law, it will be quite
easy to useit to convert to differential equationsthe
two Maxwell equations involving path integrals.

To derive Stokes law, we begin by calculating the
path integral of some vector field B around asmall
rectangular path of sides Ax and Ay shown in
Figure (3). Our argumentswill be somewhat similar
to those we used to derive the divergence theorem.

Thelineintegral around the rectangle AxAy can be
written as the four integrals

IR 2 o 3, >
SEBEHQ =f BEdQ+f B [l
around 1 2
AxAy
(15)

4, L ol
+f BEdQ+f B [l
3 4
Along the path from point (1) to point (2), along the

bottom of the rectangle, we are integrating in the x
direction, thus

Zﬁmﬁ— ZBdQ
fl _fl XX

Theintegral of B,dl, over the bottom side can be
written as

(16)

2
fl B,dl, = B, (xy—Ay/2)Ax (17)

where B, (X,y—Ay/2) is the average value of B,
along the lower edge, a distance Ay/2 below the
center (x,y) of the rectangle.

(4) ©)

<

Bxy) A
e

AX

1) 2
Figure 3
Calculating the integral of B [di around a small
rectangular path centered at the point (X,y).

The integral up the right hand side becomes
3., o
f B (@l

2

where B, (x+Ax/2,y) istheaveragevaueof B, aong
theright side, out at adistance Ax/2 from the center.

3
|, Byt

_ (18)
By (x+AX/2,y)Ay

On the top side, we are integrating in the —x direc-
tion, the dot product B [ isnegative, and we get

4 4
f B @il f _B,dl,
3 3

—B, (X,y+Ay/2) Ax
where B, (x,y+Ay/2) istheaveragevaueof B, on
the top edge.

(19)

Going back down from poi nt (4) topoint (1) weare
going in the -y direction, B [d{ =-B,dl, and we
get

1. .
JBEJIQ
4

1
|, -8y,

_ (20)
—By (x-Ax/2,y)Ay

Using Equations (17) through (20) in (15) gives,
after some rearranging

oo 7B X+AX/2,y) — B, (X=AX/2, 7
[ B = BB Bt
X
around -
AxAy
B B, (X,y+Ay/2) — B, (x,y—Ay/2) Axay
Ay
(21)

Asafirst approximation to Equation (21), we could
replace the average values of B, ,By on the four
sidesby the actual valuesof B, , B, at the center of
each side. For example, since the center of theside
from (2) to (3) isat thepoint (x+Ax/2,y) , wewould
be making the substitution for that side of

By(X+Ax/2)y) - By(X+Ax/2)y) (22

|.e., we would be removing the bars over the values
of B in Equation (21).



When we remove the bars and then take the limit as
Ax - 0 and Ay - 0, the first square bracket in
Equation (21) becomesthe partial derivative of B,,
with respect to x

limit By(X+AX/2)y) — By (X—Ax/2)y) _ 0B,
AX -0 AX 0x
(23)

and the second square bracket in Equation (21)
becomes dB,/dy. In this approximation, Equation
(21) becomes

o o 0B, 4B
— y X
Bl = x " oy (AxAy) (24)
around
AXAy

The approximation we made to get Equation (24),
which wasreplacing theaveragevaueof B along a
line by the value at the center of the line, assumes
that variations along the line (e.g. changesin B, in
the x direction) are not as important as variations
perpendicular to the line (e.g. changesin B, inthe
y direction). Thisissomewhat similar to the situa-
tion we had in our derivation of the divergence
theorem where changesin the field were important
in one direction and not in the other.

Intheappendix to Chapter 7weused aTaylor series
expansion to show that as Ax, Ay or Az went to
zero, the variations we ignored went to zero faster
thanthevariationswekept. They were proportional
toahigher power of Ax , Ay or Az ,andthereforedid
not contribute in the calculus limit.

Weleaveit asan exercisefor theambitiousreader to
show, using arguments similar to those made in the
appendix to Chapter 7, that by replacing average
values B, and B, by center values B, and B, , we
aremaking errorsthat gotozerofaster thantheterms
we keep. |.e., show that the errors are of the order
Ax, Ay or Az smaller than the terms we keep.

With Equation (24), wehavetheformulafor theline
integral around one small rectangle lying in the xy
plane. We can generalize thisresult by turning the
area element (AxAy) into avector AA . An area
vector AA isperpendicular to the surface as shown
inFigure(4). Inthiscase, wherethesurfaceisinthe
xy plane, weseethat AA ispurely zdirected, andwe
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canwrite AXAy = (AA), . With thisnotation Equa-
tion (24) becomes

. leB, 4B

9€BE1Q = |30~ o [0A), (25)
around

AA

Next, we notice that the z component of the curl of
B isgiven by Equation (8) as

R 0B, 0B
_ _ %Py
(O0xB),=(0,By-0,By) = T ayx (26)

so that Equation (25) becomes
| Bal = (OxB),0A), (27)

around
AA

The obvious extension of Equation (27) to the case
where our area AA does not happen to liein the xy
plane, where the vector AA has components other
than (AA),, isto recognizethat in Equation (27) we
are looking at one term in the vector dot product

Bl = (O0xB)BA

around
AA

(28)

Exercise 1

Suppose we have an area

AyAz as shown in Figure (5). AA
Write out the formula for Az

¢ B ol around this area Ay

(i.e., repeat the steps in

Equations 15-27 for this area). Figure 5

1
|

Ay

AX

Figure 4
Turning the area element (AxA4y) into a vector AA
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With Equation (28), wehavetheformulafor theline
integral around asmall rectangular area AA of any
orientation. The final step is to determine the line
integral around afinite loop like the wire loop with
the soap film acrossit, shown in Figure (1).

The way we can do this is to conceptually cut the
soap film up into many tiny rectangles as shownin
Figure (6). Think of the soap film asbeing replaced
by awindow screen, with the rectangles being the
holes in the window screen.

At each hole, each rectangle, we have avector AA,
that isoriented perpendicul ar tothesurfaceasshown
in Figure (7). The positive direction is determined
by noting which way we are going around the loop,
andthenusingtheright handrule. For Figure(6), the
positive direction is up out of the paper.

Next we note that when two rectangles touch each
other, the part of the line integrals on the touching
sides cancel, and we are left with a line integral
around the perimeter of thetwo rectanglesas shown
in Figure (8).

Figure 6
Break the surface across
the closed loop into many
small surface areas, like
the holesin a window
screen.

Figure 7

Each small surface
area is described by
an area vector AA;

Applying this argument to all rectangles in Figure
(6), weseethat whenwe add up thelineintegralsfor
all the rectangles, we end up with the line integral
around the outside perimeter of the surface. Math-
ematically we can write this as

sumof theline
_ integralsaround

around arealA;
whole
surface

Using Equation (28) for thelineintegral around AA,
we get

Bl = X (0xB)DA,
around !

whole
surface

(30)

Taking the limit as the ﬂi goesto zero turns this
sum into an integral, giving

Bl = | (OxB)dA | Sokeslaw
around over the
perimeter of surfaceS
asurfaceS
(31)

which is Stokes' law. It says that we get the line
integral of any vector field B around the perimeter
of asurface Sby integrating the flux of (CJ x B) out
through the surface.

Figure 8

When two rectangles touch, the line integrals on the
paths between them cancel, leaving a line integral
around the perimeter of the two rectangles.



In the future we will shorten our notation by letting
C besomeclosed path, and the surface Sbheasurface
like our soap film, that isbounded by the path. Then
we ssimply write

965 =fﬁ «B) @A
S

Sokes law

(31a)
Our use of the soap film analogy for the surface Sis
important for it emphasizes the fact that thereis no
onecorrect surface. Just asyou canchangetheshape
of asoap film by gently blowing on it (don't blow a
bubble), you can use different surfaces Saslong as
they are bounded by the same circuit C.

Wealsowant to emphasi zethat the quantity (Tl x B)
is itself a vector field, and that the integral of
(OxB) @A over a surface is the flux of (CxB)
through that surface. Thus, we should remember
Stokes |law astelling us that the lineintegral of B
aroundthecircuit Cisequal totheflux of (O xB)
through the circuit C.

_Aixy2)
6

= “AA

Figure 9
When the current flows at an angle 8 as shown,
thetotal current through AA isi(x,y,2) AA cosé.
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AMPERE'S LAW

Theoriginal formof Ampere'slaw, beforeMaxwell's
addition of the 0dg/ot term, was given in Chapter
29 of the Physicstext as
Bl

any closed

path
It saysthat thelineintegral of B around any closed
path is equal to p times the total current flowing
through that path. Since Stokes' law tellsusthat the
lineintegral of B around any closed pathisequal to
thetotal flux of (CJxB) throughthat path, theremust
be a close relationship between the vector field
(0xB) andtheelectriccurrent. Thatistherelation-
ship we want to establish.

= Mol enclosed (29-26)

Thefirst step isto expressthetotal current i through
aclosed pathintermsof thecurrent density (x,y,z).
The current density i(x,y,z) isavector field whose
direction at each point in space is the direction of
flow on the electric current i there, and whose
magnitude is equal to the density of current, which
has the dimensions of the number of amperes per
square meter.

Calculating the electric current through asmall area
element AA isana ogous to calculating the flux of
water through an areaelement AA , acalculationwe
didin Equation (3) of Chapter 29 of the Physicstext.
FromFigure(9), you can seethat thecurrent through
AA  will be a maximum, will have the value
i(x,y,2) AA whenthe area AA is perpendicular to
the flow. Thisiswhen the vector AA isparalel to
i(x,y,z). For any other orientation of AA , the
current Al through AA will be equal to
i(x,y,z) AA cosB which is equal to the dot product
of the vectors i(x,y,z) and AA . Thus

current through an

Al = T(xy.2)BA = areaelement AA

(32)
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To calculate the total current | gqoeeq through an
entire surface S, we break the surface up into small
areas AA; as we did in Figure (6), calculate the
current Al; througheach AA; ,andaddupall the Al

to get the total.

lenclosed = IZAH = IZT(Xi’yi’Zi)mKi (33)
Taking thelimit asthe AA; goto zero sizegivesus
the surface integra

total current
througha

closed path C

| enclosed :J i(xy,2) A (34)

surface

bounded

by pathC
Using our new formulafor | g oseq iINAMpere'siaw,

Equation (29-26), gives

i Bl = Uof i(x,y,z) A (35)
any over thearea

closed bounded by

path the closed path

Following aprocedure similar to theoneweusedin
our discussion of Gauss law in Chapter 7, we will
use Stokes |law to convert thelineintegral of B toa
surfaceintegral, so that both termsin Ampere'slaw
are surface integrals. With

f@mﬁzjkﬁxamﬂ

(31) repeated
C S
Equation (35) becomes
(O xB)A = f Ui (XY, @A (36)

surface surface
S S

where we took the constant [ inside the integral.
The surfacesfor thetwo integralsonly haveto have
the same perimeter C, but we are free to choose
identical surfaces, and thus combine the two inte-
gralsinto one giving

J [(ﬁ x B) — ol (x,y,2)|[A = 0
any

surface

S

(37)

Wethenarguethat if Equation (37) istoholdfor any
surface S, theonly way for that to happenisto set the
integrand, the stuff in the square brackets, equal to
zero, giving

(38)

OxB = poi (x.y.2)

Equation (38) isthedifferential form of the original
Ampere's law

9€§ il = Hol enclosed

In Chapter 32 of the Physicstext we explained why
Maxwell added aterm to Ampere's law to get

(29-26) repeated

oo dod
| BT = ol osca * Hof g (32-10)

arounda
closed
circuitC

where @, the electric flux through the closed
circuit isgiven by

®p = f A (39)
S

and Sisany surfacebounded by theclosed circuit C.

Toincludethe ddg/dt termin our differential form
of Ampere'slaw, we need to evaluate

S = § [ Exy.zn@A (40)
S

where the field E is not only a function of space
(x,y,2) but aso of time (t).

Ontheleft side of Equation (40) we have ddg(t)/dt
whichissimply thetimederivativeof somefunction
®(t) of time. That isastraightforward derivative.
Ontheright, wehavethederivativeof theintegral of
a quantity E(x,y,zt) which is a function of four
variables. What we aregoing to do thisonetime, is
to be very careful about how we bring the time
derivative inside the integral, and see what we get
when we do.



Our first step will be to write the integral over the
surface as the sum over many small but finite areas
AA,

chE _ d — —

o alz E(Xi.y;,zi,t) [DA;
where (X;,y;,Z;) isthecoordinateof theareaelement
AA;. By working with asum of finiteterms, wecan
seethat thechangeintimeof thesumwill bethesum
of the changesin each term

chE _ d - —

o iza E(x;,yi,zi,H) DA,
During this cal Eulation, we are keeping Lhe surface
Sand al the AA; fixed. At any given AA; theonly
thing that is allowed to change isthefield E at the
point (x;,y;,z;) . Thuswe have

(41)

(42)

—

& = Z dE(Xi’yi’Zi’t) mAI (43)

dt | dt

Theterm in the square bracketsisthe change in the
variable E(x,y,z,t) aswe change thetime (t) while
holding the other three variables constant at x = x; ,
Yy =Y;, z=1z;. Thisisprecisaly what we mean by the
partial derivative of E(x,y,z,t) with respect to (t).

A o o OE(XY.Z1)
th(XI’yI’ZI’t) - ot XfX! (44)
Y=Y
z2=12
Thus we have
d;':E _ IZ aE(Xa,ty,Z,t) X:Ximﬂi
Y=Y (45)
z2=17

Wecannow go back tothelimitas AA; goesto zero,
giving
dbz

o aE(lelZ!t) mA’
dt

ot (46)

S
Writing ddg/dt in Equation (46) asanintegral gives

~

f E(xy.zhdA = <3E(>;2/1Zi)miA
fixed |
irface fixed
surface

(47)
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Inwriting Equation (47) weplaced special emphasis
on the fact that the surface S (and also the AA;'s)
were fixed, did not change with time. Later, in the
first fluid dynamics chapter, we will want to calcu-
late the rate of change of flux through a moving
surface. (Inthat caseit will be asurface that moves
withthefluid particles.) Whenweallow thesurface
Sto move, thenin going from Equation (42) to (43),
we get moretermsrepresenting changesin the Aﬂi :

But withthefixed surface, Equation (47) tellsusthat
we can bring the time derivative inside the integral
if we change the derivative to a partial derivative
with respect to time.

Exercise 2
Start from the integral form of Ampere's law

do,

4)é EUQ = uolenclosed + uoeoTtE (32'1 1)

Using Equation (39) for @, and using Equation (47),
show that the corresponding differential equation is

DB i e ue O
DXB=|JO|+|JOEOE (48)

Exercise 3

As a review, start with all of Maxwell's equations in
integral form, as summarized in Equation (32-19) of the
Physics text

Qin

E[DA = & Gauss law
closed surface
BWA =0 no monopole

closed surface

<1;E§ i = g +uoso% Amperes law  (32-19)

Faraday's law

Gauss'law

no monopole

OxB = poi+ Uoso% Ampere's law

(49)

%8

OxE =5

Faraday's law
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CURL OF THE MAGNETIC FIELD OF A WIRE

In the section after this, wewill discussthe formula
forthecurl incylindrical coordinates, arather formi-
dable looking formula. We will then apply it to the
calculation of thecurl OxB of themagneticfield of
astraight wire. A lot of termsareinvolved but, most
of them go to zero and we arel eft with what appears
tobeasurprisingly smpleresult. Theresult should
be no surprise however, if wefirst look at Ampere's
law in differential form, as applied to thefield of a
wire.

The magnetic field produced by a steady current in
awirewasshownin Figure (28-14) in Chapter 28 of
the Physicstext. The current (i) is confined to the
wire, and themagneticfield travelsincirclesaround
the wire. If the current density is more or less
uniform in the wire, then we have a circular mag-
neticfieldinsidethewirea so (afield you cal culated
in Exercise 4 of Chapter 29). The result is sketched
in Figure (10).

1(X,Y,2)
AAAAAAA
| P
] |
/ AN
S~ B
/
L |
Figure 10

The magnetic field inside and outside
awire carrying a uniform current.

For a steady current, where 9E/dt =0, Ampere's
law in differential formissimply

OxB = Wi (x.,2) (38) repeated

Thefirst thing to note about Equation (38) isthat in
al placeswherethe current density i (x,y,z) iszero,
the curl OxB must also be zero. Since the current
isconfinedtothewire, JxB must beconfinedthere,
and the curl of the magnetic field outside the wire
must be zero. Itwill takeussevera pagestoobtainthe
same result using the formulas for the curl.

Next we notethat the current density i(x,y,z) isnot
only confinedto thewire, but also directed along the
wire. Thus OxB must not only be confined to the
wire, but also directed along the wire as shown in
Figure (11). Asaresult we know what OxB must
look like before we do any calculations.

In the next sectionswewill go through the calculation
of the curl of thismagnetic field. Whenwefinaly get
the smpleresults described above, you can ook upon
that asacheck that theformulasfor curl arecorrect after

al. 2,2
VXB
AAAAAAA

Figure 11
The curl of that magnetic field,
determined by OxB = pgi(x,y,2) .



CURL IN CYLINDRICAL COORDINATES

In our study of the gradient in Chapter 3 and of
Schrodinger's equation in Chapter 6, we saw that
whenaproblemhad cylindrical or spherical symme-
try, there was a considerabl e advantage to using the
formulas in cylindrical or spherical coordinates.
Very often problemsinvolving the curl, like the mag-
netic field of the current in a straight wire, have a
cylindrica symmetry. For such problemsit is much
easer towork with the curl in cylindrical coordinates.

Deriving formulas for curl OxB and divergence
OCE incylindrical or spherical coordinatesis made
difficult because of the unit vectors. In Cartesian
coordinates, the unit vectors are constant. But in
other coordinate systems the unit vectors change as
we move around in space. When we take the partial
derivative of avector, we also have to include the
effects of changesin the unit vectors.

In the appendix to Chapter 4, where we calculated
OQCf) = 0% inspherical polar coordinates, most of
the calculation dedlt with the changing unit vectors. In
amore closely related example, suppose we have the
vector B expressed in cylindrical coordinates as

B =B, +0By+2B,

where the unit vectors f, 8, and 2 are shown in
Figure(12). If wemakeachangeintheangle 8 from
8 to B+A8, the unit vectors f and 6 change
directions by an angle A8 as shown in Figure (13).

4
3 z
149
I 4
|
|
' y
N i /
e)\ | /
\\\ | //
N ://
XS e __ Sy

Figure 12
The unit vectorsin cylindrical coordinates.
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When we calculate the partia derivative of the
vector B, as we change the angle 6 from 6 to
8+A06 ,wenot only havetoincludethechangeinthe
value of B as we move from points (1) to (2) in
Figure(11), we aso haveto account for thefact that
the unit vectors f and 8 have also changed. This
change mixes up the components of B .

It isnot impossible to work out the formulasfor the
divergence or curl of a vector in cylindrical or
spherical coordinates, but oneisnot likely todoiton
the back of an envelope and get the right answer.
Any practicing physicist or engineer, who needsto use
these formulas, looks them up in areliable reference.

What wewill doissimply statetheformulafor curl in
cylindrica coordinates, and then check that the for-
mula gives the simple results we discussed in the last
section for the case of themagnetic field of awire. At
the end of thistext, inthe Formulary, we summarize
all the formulas for gradient, divergence and curl, in
Cartesian, cylindrical and spherical coordinates. Such
asummary can be avery useful thing to have.

Givenafied B expressedincylindrica coordinatesas

B = 1B, +08By+2B, (50)
the formulafor thecurl is
— — _ 1682 aBe
OxB) = +—2-—2
( T T "z
I 0B, 0B
OxB)y = — ——%
( e 0z or (51)
e 10 1aBr
O0xB), = =—(rBg) ———
(B = 75 B =T 59
y
o .
OV
\, ¢
9 1)
X
Figure 13

We see that the unit vectors r and @ change direction
when we change the angle @ by A486.
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CALCULATING THE CURL OF THE
MAGNETIC FIELD OF A WIRE

While Equation (51) for O x B in cylindrical coor-
dinates|ooks worse than the curl in Cartesian coor-
dinates, you will see a major simplification when
applied to a problem with cylindrical symmetry.
The magnetic field of awiretravelsin circles about
thewireasshownin Figure(14). Weseethat B has
only a ® component Bg. Inaddition, the value of
Bg doesnot depend on, i.e., changewith, the height
z or theangle 6. Thuswe can write B as

magnetic field of

B = 0B astraight wire

(52)

wheretheonly variable By dependsuponistheradius.

Outside the wire

Wewill first calculate B using theintegral form of
Gauss law, and then see what happens when we
apply thecurl formula, Equation (51) to B . Integrat-
ing B around thecircular path of radiusr, shown by
the dotted circle in Figure (12) gives

§§ i = Mol enclosed

Bg(r) X 2mr = Wgiyor

_ Moot
Bo() = S (53) also (28-18)

Figure 14
Magnetic field of
a straight current.

Thisistheresult wesaw in Chapter 28 of the Physics
text. Here i g qoseq 1S €qual to thetotal current iy,
because our path goes around the wire.

We are now ready to plug in the values
B,=0

_ Moot
B, = HYtat
0 2t
B,=0
into Equation (51) to get the value of the curl

(54)

OxB = 7(0OxB), +6(0xB)g +2(0xB), (55)
Because B, and B, arezero, alot of thetermsinthe
formulafor UxB vanish, and we are |eft with

L 9By
[xB) = — -0

(H>B), 0z

(OxB)g = 0

o8y = 198 6
( ), = ?&(r o) (56)

You shgulg check foL yourself that thisisall that is
left of [I1xB for the B of Equation (54).

Wenow notethat Bg(r) = Moot/ 2rr dependsonly
on the variable r and has no z dependence. Thus

aBe(r)
=0 7
37 (57)
and all we are left with for the curl is
o o 0
(OxB), = %E(rBG)
(58)

Equation (58) appliesto any vector field that |ooks
like the magnetic field in Figure (12). It appliesto
any vector field of the form

B = 6f(r) (59)

wheref(r) isany function of r. These are the kinds
of fieldswe are most likely to deal with in adiscus-
sion of the curl, in which case we can use the much
simpler Equation (58).



Applying Equation (58) to our special value
By = Hol 1o/ 2T, We get

([B<B), = 7

(60)

Notice that the r's in the square bracket cancel,
leaving us with

(ﬁx@) - 1a(uoitot)

z~ Torl 2m (61)

Weseethat pgio/ 21T isaconstant andthederivative
of aconstant is zero

0 [Hgitot| _
ar( om |~ 0 (62)
Thus we end up with the simple result
OxB =0 |[forBg= Holor (63)
21t

Thisiswhat weexpected fromour earlier discussion
of Ampere'slawindifferential form. Neglectingthe
0E/ot term, thelaw is

OxB = poi (x,Y,2) (38) repeated

where the vector i(x,y,z) is the current density.
Since the current is confined to the wire, the curl
OxB must also be confined to thewire, and be zero
outside.
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Inside the Wire

What about insidethewirewherethecurrent density
is not zero? Equation (53) does not apply there
because the formula Bg = Hgioy/2mr applies only
outside the wire.

To calculate the magnetic field inside the wire, we
have to know something about the current density.
L et usassumethat we have auniform currentinside
awire of radius R. We will apply Ampere'slaw to
acircular path of radius r asshownintheend view
of thewirein Figure (15).

Theamount of current enclosed by our path of radius
r is, for auniform current, smply the total current
ior timestheratio of thearear? of the path, to the
area iR? of thewire

w2 2

ienclosed = i'[otaIT[Rz = liot R2 (64)

Using this value in Ampere's law, we get for the
magnetic field inside the wire

iﬁ i = Mol enclosed

or2
(Be X Zm) = Holtorz2 (65)
One of ther'scancels, and we are left with
_ | Holtota
B(r) = [ZH};‘Z r (66)

where everything in the square brackets is a con-
stant. Y ou derived thisresult in Exercise (29-4) of
the Physics text.

circular

circular
Path of _
radius r

Figure 15
Calculating the magnetic field inside the wire,
assuming a uniform current density.
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Repeating Equation (66), we had for thefield inside
thewire

Be(r) = (66)

21R?
We see that By increases linearly with r until we
reachthesurfaceof thewireatr =R, asshowninFigure
(16). Then outsidethewire, Bg drops off as 1/r.

Mol total wr

To simplify theformulas, let uswrite Bg insidethe
wire as

inside

Bg(r) = kr wire (66a)
where
K = Hol total

Thecurl of thisvalueof Bg isgivenby Equation (58)
as

(OxB), = }:r(rBe)
= %;r(rkr) (67)
=k %
Since a(r?)/ar = 2r , we get
(OxB), = K(2r) = (68)

Putting back our value for k = pgiy/2R? we get
o i
(OxB), = uo<ng2)

Now i,,/TIR? isthetotal current in thewire divided
by the area of the wire, which isthe current density
i(x,y,z). Sincethecurrentis 2 directed, wecanwrite
the current density as

(69)

i
= g_tot
TRZ
and Equation (70) can be written as the vector
eguation

i(xy.2) (70)

OxB = poi (x,y.2) (38) repeated

which isthe differential form of Ampere's law (for
0E/0t = 0).

Thisisthe result we expected in thefirst place. The
fact that we got back to Ampere's law serves as a
check that the formulas for the curl in cylindrical
coordinates are working.

B(r)

Bolot|
21R I 1
! T

r |

|

|
OxB=poi | OxB=0

R r
Figure 16

The magnetic field inside and outside the wire,
for a uniform current density inside the wire.
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Electromagnetic Waves

In the Physics text we had some difficulty showing
that Maxwell's equations|ed to the prediction of the
existence of electromagnetic radiation. The prob-
lem was that the integral form of Maxwell's equa-
tionsarenot particularly well suited for the deriva-
tion. Thebest wecould dowasto show that thewave
pulse, shown in Figure (32-16) reproduced here,
travelsout at a speed v = 1/,/HE, which turnsout
to be the speed of light.

os]?
—

In discussing light waves, we made the argument
that if we started with a series of wave pul ses shown
inFigure(32-23a) and smoothed themout, we could
get the sinusoidal pulse shown in (32-23b). We
never did show that the smoothed out version was
actually a solution of Maxwell's equations, or that
the sinusoidal structure traveled at a speed
c=1//Ho€q - Withthedifferential formof Maxwell's
eguations, we can now do that.

(912

bl

Electric
field /I

Magnetic
field —

gty

a) Electric and magnetic fields produced
by abruptly switching the antenna current.

y
_\V<—— ‘_’V_\
V- —V X
Z
\
I SR A AT
E E ? ¥
Figure 32-16 | | | | | | |
Electromagnetic pulse e

produced by turning the
current on and then
quickly off. We will see
that this structure agrees
with Maxwell's
equations.

Figure 32-23

A |

One wavelength | = the distance between similar crests

—0

b) Electric and magnetic fields produced
by smoothly switching the antenna current.

Structure of electric and magnetic
fieldsin light and radio waves.
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VECTOR IDENTITIES

To use the differential forms of Maxwell's equa-
tions, itisconvenient tofirst develop threeformulas
known asvector identities. Theseare mathematical
relationshipsinvolving curlsthat apply to any vector
field. We will state these identities first and then
spend the rest of the section deriving them. You
should go through these derivations at least onceto
get afeelingfor how they work and how general they
are.

Identity 1
Thecurl of agradient Cf iszerofor any scalar field
f(x,y,2).

Ox(@f) = 0

(1)

Identity 2

The divergence of acurl is zero. That is, for any
vector field A(x,y,z)

OgOxA) =0

(2)

Electromagnetic Waves

Identity 3
Thisidentity givesusaformulafor thecurl of acurl.
The formulais

Ox(0xA) = —(OmM)A + D(DRA) (3)

where O =0,0,+0,0,+0,0, is the
L aplacian operator discussed in Chapter 4. Wewill
often use the notation

0 = 0% = 0,0, + 0,0, +0,0, (4)

so that the vector identity can be written as

Ox(OxA) = —0%A + O(Om)

©)
In tDe special case that A has zero divergence, if
LA =0, then we get

if DA
iszero

Ox(OxA) = —0°%A

(5a)

Proof of Identity 1

Theproof of theseidentitiesreliesonthefact that we
caninterchangetheorder of partial differentiation, a
result we prove in the appendix to this chapter. As
an exampleof how thisisused, consider onecompo-
nent of the first identity. Using the cross product
formula

(AxB), = AB,-AB, (6)
we get
[ﬁx(ﬁf)]x = O,(05) - 00,f)

(7)

0,0,f - 0,0,f

Interchanging U, L1, to get Uy [],f = 00,00, f imme-
diately makesthiscomponent zero. The samething
happensto the y and zcomponentsof Cx(Cf) , thus
the entire expression is zero.
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Proof of Identity 2
To prove the second identity O{xA)=0, we
start with the components of [] x A , which are

(OxA), = OA,-0,A,
(ﬁx,&))y = U A -UA,
(OxA), = A, -0,A, (8)

Notethat toget all threecomponentsof Ol x A ,youdo
not have to memorize dl three egquations. If you
memorize only the first (OxA), =0,A,-0,A,
youcangettheother twoby usingcyclicpermutations.
Thatmeans, startwith (OxA), = 0,A,— 0,A,,and
replace the subscripts cyclically, letting
X->Y,Y-2z,and z-x. That gives you
(OxA), =0,A,—0,A, . Dothecyclicpermutation
againandyouget (LUxA), = L,Ay —LyA, whichis
thethird equation.)

Now take the dot product of T with 0 x A to get
OqOxA)
= O(OxA), + Oy(OxA), + O,0xA),
= 0,0,A,-0,0,A,
+0,0,A, - 0,0,A,
+0,0,A, - 0,0,A, 9)
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Exercise 1

Show that all the terms in Equation (9) cancel, giving
OQOdxA) = 0 forany A.

Proof of Identity 3
The third vector identity

Ox(OxA) = —0%A+0(0R)  (5) repeat

looks worse but is not that hard to prove. We will
start withthe X component of [J x (LIxA) whichis

[m x(ﬁx/s)]x = O/(0xA),-0(0xA),

Dy(DxAy - DyAx) - Dz(DzAx - DXA z)

—Oy00A = 00A+ O,0A + 0,0A,
(10)

wherewe changed the order of differentiationinthe
last two terms. Thetrick isto add and then subtract
O0,0,A, to Equation (10), giving

ERER)

= —O0A -0, 0A, -00A,
+ O, 0A + O, 0,A + O,0,A,

-(O0,.0,+0,04,+0,0,)A
( X=X y=y z z) X (ll)
+ O (OA, + DyAy +0,A))

—0%A, + O (OR)

Thisisjust thex component of Equation (5). Similar
derivations verify the y and z components of that
vector identity.
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DERIVATION OF THE WAVE EQUATION

Wearenow inapositionto derivethewaveequation
for electromagnetic waves, starting from Maxwell's
equations. We will use Maxwell's equations for
empty space, because Maxwell's mgor discovery
was that electric and magnetic fields could propa
gatethrough empty spaceinawavelike manner, and
that these waves were light waves.

Maxwell's equations in differential form are, from
Equations (8-49) of Chapter 8

- P

OE = - Gauss law
0
OB =0 no monopole
oF (12
OxB = UOT + UOSOW Amperés law
_ o 0B
OxE = ~ 5t Faradayslaw

Maxwell's Equations

where p(x,y,z) is the electric charge density in
coulombs per cubic meter, and i(x,y,z) istheelec-
tric current density in amperes per square meter.

In empty space, where the charge density p(x,y,z)
and the current density i(x,y,z) are zero, we get

OE =0 Gauss law (13a)
Om =0 no monopole (13b)
OxB = ero%ltz Amperéslaw (13c)
OxE = — aa? Faraday'slaw (13d)

Maxwell's Equations in Empty Space

Electromagnetic Waves

In our discussion of vector fieldsin the Physicstext,
we pointed out that avector field is uniquely deter-
mined if we have general formulas for the volume
and line integrals of that field. Now, working with
differential equations, that statement becomes the
rule that a vector field like E is determined if we
know the divergence 0 [E and the curl O xE at
every point in space*. There are four Maxwell
equationsbecausewehaveto specify both thediver-
gence and the curl of both E and B.

Equation (10) tellsusthat inempty space, neither E
nor B have a divergence (OE = OB =0), and
we only have to deal with the curls of these fields.

The trick we use to get a wave equation from
Equations (13) isto take the curl of Equations (13c)
and (13d). Thisgivesus

Lo _ [0E
Ox(OxB) = pego x(%t) (14a)

(14b)

where we took the constants Py and g, outsidethe
derivative in Equation (14a).

*(If we have afield known only in some region of
space, likethevelocity field of afluid in asection of
pipe, wecanuniquely determinethefieldif weknow
the divergence and curl within that region, and also
the normal components of the field at the region's
surface.)
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The next step is to use the fact that we can inter-
change the order of partial differentiation to get

—

N 0E(X,y,z,t)
ot

= %[ﬁ x E(x,y,z,t)] (15)

and asimilar result for O x (9B/dt) to give

= Iloso%(ﬁ xE) (163)

o o 0 - -
Ox(OxE) = —a(DxB) (16b)
Notice thgt thg right hzind iid&e of Equations (16)
involve (0 x E) and (O x B) which are given by
Maxwell's Equations (13c) and (13d) as

. 0B

OxE = 5t (13d) repeated
. oE

xB = Hosoﬁ (13C) rq:)eated

Thus Equations (16) can be written as

al 0B
Hofoatl~ ot

_ 0B

O x (O x B)

(179

S 0 0E

Ux(UxE) = - at(“osoat)

_ e OE (17b)
“‘080 at2

Notice that at this point E and B obey exactly the

same differential equation.

Electromagnetic Waves  Cal 9-5

The final step isto use the vector identity
Ox(OxA) = —0%A +0(0 R) (5) repeat

Sinceboth O [E and O [B arezeroinempty space,
we have

Ox(dxB) = —-0%B (18)
and the samefor O x (CJ x E) to give us
op 0°E
- [0°E = _“08072 (198.)
ot
25 0°B
—-[“B = —|J.08072 (19b)
ot
Dividing through by pgeq gives
S /. 0%E (20a)
Ho€o ot?
1 02 = 0% (20b)
Ho€o ot?
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PLANE WAVE SOLUTION
Repeating Equations (20), we have

1 2 - 0°E

Mot 0 E = 52 (20a)
1 25 - 0°B

Moo 0 B = 52 (200)

To interpret these equations, let us assume that E
and B havethe shape moreor lesslikethat shownin
Figure(32-23b) reproduced hereagain. All weneed
from that pictureisthat both E and B vary only in
thedirection of motion (call thisthe R direction) and
intime. Thereisnochangeof E and B inthe § and
2 directions. Such awave is called a plane wave,
because there are no variations within a plane.

Using the coordinate system added to Figure (32-
23b), weseethat E isy directed (wewould call this
¢ polarized radiation) and B is 2 directed. The
formulasfor E and B canthusbewritten for this 2
directed plane wave

E

y Ey(X,t) (21&)

—

B

2B,(x.1) (21b)

where Equations(21a) and (21b) remind usthat weare
dealing with a plane wave with no x or y dependence.

I

Figure 32-23

Structure of electric
and magnetic fieldsin X
lightand radiowaves. z

Electromagnetic Waves

Asaresult

OE(x,t) _
oy

and the samefor 0,E, 0,8 and 0,B. Thus

0

OE =y

0°E = (O,0,E + 0,0,E + 0,0,E)
. 0%, (223)
= OOE =97
and
L . 0°B
0% = 2——2 22b
2 (22b)

The time derivatives of the plane wave fields of
Equations (21) are

2

92E 0E (x,1)

= 23a)
ot? y ot? (239)
9%8 _ ,0%B,(x)
ot2 ot2 (23b)

¢

el A

MR U U ie

a) Electric and magnetic fields produced
by abruptly switching the antenna current.

One wavelength | = the distance between similar crests

—0

b) Electric and magnetic fields produced
by smoothly switching the antenna current.
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When we use Equation (22a) for O°E and (23a) for
92E/0t2 in Equation (20a), theunit vectors § cancel
and we are left with

1 0%E,(x.h) _ 0%E,(x.1)

248
Ho€o  9x2 ot2 (242)
We get asimilar equation for B, , namely
2 2
1 0°B,(Xx.t) _ 0“B,(x,t) (24b)

Ho€o  ox2 at?

In our discussion of the one dimensional wave
equation in Chapter 2 of this text we had as the
formulafor the wave equation

%y(x,t)y _ axy(xt e

dimensional
Vave wave (2-73)
0x2 ot? equation

Comparing this wave equation with Equation (24),
we seethat the planewave of Figure (32-23b) obeys
the one dimensional wave equation with

2 -1
Vivave = oe
. _ 1 (25)
wave Moo

From the wave equation alonewe immediately find
that the speed of the waveis 1/,/i€, whichisthe
speed of light. We get this result without going
throughall thecal culationswedidinthePhysicstext
to derive the speed of the electromagnetic pulse.

What we have shown in addition isthat the speed of
the wave does not depend on its shape. All weused
was that E = E(x,t) without saying what the X
dependence was. Thus both the series of pulsesin
Figure (32-23a) and the sinusoidal wavein (32-23b)
should havethesamespeed 1/,/Hq€q . Thiswewere
not ableto show usingtheintegral formof Maxwell's
equations.

Electromagnetic Waves  Cal 9-7

THE THREE DIMENSIONAL
WAVE EQUATION

Wehaveseenthat if E and B areplanewaves, i.e.,
vector fields that vary in time and only one dimen-
sion, then Equations(20a) and (20b) becometheone
dimensional wave equation for E and B. Since
Equations(20) do not singleout any onedirectionas
being special, we would get a wave equation for a
planewave moving in any direction, and we seethat
Equations (20) are three dimensional wave equa-
tionsforwavestravelingat aspeed v2 5, = 1//HoEo -
Rewriting these equations in terms of v, rather
than pgey gives us the general form of the three
dimensional wave equation

= _ 0%E
V2., 0%E = o

and the samefor B .

(26)

The form we will generally recognize as being the
three dimensional wave equation isthetrivial rear-
rangement of Equation (26),

threedimensional
wave equation

appliedto E

1 0%k _p2 =
Viave Ot2

(27)
Equation (27) is the way the wave equation is
usually written in textbooks.

So far we have only shown that plane waves are a
solution to the three dimensional wave equation.
For now that is enough. Solutions to the wave
equation can become quite complex in three dimen-
sions, and we do not yet have to deal with these
complications.
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APPENDIX: ORDER OF PARTIAL
DIFFERENTIATION

Itisworthwhileto show onceandfor all that you can

interchange the order of partial differentiation. We
do this by going back to the limiting process, where

of(xy) _ jimit | F(x+Axy) —f(xy)

and a similar formula for of/dy . For the second
derivative we have

(A-1)

_ 0| 9f(xy) ]
O0f(xy) = o oy (A-2)
L et us temporarily introduce the notation
! _ af(xly)
fy(xy) = oy (A-3)

so that Equation (A-2) becomes
_ 0¢
OxEyfoay) = 2y (xy)

f;/(x+Ax,y) - f;,(x,y)
AXx

— limit
AX -0

(A-4)
Now in Equation (A-4) make the substitution

f(x,y+4y) —f(x,y)
Ay

_ limit

fy(x.y) (A-5)

fy(X+AXy) = limit

f(X+AX,y +Ay) — f(X+AX,Y)

Ay -0 Ay

(A-6)
Using Equations (A-5) and (A-6) in (A-4) gives

limit

Electromagnetic Waves

Exercise 1
Show that you get exactly the same result for DyDXf(x,y).

Y ou can see that our result, Equation (A-7) iscom-
pletely symmetric between x andy, thusit should be
obviousthat we should get thesameresult by revers-
ing the order of differentiation.

Theonly possiblefly in the ointment isthe order in
which we take the limitsas Ax - 0 and Ay - 0.
Aslong asf(x,y) issmooth enough so that f(x,y) and
itsfirst and second derivatives are continuous, then
the order in which we take the limit makes no
difference.

f(x+Ax,y+Ay) + f(x,y) — f(x+Ax,y) — f(x,y+Ay)

OyOyf(xy) = 2§_)8

(A-7)

AxAy
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Conservation of Electric Charge

In this short chapter, we obtain a very important
result. We will seethat Maxwell's equations them-
selves imply that electric charge is conserved. In
our development of Maxwell's equations, our atten-
tion was on the kind of electric and magnetic fields
that were produced by electric charges and cur-
rents. Wesaid, for example, that given someelectric
charge, Gauss' law would tell uswhat electric field
it would produce. Or given an electric current,
Ampere's law would tell us what magnetic field
would result.

Then later on, we found out that for mathematical
consistency, a changing electric field would create
amagneticfieldandviceversa. All thiswassumma-
rized in Maxwell's equations, which we repeat here

OLE = plgg

OB =

OxE = —oB/at )
OxB = poi + gEgdE/at

What we did not notice in this development of the
equationsfor E and B isthat theequationsplacea
fundamental restriction on the sources p and i of
thefields. Aswewill now see, therestriction isthat
the electric charge, which is responsible for the
chargedensity p andcurrent i, must beconserved.
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THE CONTINUITY EQUATION

Webegan our discussion of fluid dynamicsin Chap-
ter 23 of the Physicstext, by introducing the conti-
nuity equation for an incompressible fluid. For a
tube with an entrance cross sectional area A, and
exit area A , , the equation was

continuity

ViIAL = VoA, equation

(23-3)

which saysthat the same volume of fluid per second
flowingintotheentranceflowsout of theexit. Later
this statement that the fluid is incompressible (or
does not get lost or created) became

. incompressible

VIGA =0 g (2)
closed
surface

The differential form of Equation (2) is

5% = 0 incompressible ?)

fluid

asweshowedinourinitial discussionof divergence.
All threeequations, (23-3), (2) and (3) aresayingthe
same thing in a progressively more detailed way.

Equation (3) is not the most general statement of a
continuity equation. Itisthestatement of theconser-
vation of an incompressiblefluid, but you can have
flows of a compressible nature where something
like mass or charge is till conserved. A more
general form of the continuity equation allows for
the conservation of these quantities. We will now
see that this more general form of the continuity
equation naturally arisesfrom Maxwell'sequations.

Conservation of Electric Charge

CONTINUITY EQUATION FROM
MAXWELL'S EQUATIONS
Toderivethecontinuity equationfor electriccharge,

we start by taking the divergence of the generalized
form of Ampere's law

ﬁc%ﬁxﬁ - ol + o @
which becomes
Oq0xB) = peld + Hosoﬂ[éaaltz) (5)

Using the fact that the divergence of acurl isiden-
tically zero, O] x B) = 0, and thefact that wecan
interchange the order of differentiation, we get

0 = p0d + Hoﬁo%(ﬁ [E) (6)

Divide Equation (6) through by g, and use Gauss
law

e - P

OE = 0
to get

= P _

00+ eg3{ &) = 0 ©
The g4's cancel and we are |eft with

op . == _ continuity equation

ot +00 =0 for electric charge (8)

Equation (8) is the continuity equation for electric
charge.

Y ou can immediately see from Equation (8) that if
the electric charge density p were unchanging in
time, if dp/ot = 0, then wewould have 00 = 0 and
theelectric current would flow asanincompressible
fluid. Thefactthat adp/ot termappearsin Equation
(8) istelling us what happens when p changes, for
example, if we compress the charge into a smaller
region.
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Integral Form of Continuity Equation
The way to interpret Equation (8) isto convert the
equationtoitsintegral form. Wedothisby integrat-
ing the equation over some volume V bounded by a
closed surface S. We have

f%‘t’dwfﬁjdv:o ©)
\V) \/

Usingthedivergencetheoremto convertthevolume
integral of [0 to asurfaceintegral gives

f Ahav = f Hr Ty (10)
volume S (surface
\% of V)
Using Equation (10) in (9) we get
N ap integral form
A = —f ﬁdV of continuity
closed volume equation
surfaceS VinsideS
(11)

On the left side of Equation (11) we have the term
representing the net flow of electric current out
throughthesurfaceS. It representsthetotal amount
of electric charge per second leaving through the
surface. On the right side we have an integral
representing the rate at which the amount of charge
remaining inside the volumeV is decreasing (the—
sign). Thus Equation (38) istelling usthat the rate
at which charge is flowing out through any closed
surface Sisequal to the rate at which the amount of
charge remaining inside the surface is decreasing.
This can be true for any surface S only if electric
charge is everywhere conserved.

Conservation of Electric Charge  Cal 10-3

The fact that the continuity equation was a conse-
guence of Maxwell's equation tells us that if we do
havethe correct equationsfor electric and magnetic
fields, then the source of these fields, which is
electric charge and current, must be a conserved
source. Later, when we discuss the process of
constructing theories of fields, we will seein more
detail how conservation laws and theories of fields
areclosely related. Basically for every fundamental
conservation law thereisafield associated with the
law. In this case the law is the conservation of
electricchargeandtheassociatedfieldistheelectro-
magneticfield. It turnsout that thelaw of conserva-
tion of energy is associated with the gravitational
field.
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Scalar And Vector Potentials

Inour first experiment on electricity in the Physics
text we studied the relationship between voltage on
electricfields. We constructed the lines of constant
voltage, theequipotential lines, andthen constructed
the perpendicular electricfield lines. In Chapter 3
of the Cal culus text we devel oped the more detailed
relationship that the electric field E was equal to
minus the gradient of the voltage

E(xy,2) = —OV(XY,2) (3-19)

As you study more advanced topics in science, you
sometimes encounter situations where the name or
symbol used to describe somequantityisdifferentin
the advanced texts than in the introductory ones.
Various historical accidents are often responsible
for this change.

In introductory texts and in the laboratory we talk
about the voltage V which we measure with a volt-
meter. Thefirst hint that we would use a different
name for voltage was when we called the lines of
constant voltage equipotential lines, or lines of
constant potential. Advanced texts, particularly
those with a theoretical emphasis, use the name
potential rather than voltage, and typically use the
symbol @(x,y,2) rather than V(x,y,2). In this nota-
tion, Equation (3-19) becomes

E(X,y,Z) = - E(KX,y,Z) (1)
Thisis how we left the relationship between E and
@ in Chapter 3 on gradients.

Fromour discussion of divergenceand curl, it does
not take long to see that there is a problem with
Equation (1) . If wetakethecurl of both sidesof this
equation, we get

OxE = -0x(0g) 2
However our first vector identity, Equation (9-1)
was that the curl of a divergence was identically
zero.

Ox(0¢ =0 ©)
Thus Equation (1) impliesthat thefield E haszero
curl

asa consequence ( 4)
of Equation(1)

whichisnot consistent with Maxwell'sequations. In
particular, Faraday's law says that

OxE =0

A xE = 0B
[JxE = o

ThusEquation (1) cannot betrue, or at least cannot
be the whole story, when changing magnetic fields
arepresent, when 0B/dt isnot zero. If weonly have
static charges, or even stationary currentssothat B

IS zero or constant in time, then Faraday's law
becomes

[JxE =0

Faradays law 5

when
JBldt=0 (6)

andthen E can be described completely asthe gradi-
ent of avoltage V or potential .
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Sncethecurl isthelineintegral onaninfinitesimal
scale, Equation (6) is equivalent to the statement
that the line integral of E iszero everywhere

when

56 E@l =0  sBiai=0 (62)

Inour initial discussion of thelineintegral in Chap-
ter 28 of the Physicstext (pages 28-5,6), we pointed
out that Equation (6a) wasthe conditionfor what we
called a conservative for ce, a force that could be
describedintermsof potential energy. Theequation
= =— [Jg (or — OV ) does exactly that, since VV or
@ isthe potential energy of a unit test charge.

What we are seeing now is that for static fields,
where dB/ét iszero, E isa conservativefield that
can be described as the gradient of a potential
energy ¢. However when changing magneticfields
are present, the curl of E isno longer zero and E
has a component that cannot be described as the
gradient of a potential energy.

Wewill seeinthischapter that E and B can bothbe
described in terms of potentials by introducing a
new kind of potential called the vector potential
A(x,y,z). When combined with what we will now
call thescalar potential @(x,y,z),wenot only have
complete formulas for E and B, but also end up
simplifying the electromagnetic wave equation for
the case that sources like charge density pand
current density i are present.

Thetopic of thevector potential A(x,y,2) isoften|eft
tolater advanced physics cour ses, sometimesintro-
duced at thegraduate courselevel. Thereisnoneed
to wait; the introduction of the vector potential
provides good practice with curl and divergence.
What we will not cover in this chapter are the ways
the vector potential isused to solve complex radia-
tionproblems. That canwait. What wewill focuson
ishowthevector potential canbeusedtosimplifythe
structure of Maxwell's equations. In addition we
need the vector potential to handle the concept of
voltage when changing magnetic fields are present.

Scalar and Vector Potentials

THE VECTOR POTENTIAL

It seems to be becoming a tradition in this text to
begin each chapter with arepeat of Maxwell's equa-
tions. In order not to break the tradition, we do it

again.

OE = EB Gauss law
0
OB =0 no monopole
N » oE
UxB = Yol + Moot Amperés law (7)
_ . _ 0B
UxE = ~ 9t Faradayslaw

Let us now set the magnetic field B(x,y,2) equal to
the curl of some new vector field A(X,y,z) . Thatis,

introducing
thevector  (8)
potential A

B(x,y,2) = OxA(xy,2)

Equation (7) is the beginning of our definition of
what we will call the vector potential A(x,y,z). To
beginto seewhy weintroduced the vector potential,
take the divergence of both sides of Equation (8).
We get

O = OqO0xA) =0 9

This is zero because of the second vector identity
studied in Chapter 9, Equation (9-2). There we
showed that the divergence of the curl O x A)

was identically zero for any vector field A.

Thusi_f we define B asthe curl of some new \iector
field A, then one of Maxwell's equations, [I[B =0
isautomatically satisfied.
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Our next step is to see what happens when we
introduce the vector potential into the other Max-
well equations. Let us start with Faraday's law

—

SxE = _0B
OxE =-22 10
X ot (10)

If we replace B with CIx A we get

OxE = —%(ﬁxﬁ) (12)
Using thefact that we can changethe order of partial
differentiation, and remembering that thecurl isjust

alot of partial derivatives, we get

Faradays law

intermsof A (12)

BB = & 0A
OxE = [Ox
€=005)
We see that Equation (12) would be satisfied if we
could set E =—0A/0t on the |eft side.

We cannot do that, however, because we already
know that for static charges, E = — D(p But seewhat
happens if we try the combination

— electric field
2 _ = 0A intermsof
E=-Uy T ot potentials (13)
@ and A
Taking the curl of Equation (7) gives
BxE = —Ox(0 oA
xE = —DX(DCP) DX ot (14)

Since Ox(Cg) = 0 because the curl of agradient is
identically zero, we get

OxE = _[x9A
ot

Next interchange the order of partial differentiation
to get

(15

—

OxE = — a(DxA)— 8

n (16)

which is Faraday's law.

Scalar and Vector Potentials Cal 11-3

Thus when we define the electric and magnetic
fields E and B intermsof the potentials ¢ and A by

B = OxA (8) repeated

=

E = — - 0A/dt
then two of Maxwell's equations

(13) repeated

OB =0

no monopole

== _ 0B
OxE = - 95
ot

are automatically satisfied.

Faradayslaw

You can now see how we handle potentias or
voltageswhen changing magneticfieldsare present.

For thefield of static charges, we have E = — D(p as
before. When changing magneticfieldsare present,

we get an additional contribution to E due to the —
0A/0t term.

In Maxwell'stheory of electric and magneticfields,
inwhat isoften called theclassical theory of electro-
magnetism, you can solve al problems by using
Maxwell's equations as shown in Equation (7) and
never bother with introducing the vector potential
A. Intheclassical theory, the potentialsare more of
amathematical convenience, trimming the number
of Maxwell's equations from four to two because
two of them are automatically handled by the defi-
nition of the potentials.

Things are different in quantum theory. There are
experiments involving the wave nature of the elec-
tron that detect the vector potential A directly.
Theseexperimentscannot beexplained by thefields
E and B alone. It turns out in quantum mechanics
that the potentials ¢ and A are the fundamental
quantities and E and B are derived concepts, con-
cepts derived from the equations B=0OxA and
E=—O¢ —0A/ot.
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WAVE EQUATIONS FOR @ AND A

The other two Maxwell's equations turn out to be
wave equationsfor @ and A. Thereisone surprise
in store. So far we have defined only the curl of A
throughtheequation B = O x A. Ingeneral avector
fieldlike A can have both adivergent part A 4, and
asolenoidal part A ., where

A = Agy+Ag (17)
wherethedivergent part hasno curl and the solenoi-
dal part has no divergence

OxAg, = 0 (18a)

Oy =0 (18b)

We saw thiskind of separationinthecaseof electric
fields. When the electric field was created by static
electric charges it was purely divergent, i.e., had
zero curl. An electric field created by a changing
magnetic fieldispurely solenoidal, with zero diver-
gence.

Asaresult our equation B = OxA definesonly the
solenoidal part of A, namely A ;. Wearestill free
to choose A 4, Which has not been specified yet.
Wewill seethat we can choose A ,, or CCA insuch
away that considerably simplifies the wave equa-
tionsfor @and A. Thischoiceisnot essential, only
convenient. Sometimes, in fact, it is more conve-
nient not to specify any choicefor A 4, andtowork
with the more general but messier wave equations.

For very obscure historical reasons, the choice of a
specia valuefor C[A iscalledachoiceof gauge. In
alater chapter we will look very carefully at what it
means to make different choicesfor DA . Wewill
seethat thereareno physical predictionsaffectedin
any way by changing our choice for OA. Asa
result the theory of electromagnetism is said to be
invariant under different choicesof gauge, or gauge
invariant. This feature of electromagnetism will
turn out to have extremely important implications,
particularly in the quantum theory. For now, how-
ever, wewill simply make a special choice of DA
that simplifies the form of Maxwell's equations for
@and A.

Scalar and Vector Potentials

Thetwo Maxwell's equationsthat are not automati-
caly satisfied by B=0x A and E = — Op— dA/dt
are

A - P
D[E—?O

Gauss law
o oE
UxB = ygl + Moot Amperés law

Making the substitutions E=—O@—0A/dt in
Gausss law gives

(19)

Noting that D[@A/t = a(CI[A)/dt because we can
change the order of partial differentiation, and that
Oq0¢) = 0%, we get

_Dz(p_@ = B
ot €
2 P o(0mR)
U 80+ 5 (20)

You can see the divergence of A, namely DA
appearing in the equation for @.

Making the substitutions in Ampere's law gives

— = =3 = - o aE
UxB = Ox(UxA) = Hol + HeEo 5

—

S 0 - 0A
Mol *Hogo 5 (— O _at) (21)

Using thethird vector identity of Chapter 9, namely

Ox (OxA) = —0%A + O(0OMR) (9-3)
Equation 21 becomes
—0%A + O(0R)
B} .. (22
= gl — g XED e A
uO “‘0 0 at uo 0 at2
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Writing a(Cg)/ot = D(0@/dt) and moving the
92(A)/0t2 termto theleft and O(TIA) to theright
gives

-
—DO%A + pegg aa(t'g)

> = 0 = 23
= Hol —D(uosoa(f)—D(DB\) (23)
In Equation (23) we see the wave equation for A
appearing on the left side, but we have some weird
stuff involving CCA and d@/ot ontheright. Wecan

simplify things a bit by noting that both of these
terms have a factor of [J and writi ng

_ 0%+ 2 10 ('g)
ce ot Amperés
law
= |JOI — (DD\ +1<(9;p) (24)

where we have replaced pygg by 1/c?, ¢ being the
speed of light.

Equation (24) is beginning to look like a wave
equation with some peculiar termson theright hand
side. Equation (20) for ¢ doesnot, at |east now, ook
likeawave equation. However we can makeit ook
like a wave equation by adding the term
(1/c?)(0%@/dt?) to both sides, giving

1 0%(9)

c? ot2

_ P, 1049, o(0H)
€0 Ty ot

_Dz(p+

(25)

We can factor out a d/0t in thelast two termson the
right side of Equation (25) giving us

02
-+ & agp)
Gauss
law
_P .9 100
g * at(Dm c? 6t) (26)

The rather messy looking Equations (24) and (26)
are Ampere'slaw and Gauss' law writtegi nterms of
the scalar and vector potentials ¢ and A.
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On the left side of each we have the beginning of a
wave equation, but somewhat of amessontheright.
However we see that the term

109

OA +
A c2 ot
iscommonto both equations. If wecould find some

way to get rid of thisterm, there would be a consid-
erable ssimplification.

(27)

We have, however, not yet specified what the value
of L[A should be. We have only specified

Ox A =B. If wemakethe choice
L special
OA = %—(p choice (28)
ot  of gauge

then theterm (27) goesto zero. Making achoicefor
LI[A is called making a choice of gauge, and this
particular choice leads to the much simpler equa-
tions

2
2., 1079 _p
. 0°A R
02 +% el Mol | Ampereéslaw (30)

We get the rather elegant result that both potentials,
the scalar potential ¢ and vector potential A, obey
wave equations with source terms on the right hand
side. Thesourcefor thescalar potential isthecharge
density p/eg, and the source for the vector potential
isthe current density uol
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Exercise 1

The choice of gauge we made to get Equations (29) and
(30)was A = (1/c2)agt . This gave us simplewave
equations which are convenient if we are working with
electromagnetic waves. Sometimes another choice of
gauge is more convenient. Derive Gauss' law and
Ampere's law in terms of @ and A, using the choice of
gauge

OB =0 Coulomb (31)

gauge
which is called the Coulomb gauge.

Do this derivation two ways. One by starting from
Maxwell's equations interms of Eand B, and secondly,
starting from Equations (24) and (26) where we made no
special choice of gauge.

Exercise 2

This exercise is optional, but should give some very
good practice with Maxwell's equations. In Chapter 9
we derived the wave equation for electromagnetic
waves in empty space by first writing Maxwell's equa-
tions forempty space, Equations (9-12), and thentaking
the curl of Ampere's and Faraday's law. The results
were

_ 2c
_02E 4+ 1 0E _

c2 at2
25 . 1 9%B wave equations
0B+ c2 at2 in empty space (9-20)

Now repeat these calculations for the case that the
charge and current densities p andiare not zero. Show
that you get the following wave equations for E and B

_D2E+i02j_ Op ai

02 atz == 570 - HOW (32)
25 , 1 028 Bs T

You can see that we still get wave equations for E and
B, butthe source terms, the stuff on the right hand side,
are much more complex than the source terms for the
wave equations for @ and A. For example, the source
term for the A wave is simply 1, while the source term
fora Bwaveisthe pylx 1. Itis evenworse for the Efield.
Instead of the source term ple, for the @ field, we have
(-Ip /feq—pgdi/at) as a source for the E wave.

Scalar and Vector Potentials

Summary

Here we collect in one place, al the forms of
Maxwell's equations.

() Maxwell's equationsin terms of E and B

OE = EB Gauss law
0

OB =0 no monopole

I > oE

UxB = pgi + Moot Amperés law

_ . _ 0B

UxE = ~ 5t Faradayslaw

(b) Wave equations for E and B

1 9%E Op . oi

— 2F - Y = = __rF _ —
D E+Cz 2 & pOGt
_ 2 L

—DZB+éaTE’ = ol % i

For thewaveequationsinempty space, set p = 0and
i =0.

(c) Scalar and vector potentias @ and A

B = OxA

mi
1

— Dp— 0A/at
These automatically satisfy
OB =0
OxE = —oB/ot
The remaining two Maxwell's equations become

2
_Dz +lM:B Qﬁui.f.iai(p
P2 a2 gy Ot c? ot
ox, 10%A _ v =lon 10
—DR+ 550 pol—DDD\+CZGAﬂ
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The terms in the square brackets can be set to zero
with the choice of gauge

B = _ 109 special choice
A c? ot of OTA

With this choice of gauge, Maxwell's equations
reduce to

2 312
c ot €o all that isleft of
- Maxwell's equations
A+ L 0°A _ i
czgrz Mo

Scalar and Vector Potentials

Cal 11-7
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Vorticity

At the beginning of Part Il of the Physics text, we
used the velocity field to introduce the concept of a
vector field. It is easier to picture velocity vectors
attached to water molecules in a flowing stream
than to visualize a vector at each point in space. We
could introduce Gauss law as a conservation law
for an incompressible fluid, and then show that the
electric field behaved in a similar way.

Snce that early introduction, we have come a long
way in our study of the mathematical behavior of
vector fields. In this and the next chapter, we will
turnthetableson our earlier approach and applyto
thevelocity field thetechniquesandinsightswehave
gained in our study of electric and magnetic fields.
Thiswill lead to a much deeper under standing of the
behavior of fluidsthan we got in our old discussion
of Bernoulli’ s equation.

The most important concept that carries us beyond
Bernoulli’ sequationisvorticity, whichisthecurl of
the velocity field. Vorticity isimportant not only in
the study of vortex structures like vortex rings and
tornadoes, it playsafundamental rolein all aspects
of fluid motion. In this chapter, wewill develop an
intuitive picture of vorticity. In the next chapter, we
focus on its dynamic behavior.

These two chapters are designed to be an introduc-
tion to the basic concepts of fluid dynamics. For
most of the past century, this subject has been
eliminated fromtheunder graduate physicscurricu-
lum, despite exciting advancesin the under standing
of the behavior of superfluids. One of our aimswith
these chaptersisto bring this subject back.
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DIVERGENCE FREE FIELDS

In the Physicstext, we have often noted the similar-
ity betweenthemagneticfield and thevelocity field.
Thefact that thereareno magnetic chargesledtothe
equation

for any closed
surfaceS D

|BwA =0
S
For anincompressible fluid like water, the continu-
ity equation, i.e., the fact that we cannot create or
destroy water molecules, leads to the equation

for any closed

Jva =0 surfaceS (2)

S
With the introduction of our differentia notation, we
saw that Equation (1) for the magnetic field became

OB =0 (1a)

The same mathematics leads to the equation for the
velocity field

continuity equation
for an
incompressible fluid
Thus we see that both the magnetic field, and the
velocity field of an incompressible fluid, are diver-
gence freefields.

0w =0 (2a)

Another way to see the sameresult isto look at the
form of the continuity equation we discussed ashort
while ago in Chapter 10. We saw how Maxwell’s
equationsautomatically led to acontinuity equation
for electric charge. That equation was

op . == _ continuity equation

ot +00 =0 for electric charge
When applied to afluid of massdensity p and mass
current density pv the continuity equation for mass
becomes

(Cal 10-8)

continuity equation
for a fluid of (3)

%‘: +00pv) = 0
mass density p

If thefluiddensity p isconstant, then dp/dt = Oand
[p = 0.Thisleadsto [l{pv) = pLIl¥ =0 and we
are left with

0w =0 (2a) repeated
asthe continuity equation for aconstant density fluid.

THE VORTICITY FIELD

When we were discussing electric and magnetic
fields in the Physics text, we found that we needed
equations for both the surface integral and the line
integral in order to specify thefield. Thatiswhy we
ended up with four Maxwell’ s equationsin order to
describethetwofields E and B. IntheCalculustext,
we have shrunk the surface and lineintegrals down to
infinitesma size where they become the divergence
and the curl. Thus to specify afield, we now need
equationsfor both the divergenceand curl of thefield.

AswementionedinChapter 9, if wehaveafieldknown
only insomelimited volume of space, likethevelocity
field of afluid within asection of pipe, thenin order
to uniquely determine the field, we must know not
only thedivergence and curl within that volume, but
also the perpendicular componentsof thefield at the
volume' ssurface. It isthe perpendicular components
of thevelocity field at thevolume ssurfacethat tell us
how thefluid isflowing in and out.

For a constant density or incompressible fluid, we
already know that the divergenceis zero. Thusif we
know how thefluidisflowingintoand out of avolume,
theonly other thing we need to specify isitscurl Ox v
ingde. From this point of view we see that the curl
Oxv playsakey roleindeterminingthenatureof fluid
flows. It should thusnot betoo surprising that most of
thischapter isdevoted to understanding the natureand
behavior of the curl 0 x V.

Our first step will beto givethe curl O x Vv aname.
Wewill cal it vorticity and designateit by the Greek
letter @ (omega).

®=0xV vorticity (4)

At this point, we have adight problem with notation.
Inthe Physicstext we used the symbol w to designate
angular velocity d8/dt. Whilethereis somerelation-
ship between angular velocity do/dt and vorticity
& = OxV, they aredifferent quantities. Worseyet, in
oneimportant example, namely the rotation of asolid
body, they differ by exactly afactor of 2. To avoid
ambiguity, wewill in this chapter use @ for vorticity
O x v, and the symbol w,; for angular velocity.

Wrot = %

angular velocity (5




POTENTIAL FLOW

Inthenext few sections, wewill developanintuition
for the concept of vorticity by considering various
examples. Wewill start with the ssmplest example,
namely flow with novorticity, i.e.,when 0 x v = 0.
Such flows are called potential flows. The reason
for the name is as follows.

Inour early discussion of e ectricfiel ds, wepointed out
that boththegravitational field, andtheelectricfield of
sationary point charges were conservative fields. A
conservative field was defined as one where the total
work done by thefield acting on amassor chargewas
zeroif wecarried the particlearound and came back
to the original starting point. (See page 25-5 of the
Physicstext.) For thework doneby anelectricfield
on aunit test charge, this statement took the form

conditionthat E (6)
isa conservative field

iﬁmﬁ = 0
In our differentia notation, Equation (6) becomes

conditionthat E @
isa conservative field

OxE=0
You will recall that when E was a conservative
field, we could introduce a unique potential energy
provided we defined the zero of potential energy.
We called the potential energy of aunit test charge
electric voltage or electric potential.

Whenwegot to Faraday’ slaw, wehad someproblems
with the concept of electric voltage. Inour discussion
of the betatron where electrons are circling aregion of
changing magnetic flux, the electrons gained voltage
each timethey went around thecircle. When achang-
ing magnetic field or magnetic flux ®g ispresent, the
voltage or electric potential is not unique because
the electric field is no longer a conservative field.
Faraday’s law in integral and differential formis

56 Bl = —d;DtB (Physics 32-19)

o

-d8 (8-49)

UxE = t

and we see that 0 x E isno longer zero.
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When O xE is zero we have a unique electric
voltage (once we have defined the zero of voltage),
andwecan usetheconcept of thegradient, discussed
in the Calculus Chapter 3, to calculate the electric
field from the voltage. The formulawe had was

=

= —0V(x, Y, 2) (3-19)

where V(X, Y, z) isthe voltage.

By similar arguments, if we have a conservative
velocity field v, one obeying the condition

conservative
velocity field (8)

Oxv =0
then we can introduce potential ¢ (X, y, z) that is
anaogous to the voltage V (x, y, z) for the electric
field. Intermsof the potential ¢ , the velocity field

v would be given by

velocity field derived

v=-0¢ froma potential (©)

Because such a velocity field is derived from a
potential ¢, the flow field is called potential flow.

As a quick check that our formulas are working
correctl ly, supposewe start with some potential flow
vV = —[J¢ and ask what itscurl is. We have

Oxv = Ox (-9 ) (10)
One of the vector identities, from Calculus Chapter
9 was

Ox(0f) = 0 (9-1)

where f is any scalar function. Thus Ox(0¢) is
identically zero, and any flow derived from apoten-
tial ¢ hasto have zero curl, or no vorticity.
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Examples of Potential Flow

If we combine the equation v = —C¢ for potential
flow with the divergencefreecondition [J[¥ = 0 we
get

(11)

The operator [?is the Laplacian operator we dis-
cussed in detail in Chapter 4. Equation (11) itself is
known as Poisson’s equation.

To find examples of potential flow, one can use
Equation (11) subject to the boundary conditionson
the velocity field at the walls of the container. A
number of techniques have been devel oped to solve
this problem, both approximation techniques for
analytical solutions and numerical techniques for
computer solutions. We are not going to discuss
these techniques because the work is hard and the
results are not particularly applicable to real fluid
flows. Wewill seethat almost all fluidflowsinvolve
vorticity, and our interest in this chapter will be the
behavior of thevorticity. When we need apotential
flow solution, we will either choose one simple
enough to guessthe shape or rely on someoneelse’s
solution.

Potential Flow in a Sealed Container

As our first example, suppose we have a constant
density fluid inacompletely sealed container. That
means that no fluid is flowing in or out. Now
suppose the fluid has no vorticity, that 0 xv = 0
inside. The resulting flow then must be a potential
flow.

Onepossiblesolutionfor T x v = 0 isthat thefluid
insideisat rest (assumingthat thecontainer wallsare
at rest). That is,

a potential flow
solution for a
sealed container

V=0 (12)
Thissglutionclearlyobeysthecondition Oxv =0
and J¥ = 0, and has no norma flow at the
boundary walls.

What other potential flow solutions are there?
NONE. Our mathematical theorem given at the
beginning of the chapter states that the vector field
v is uniquely determined if we specify 0¥ and
0 x v within a closed volume V and the normal
componentsof v at thesurfaceof V. Wehavedone
that. Thusthesolution v = 0 isunique, and thereis
no other potential flow solution.

This solution emphasi zes the importance of vortic-
ity in the study of fluid flows. If we have a sedled
container filled with a constant density fluid, there
can be no flow without vorticity. In thiscase, the
sourceof all fluid motion must bevorticity. Thisis
why it isso important in the study of fluid behavior
to understand the role and behavior of vorticity.



Potential Flow in a Straight Pipe

We began our discussion of fluid motion in Chapter
23 of the Physics text, with the example of afluid
entering a pipe a a velocity v, and exiting at a
velocity vV, as shown in Figure (1). We assumed
that v, was uniform over the entire inlet and v,
over the entire exit. The continuity equation gave
V1A 1=V,A 5. If the pipe is uniform, so that
A=A, wegetv,=vs,.

What is the potential flow solution for the uniform
pipeof Figure(1)? Onepossibleanswer isshownin
Figure (2), namely that the velocity field is a con-
stant throughout the pipe.

potential

vV =V, = constant flow solution

(13)
Let us check that v=v, = constant is a potential
flow solution. Itisclear that the divergence 0¥,
and the curl T/ x V4 are both zero for a constant
vector field v,. Thustheflow v =V, ispotential
flow. The solution V=V, aso has the correct
normal components, being V; at the entrance and
exit, and no normal flow at the pipe walls. Thus
Figure (2), with v=v, = constant, is our unique
solution for potential flow in a straight pipe with
uniform entrance and exit velocities. Aswesaid, in
some cases we can guess the potential flow solu-
tions.
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The problemwith the potentia flow solution of Figure
(2) isthat afluid like water cannot flow that way. In
Figure (2), thefluid isdipping at the pipewadlls. The
first layer of atoms next to the wallsismoving just as
fast astheatomsinthecenter of theflow. Foral norma
fluids the first layer of atoms is stuck to the wall by
molecular forces, and due to viscous effects, the fluid
velocity has to increase gradualy as we go into the
fluid. Thereisno potentid flow solution for pipeflow
that hasthisproperty, thusal flowsof normd fluidsin
apipe must involve vorticity.

Aq Ar=Aq
— —
Vi—> —> W
—_— —_—
e o
Figure 1

A fluid enters a uniform pipe at a velocity v, .

i

Figure 2

One possible solution to the potential flow problem. I
we have a uniform pipe, with a uniforminlet and
outflow velocities as shown in Figure (1), then thisis
the only solution.
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SUPERFLUIDS

Normal fluids like water cannot slip along the sur-
face of a pipe, but superfluids, which have zero
viscosity, can. Asaresult a superfluid can have a
potential flow pattern like that shown in Figure (2).
We have good experimental evidence that in a
number of examples superfluid helium does flow
that way.

In the 1940s, the Russian physicist Lev Landau
made the prediction, based on hiswave equation for
theatomsinasuperfluid, that superfluid helium had
to flow without vorticity, that 0 x v = 0 and only
potential flow solutionswouldbepossible. Thiswas
a prediction that was fairly easy to check by the
following experiment.

If you place aglass of water on a spinning turntable
and wait until the water rotates with the glass, the
surface of the water will be slightly curved, as the
water ispushedtotheoutsideby “ centrifugal forces”.
(If you choose a coordinate system that is rotating
with the glass, then in this rotating coordinate sys-
tem there is an outward centrifugal pseudo force.)
The shape of the surface of the water turns out to be
aparabola. Infact, large modern tel escopesare now
made by cooling the molten glass in a rotating
container so that the rough parabolic shape is al-
ready there when the glass hardens.

Now consider how superfluid helium should behave
wheninsuch arotating container. If thecontaineris
circular, like adrinking glass, and centered on the
axis of rotation, the container can rotate without
forcing thefluid to have any sidewaysmotion. Also
no fluid isflowing into or out of the bottom or top.
Thus the normal or perpendicular component of
flow is zero al around the fluid.

Superfluid helium is essentially a constant density
fluid, thus O 07 = 0 withinthefluid. If Landauwere
right, then O x V should also bezeroinsidethefluid,
and we would have to have potential flow.

We have aready discussed the potential flow solu-
tionfor thiscase. If thereisno normal flow through
the fixed boundaries of the fluid, the unique poten-

tial flow solution for a constant density fluid is
v =0. The fluid cannot rotate with the bucket. It
cannot move at all! We get the unique prediction
that the fluid must be at rest, and as a result the
surface of the fluid must be flat. Thispredictionis
easy totest; rotateabucket of superfluid helium and
seeif the surface isflat or parabolic.

There are a few complications to the experiment.
Above atemperature of 2.17 kelvins, liquid helium
isanormal fluid withviscosity like other fluidswith
whichwearefamiliar. Whenheliumiscooledtojust
below 2.17 kelvins, superfluidity setsin, but in a
rather peculiar way. The best way to understand the
properties of liquid helium below 2.17 k isto think
of it asamixture of two fluids, anormal fluid with
viscosity and asuperfluid with no viscosity. At the
temperature 2.17 k, the heliumisalmost all normal
fluid. Aswe cool further, we get more superfluid
and less normal fluid. Down at atemperature of 1
kelvin, which isquite easy to reach experimentally,
amost al the normal fluid is gone and we have
essentially pure superfluid.

In Landau’ s picture, the normal fluid below 2.17 k
hasviscosity, isnotboundby thecondition 0 x v = 0,
and thus can rotate. Only the superfluid component
must have O xV =0 and undergo only potential
flow. Thusif wehavearotating bucket of superfluid
helium at just below 2.17 k, it should be mostly
normal fluid and eventually start rotating with the
bucket. Weshould expect to seeaparabolic surface,
and that iswhat is seen experimentally.

However, as we cool the helium from just below
2.17 k down to 1 k, the normal fluid turns to super-
fluid. If Landau wereright, theflow should go over
to a potential flow and the surface of the liquid
should becomeflat even though the container keeps
rotating. This does not happen, and something has
to be wrong with Landau’ s prediction. The curved
surfaceat 1 k indicatesthat the superfluidismoving,
and thus must contain some vorticity. In a later
section we will see how Feynman was able to
explain the parabolic surface, while still obeying
Landau’ scondition Tl x V = 0 almost everywherein
the fluid.



VORTICITY AS A SOURCE
OF FLUID MOTION

In our discussion of potential flow of a constant
density fluid in asealed container, we saw that there
could be no flow without vorticity. Vorticity must
bethesourceof any flow foundthere. Inthissection,
wewill illustrate theideathat vorticity isthe source
of fluid motion by comparing thevelocity field with
the magnetic field of electric currents. We will see
that vorticity isasourceof thevelocity field in much
the same way that an electric current is a source of
the magnetic field.

Inour discussion of magneticfields, it wasclear that
magnetic fields are created by electric currents.
Before we learned about Maxwell’s correction to
Ampere's law, the relationship between the mag-
netic field B and the current i was

i Bl = Mol oldAmpereslaw  (29-18)

wherei wasthetotal el ectriccurrent flowingthrough
the closed integration loop. Shrinking the integra-
tionloopdowntoinfinitesmal size, i.e., goingtoour
differential notation, we get
OxB = poi (14)
where T is the electric current density. Equation
(14), whichismissing the dE/0t term of Maxwell’s
equation, appliesif wecan neglect changing electric
flux.
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In the Physicstext, we used the old form of Ampere’s
lawto cal culatethemagneticfield of astraight wireand
of asolenoid. Inthese examplesit was clear that the
current i in the wire was the source of the magnetic
fied.

Let us now compare the equations we have for the
magnetic field B (neglecting dE/dt terms) and for
the velocity field v of aconstant density fluid. We
have

Velocity Field of
Magnetic field Constant Density Fluid
OB =0 0w=0
OxB = poi Oxv =6 (15

where @ isthevorticity field of thefluid. 1f wecan
interpret p OT asthe source of the magneticfield in
the equation 0/ xB = Wi, then by anaogy we
should be able to interpret the vorticity @ as the
source of the velocity field in the equation
OxV = .

To bemore precise, wewill seethat the vorticity @
can be interpreted as the source of any additional
velocity beyond the simple potential flow we dis-
cussed earlier. If boundary layers, vortices, turbu-
lence, or other derivations from potential flow are
present, we can say that vorticity is responsible.
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Picturing Vorticity

When wediscussed the magneticfield of acurrent, the
current itself wasquite easy to picture. It wastheflow
of electronsaong thewire, and for astraight wirethis
flow of charge produced a circular magnetic field
aroundthewireasshowninFigure(3). Weasofound
from Ampere's law that the strength of the circular
magnetic field dropped off as 1/r aswe went out from
the wire.

In Figure (4) we have drawn a picture of the velocity
field of astraight vortex liketheonepicturedin Figure
(23-25) of the Physicstext. Weobserved that thefluid
travelsin circlesaround the vortex core. 1nour funnel
vortex we made the core hollow by letting fluid flow
out of thefunnel, but initialy the core contained fluid.
We aso saw that the fluid flowed faster near the core
thanfar away. Thetendency for afluidvortexisfor the
velocity field to drop off as L/r out from the core.

Sincethe circular velocity field of astraight vortex is
similar to the circular magnetic field of acurrentin a
straight wire, we should expect that both fields have
similar sources. In Figure (3) the source of the mag-
neticfieldisanupwarddirectedcurrentdensity i inthe
wire. Wetherefore expect that the source of thevortex
velocity fied in Figure (4) should be an upward di-
rected vorticity @ in the center of the vortex.

Outside thewire, the circular magnetic field drops of f
asl/rand haszerocurl. If thecircular velocity field of
thevortex dropsoff as1/r outsdethecore, it must have

Figure 3
A current in a straight wire produces a
circular magnetic field around the wire.

zero curl thereaso. Thusavortex with al/r velocity
field outsde the core must have al the vorticity @
concentratedins dethecore, just asthecurrent produc-
ing the magnetic field is confined to the wire. The
vorticity must run up the core as shown in Figure (5).
We are beginning to see how the vorticity acts as a
sourceof thevel ocity fieldinthesameway currentsare
the source of magnetic fields.

core

i

Figure 4
Circular
velocity field
around a
vortex core.

Figure 23-25
Hollow core
vortex in a
funnel.

Figure 5
Vorticity field @ producing a circular velocity field.



SOLID BODY ROTATION

Enough of anaogies, it is now time to actually
calculate the vorticity field @=0xV of a flow
pattern. Our examplewill beto calculate @ when v
isthe velocity field of a solid rotating object.

Asanexplicitexample, imaginethat you arelooking
at the end of arotating shaft shownin Figure (6). If
the shaft has an angular velocity w,q;, so that

(16)

then at apoint p, out at adistancer from the axis of
rotation, thevelocity isinthe 8 direction and given
by the formula

V = Broyg

wherethe unit vectors , 8 and 2 arefor acylindri-
cal coordinate system are shown in Figure (7).

\wrot

(17)

Figure 6
End of a shaft rotating with an angular velocity @ -

y

D>

Z directed up
Figure 7
Unit vectors for a cylindrical coordinate system.
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In Chapter 8 of the Cal culustext, wewrotedownthe
formula for the curl in cylindrical coordinates. (It
can also befound inthe Formulary at the end of this
text.) Applied to the velocity field v, given by

V =ty +0Bvg+2v, (18)
theresult is

(Oxv), = }%‘g—%‘;e (19)

(OxV)q = %—% (19b)

(Oxv), = }gr(rve)—}g‘g (190)

In our example of solid body rotation, v hasonly a
6 component, and this component vg(r) depends
only uponthedistancer out fromtheaxisof rotation.
Thusv,, v,, and dvg/d8 and dvg/oz are all zero
and we are left with only the term
(Oxv), = 12(rve)

Y ou can see that the use of cylindrical coordinates
whenwehavecylindrical symmetry eliminatesmany
termsin the formulafor the curl.

(20)

Exercise 1

In the last section, we noted that the circular velocity
field of a vortex had zero curl if the velocity drops off as
1/r. This corresponds to a velocity

constant .
r El

Vg = V=V, =0 (21)

Use Equation (19) or (20) to show that 0 x v =0 for this
vortex velocity field.
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For solid body rotation, we use vg = rw,,; to get
(OxVsgiiaboay), = %%(We)
= %%(rzwrot)

= %(errot)

- (22)
(OxVgoligbody), = 20t

Using our notation O X Vgyiqpody = Gxplid body - Weet
(Dlidbody) , = 2Wot (229)

Thisisthe example we mentioned earlier where the
vorticity @ has a magnitude of exactly twice the
rotational velocity ,q.

(Itisachalengetofind anintuitiveexplanationfor the
factor of 2 difference between thevorticity 6= 0 x v
and therotational velocity w,y;. Theanaogy iseven
closer, because when we turned w,; into the vector
@t 1N our discussion of gyroscopes, @, pointed
downtherotational axisjustas & = O x V does. | have
not met this chalenge. After much thought, | have
found no satisfactory intuitive explanation for the
factor of 2. 1t camein when we differentiated r2, but
that is not good enough.)

Tx.y,2) W(X,Y,2)
@;/ == :_5) == :>
sy e
s > (==
Figure 8

Comparison of the magnetic field of a currentin awire
with the velocity field of a fluid core vortex.

The main result from our calculation of the curl for
solid body rotation is that the curl pointsalong the
axis of rotation, and has the constant magnitude
2wy acrossthe entire rotating surface.

Vortex Core

With our results for the vorticity of solid body
rotation, we can see an even closer anal ogy between
themagneticfield of awireand thevorticity field of
afluid corevortex. Thecorrespondingformulasand
field diagrams are shown again in Figure (8).

At the end of Caculus Chapter 8 we studied the
magneticfield produced by auniformcurrentinawire.
We got asthe formulafor the field insde the wire
B(r) = 6kr Inside (8-66a)
where k was the collection of constants given by

Kk = Hol total

orR2 (8-66b)

Exercise 2

Show that B in Equation (8-66) above obeys the
relationship OxB =i .

The magnetic field in Equation (8-66) hasthe same
form as the velocity field for solid body rotation,

Vg = Iygr OF

Vsolidbody rotation = O(@op)! (23)

Thus there will be acomplete analogy between the
magnetic field of awire, and afluid core vortex, if
the wire carries auniform current density i and the
vortex core consists of fluid undergoing solid body
rotation. Inthemagneticfield case, thesourceof the
magneticfieldistheuniform currentinthewire. For
thefluid corevortex, the source of thevelocity field
is the uniform vorticity in the solid body rotating
core. Outsidethewireand outsidethe core, boththe
magnetic field and the velocity field are 8 directed
and drop off as 1/r, afield pattern that has zero curl.



STOKES’ LAW REVISITED

For quite a while now we have seen that there are
basically two kinds of vector fields. Thereiswhat
we can call the divergent kind like the electric field
of stationary charges that has zero curl. And then
there is the rotational kind like the magnetic field
and thevelocity field of aconstant density fluid that
has zero divergence. Just as Gauss' law played an
important rolein determining the behavior of diver-
gent fields, we will see that Stokes' law has an
equally important rolein determining the shape and
behavior of therotational kind of vector field. Inthis
section we will take a closer look at Stokes' law,
givingitamorephysical interpretationthanyouwill
find in the mathematics textbooks.

Weintroduced Stokes' law in Chapter 8 of thistext,
writing it essentially in the form

ivm@' = f(ﬁxV)miA Sokes law  (8-14)
C S

where v isavector field, C is some closed contour,
and Sisthe surface bounded by the contour C. We
asked you to picture the contour C asbeing made up
of a wire loop, and S the surface of a soap film
stretched acrosstheloop. The point wasthat if you
gently blow on a soap film, it can take on various
shapes, and Stokes' law applies no matter which
shape you consider.

Figure 8-2 (repeated)
Example of a surface bounded
by a closed path (wire loop).
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Total Circulation and

Density of Circulation

Because we are going to make extensive use of
Stokes' law, wewill give special namestotheterms
in the law. The names are chosen to particularly
apply to avelocity field, but can be used in general.
First, we will call the line integral of v around a
closed path the total circulation for the path.

total circulation = 9@\7@@ (24)

Cc

Inaddition, wewill refer tothevorticity O x V asthe
density of circulation

density of circulation = OxV (25)

Then Stokes' law

95\7@15 . f(ﬁxV)mA
C S

can be stated in words that the total circulation of
the fluid around a closed path C is equal to the

density of circulation integrated over any surface
bounded by the path.

Weareusingthesameterminology onewould usein
describing a current in awire. Y ou would say that
the total current carried by a wire is equal to the
current density integrated over some cross-sectional
area of the wire. Why we have introduced this
terminology for the velocity field will become clear
as we discuss afew examples.
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Velocity Field of a
Rotating Shaft, Again
Asour first example, let usapply Stokes' law to the
velocity field of arotating shaft, shownin Figure (6)
repeated here. Over the area of the end of the shaft
we have solid body rotation wherethevelocity field
is 8 directed

V = Brag

andthevorticity &= [ x V isdirected up theaxisof
the shaft and of magnitude 2w,

(17) repeated

@ = OxV = 220 (22) repeated

To apply Stokes' theorem, let the circuit C be the
circuit of radius R around the perimeter of the shaft.
We then get

fv i = nge(dQ)e -

At the perimeter, vg = Rw,y , and (dl)g=Rd8, to
give

ﬁﬁvzdﬁ

2n
| Rea)(Rae)
0

2m
R0y | 06 = 2mR%0y

0
Thusthe total circulation of the shaft is given by

total circulation _ 2
of theshaft "X (2%ot)

(27)

\U‘)rot

%

Figure 6 (repeated)
End of a shaft rotating with an angular velocity w, .

Stokes' theorem states that this total circulation
should be equal to the density of circulation O x vV
integrated over the area of the shaft. We know that
for solid body rotation

density of

circulation =0xV =0 = 22wy

(28)

This density, of magnitude w, = 2w, is constant
over theareaof theshaft, thustheintegra of thedensity
issmply

| @R = [ o,
S S

W, f dA, = w,mR?
S (29)

TIR?( 20 1)

Comparing Equations (27) and (29), we seethat the
total circulationis, as expected, equal to the density
integrated over the area of the shaft.

Wheel on Fixed Axle

Before you think everything is too obvious, let us
consider amore challenging example. Suppose we
have awheel of radius R, rotating on afixed axle of
radius R, @ shown in Figure (9). The velocity
field for thisexampleis

v=2~0

ér(’L’rot Raxle <r <R

r< Raxle (30)

<l
1]

Figure 9
Wheel rotating on a stationary axle.



To apply Stokes' law again, let C be a circuit of
radius R about the perimeter of thewheel. Thetotal
circulation is the same as before, namely

E:?ﬁglulation - f\*/ 0 = (Royg)(2MR)
- (31)
= TR%(2wy)

When we measure the total circulation around the
wheel, theresult isuniquely determined by thevalue
of v out a the circuit C. It makes no difference
whatever whether the axle inside is turning or not.

But when we integrate the density of circulation
OxV over theareaof thewheel, we haveaproblem.
Over the wheel OxV=22w, as before, but
OxV =0 over theaxle. It appearsthat we havelost
an amount of circulation (Zwrot)(nRgx|e), and that
Stokes' law fails.

Mathematics textbooks would say that we did not
apply Stokes' law correctly. Youwill find statements
like “Sokes law applies only to singly connected
surfaces’ or “you havetoaddacut”. Don't believeit!
Stokes' law applies quite generaly, and you do not
need so called cuts. What went wrong inthisexample
Isnot Stokes' law, it isthat we did not look carefully
enough.

Suppose Figure (9) represented the wheel on a
railroad car. Look carefully at the boundary be-
tween the wheel and the axle and what do you find?
Roller bearings! Asthewhed rotatesontheaxle, the
roller bearingsreally spin. Thecirculation that welost
inthe axleisnow located intheroller bearings, andin
the velocity field of the il lubricating the bearings.

roller /
bearings

Figure 9a
Wheel with roller bearingsrotating on a stationary axle.
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Y ou might be a bit worried about this explanation.
After al, a fixed amount of circulation, namely
(20,4 )(TIRZ, ) Was| ost when we stopped the axle
from rotating. But the space where theroller bear-
ings reside, between the axle and the wheel can be
made as thin as we want, reducing the area of the
bearings that we integrate O x V over. If we make
the area of the bearings go to zero, canwe till get a
finite amount of circulation (2wt )(TTIRZ,e) When
we integrate over this vanishing area?

The answer is yes. Look what happens to roller
bearings as we make the diameter of the bearings
smaller and smaller. They have to spin faster and
faster sothat they roll smoothly betweentheaxleand
the wheel. As we decrease the thickness of the
bearings, we increase the vorticity 0 x Vv in the
bearingsin just such away that theintegral of O x v
over the bearings remains constant. In the math-
ematical limit that thethicknessof the bearingsgoes
to zero, we end up with adeltafunction of vorticity
spread around the perimeter of the axle. Thisdelta
function of vorticity iscalled avortex sheet. When
you correctly account for vortex sheets, you can
always make sense of Stokes' law without caveats
relating to singly connected surfaces or cuts.

A Conservation Law for Vorticity

Imaginethat our solid shaft of Figure(6) represented
awheel and axlewheretheaxlewasrotatingwiththe
wheel. Then the axle would have vorticity of mag-
nitude 2w, just like the wheel. Now suppose we
grab hold of the axleto stop it from rotating, giving
us the velocity field shown in Figure (9). By stop-
ping the axle from rotating, we did not destroy the
vorticity, wejust moved it out to theroller bearings
or vortex sheet. For a given total circulation
around the rim of the wheel, we cannot create or
destroy vorticity within, only moveit around. With
agiventotal circulation, wehaveaconserved amount
of vorticity within. In this sense, Stokes' law pro-
vides us with a conservation law for vorticity. (In
Appendix 2 of Chapter 13, we show you a more
general, three dimensional law for the conservation
of vorticity.)
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CIRCULATION OF A VORTEX

Inanideal straight vortex liketheonewepicturedin
Figure (8) more or lessredrawn here as Figure (10),
thevorticity isconcentrated in the coreand we have
acurl free 1/r velocity field outside the core. Itis
traditional to use the Greek letter k (kappa) to
designate the total circulation of the vortex.

total circulation

v[d! = K orstrength
dver any area of avortex
that includes (32)

thevortex core
Evaluating the integral around a circle outside the
core gives

%\7@5 = 2Trvg = K

velocity field
Vg = K- of a (33)
2mr straight vortex

Thisistheformulafor thevelocity field of astraight
vortex, outside the core. For shorthand, we some-
times use k = k/27t just as we used h=h/2m in
quantum mechanics, giving

— velocity field

Vg = K of a (333)
r straight vortex

Note that talking about the total circulation k of a
vortex, we know that when there is cylindrical
symmetry, the velocity field vy outside the coreis
K/r independent of the structure of the core. The
corecanbeafluid corewithsolid body rotating fluid
inside, or be a hollow core vortex like the funnel
vortex of Figure (23-25). Withasolid body rotating
core the vorticity @ is spread uniformly across the
core. Withahollow corevortex, we can think of the
vorticity as being in avortex sheet around the core.

Wehaveasimilar situation for the magneticfield of
astraight wire. Inanormal wire, thereisamore or
less uniform current density in the wire which pro-
ducesamagneticfieldof strength B g = [ gl {og /21T
outside. Insomesuperconductingwires, thosemade
from the so called type 1 superconductors like lead
and tin, the eectric current flows very near the
surface of the wire with no current farther inside.
Thissurface sheet of current still producesthe same
magnetic field B g = W gl {otg/2Tr outside.

SSS a5

vortex

=> >

=

AIATAR

<
current
Figure 10
Thetotal circulation & of the vortex isrelated to
the velocity field V the same way the total current
I1ot isrelated to the magnetic field B . (For
straight vortices, we often think of gk asa vector
pointing in the direction of @, as shown above.)



QUANTUM VORTICES

Wearenow ready todeal withthefailureof Landau’'s
prediction that superfluid helium could only un-
dergo potential flow, with the consequence that
heliuminabucket could not rotate. Theappearance
of aparabolic surface on arotating bucket of super-
fluid helium is experimental evidencethat vorticity
is present in the fluid despite Landau’ s prediction.

Feynman solved the problem by proposing that most
of thefluid in arotating bucket of superfluid helium
was in fact undergoing potential flow, and that all
the vorticity that was responsible for the curved
surface was contained in little quantized vortices.

Aswe have mentioned in the Physicstext, asingle
guantized vortex can be pictured as a giant Bohr
atom where al the superfluid atoms taking part in
thevortex flow have one unit of angular momentum
h about the vortex core. The angular momentum of
an atom out at adistance r from the core, moving at
aspeed vy, is

L angular

momentum — MHeVel (34)

where my, isthe mass of ahelium atom. If we set
theangular momentum L equal to Planck’ sconstant
h, and solve for vg, we get

L = h = myuver

h (35)

Vg =
Myl

We immediately see that the velocity field outside
the core drops off as 1/r which is potential flow.

helium

@) O o0
%@g 0%
core
Figure 11

Each atom in a quantum vortex has one unit
of angular momentum about the vortex core.
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The LUr velocity field cannot continue into r = 0;
therehastobeacorethatisnot potential flow. There
are two questions that need to be settled by experi-
ment. Oneishow bigisthecoreradiusr ., andthe
second is whether the core is hollow, or filled with
rotating fluid. The answer to the first question is
rather amazing. Under most circumstancesthe core
is about as small as it can get, about one atomic
diameter. That makes it difficult to answer the
second question; itishardtotell what isinsideatube
only one atomic diameter across.

Circulation of a Quantum Vortex

One thing we can do immediately from Equation
(35) is to caculate the total circulation kK of a
guantum vortex. Remembering that h = h/2mt we

have
Va = h _ h
8 Myl (2mr)mye
(21r)vg = h
He

But 2rrvg is simply the integral of vg around a
circle centered on the core. Thuswe have

9@?@15 = 2Trvg = K

h circulationof a
guantumvortexin
superfluid helium

K =

(36)

Mye




Cal 12-16  Calculus 2000 - Chapter 12 Vorticity

Rotating Bucket of Superfluid Helium
If you have a rotating bucket of normal fluid, the
fluid will end up rotating with solid body rotation
with constant vorticity @ = 22w,. Thetotal circu-
lation Kq4 Of al thefluid in the bucket will be

total circulation of
fluidinrotating =

bucket fbuc"et (H>xv) LA

surface

Kiotal = (20op) (T[szucket) (37)

For solid body rotation, this vorticity is spread
uniformly across the bucket.

Feynman proposed that a rotating bucket of super-
fluid helium would have the same total circulation
K total » DUt that thevorticity, instead of being spread
throughout thefluid, would becontainedinabundle
of quantized vortex cores. Thisdifference between
the classical and quantum picture is indicated in
Figure (12).

Because the core of a quantum vortex is so small,
and because all thefluid between the coresisunder-
going potential flow, you can see that Landau was
almost right. But the quantum coresallow vorticity
to be spread throughout the bucket, roughly imitat-
ing solid body rotation, and give rise to a nearly
parabolic surface.

K= =N

S I SNRNG

f\w

© =220y

solid body rotation bundle of quantum

vortices
Figure 12

Comparison of solid body rotation with a bundle of
guantized vortices. (We have not tried to reproduce the
exact shape of the surface when vortices are present.)
Between the vortices the flow is potential, but the
rough shape of the surfaceis paraboalic.

We can easily calculate the number of quantized
vortices required to imitate solid body rotation.
From Equation (37), wesaw that thetotal circulation
of the bucket Was K gy = (200r0p) (TR cket) - EACH
quantum vortex suppliesacirculation h/my,. If we
have N quantum vortices, their total circulation will
be Nh/my.. Equating these two numbers gives

Kiotal = (ZU)rot)T[szucket =N
Mye

Solving for N, and then dividing by the area of the
bucket, gives usthe number n of quantized vortices
per unit area.

(38)

n = N - 20 oMye

2
TR pycket h

To see what the density is of quantized vortices
needed toimitate solid body rotation, let ususe CGS
units where the unit areais 1cm2, and solve for an
angular velocity w,; of oneradian/secondwhichis
about 1/6 of arevolution per second. We have

Wot = 1
Mye = 4% 1.67 x107 249m (4 protonmasses)
h = 6.62x10°%

We get for the vortex density n

n = 20 otMpe
h
2x4x167x10"%
6.62 x 10~ 27
2020 lines/cm?

If theselineswereinarectangular array, therewould
be vn lines on each side of a square centimeter

vyNn = 45lines/cm
The spacing between lineswould be 1vn

1/n = .022 cm/line

= .22 millimeters/line (39
Thusto imitate solid body rotation with an array of
guantized vortices in superfluid helium, the quan-
tum vortices have to be .22 millimeters apart when
the rotational velocity is 1 radian per second.



For anumber of years after Feynman’ s explanation
of the curved surface on a bucket of superfluid
helium, there was a considerable effort to see if
guantum vorticesreally exist in the superfluid. The
most conclusive evidence for their existence, with
the predicted circulation Kk =h/m g, came from
experiments by Rayfield and Reif using charged
vortex rings. A few years later Richard Packard at
Berkeley succeeded in actually photographing the
vorticesin arotating bucket of helium. Hedid this
by loading up the vortex lines with electrons, and
then firing the electrons into a film placed at the
surface of theliquid. Theresultisshownin Figure
(13) for various rotational speeds.

What Feynman and others have shown is that the
flow pattern with quantized vortices is awave pat-
tern for the helium atoms in the bucket. It is the
lowest energy sol ution of awaveequation, subject to
the boundary condition that the atoms near the
surface of the bucket are moving with a velocity
nearly equal to thevelocity of the bucket. Although
we have used the terminology of classical fluid
dynamics, we are describing aquantum mechanical
phenomenon. What is remarkable is that we are
seeing quantum mechanical phenomena on alarge
human scale, not just an atomic scale. Y ou can see
a separation of .22 millimeters without the use of a
mi croscope.

Exercise 3 - A Superfluid Gyroscope

Counting vortices in a bucket of superfluid helium can
be a sensitive way of detecting rotation. Suppose a
bucket of helium were placed at the North Pole. How
many vortices per cm? would there be inthe bucket due
to the rotation of the earth?
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Figure 13

Packard’s photograph of vortex linesin rotating
superfluid helium. Astherotational speedis
increased, more quantum vortices appear. Angular
velocities range up to half a radian per second. (The
camera was rotated with the helium and many
exposures were taken to build up theimage. The
slight jiggling of the vortices between exposures
spread the vortex images out a bit.)
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Bose-Einstein Condensates

Since 1995, it hasbeen possibleto create anew kind
of superfluid, consisting of a small drop of gas
cooled to temperaturesin the range of amillionth of
a kelvin. What happens to the gas atoms at these
temperatures is that they can come together and
“condense’ into asingle quantum mechanical wave
pattern. The processis not unlike photons condens-
ingintoasinglewave patterninalaser beam. For the
gasatomstheresult isaliquid-like drop with super-
fluid properties.

It is called Bose-Einstein con-
densation because back in the
1920’s, Einstein predicted this
effect, basing his ideas on the
work of the Indian physicist
Nath Bose. It turns out that at-
omsor objectsthat haveinteger
spin like to congregate into a
single quantum wave pattern if
the temperatureislow enough,
i.e., if the pattern is not dis-
turbed by thermal effects. Ex-
amples of integer or zero spin
objectsthat do thisare photons
that form laser beams, Helium
4 atoms that form superfluid
helium, and electron pairs that
become a superconductor.

In 1999, a group at the Ecole
Normale Supérieure in Paris
succeeded in rotating adrop of
rubidium atoms and photo-
graphingthequantized vortices
as they appeared. Due to the
weak attraction between the
rubidium atoms, the vortex
cores are some 5000 times big-
ger thanthe core of asuperfluid
helium vortex, but have the
samecirculation h/mg,,,. Pho-
tographs of the drop, with 0, 1,
8, and 13 vortices are seen in
Figure (14). Figure (15) is a
computer simulation of the vor-
tex core structure of adrop with
four vorticespassing throughthe
drop,andtwoformingattheedge.

Figure 14

Figure 15

THE VORTICITY FIELD

So far we have described vorticity as something we
look for inavortex core or something that character-
izessolid body rotation. Inthissectionwewill treat
the vorticity @= 0 x V asadynamic field that has
fieldlinesand can behavemuch likethe other vector
fields we have been discussing.

The singular property of vorticity is that it always
has identically zero divergence
O = OQOxv) =0 (40)
because the divergence of acurl isidentically zero.
(Seethevector identities.) Thismeansthat vorticity
isalwaysasolenoidal field without sourcesor sinks.

Wedefined afieldlineof thevelocity fieldasasmall
flow tube, like those seen in Figure (23-3) repro-
duced below. Similarly, we defineavortex lineasa
small flow tube of vorticity. The total flux of
vorticity in the flow tubeis by definition, the circu-
lation k of that tube. Asareminder, thiscomesfrom
Stokes' law

flux of @ -
in avortex :f ®EA = [ (Oxv) @A
tube
surface S
fibe>
= VEdQ = Ktube (41)

around
tube

Becausethevorticity @ issolenoidal, theflux tubes
or lines of @ cannot start or stop inside the fluid.
Vortex lines can only start or stop on the fluid
boundaries, or close on themselveswithin thefluid.
Twoexamplesarethestraight vorticeswehavebeen
discussing which run from the bottom of acontainer
to thetop, and avortex ring where the vortex lines
goaround and closeonthemselveslikethemagnetic
fieldlinesaroundawire. A smokeringistheclassic
example of avortex ring.

Figure 23-3

Flow tubes bounded by
streamlines. We define a
field line asa small flow
tube.




HELMHOLTZ THEOREM

In 1858 Heinrich Helmholtz discovered a remark-
able theorem related to vortex motion. He discov-
ered that when all the forces acting on fluid par-
ticlesare conservativeforces, i.e., forcefieldsthat
have zero curl, vortex lines move with the fluid
particles. Gravity isan example of a conservative
force, viscous forces are not. If viscosity can be
neglected and only gravity is acting on the fluid,
vortex lines and fluid particles move together.

To emphasize this point, in the absence of non
conservative forces, we can say that the fluid par-
ticlesbecometrapped on vortex lines, or we can say
that vortex lines become stuck on and have to move
with the fluid particles. To move vorticity onto or
off a fluid particle requires a non conservative
force like viscosity.

The Two Dimensional “Vortex Ring”
The simplest illustration of Helmholtz’' stheoremis
the behavior of avortex ring where the vortex lines
go around a circle and close on themselves. The
most well known example of a vortex ring is the
smoke ring.

Before we discuss circular vortex rings, we will con-
Sider the smpler example of two oppositely oriented
straight vorticeswhich formwhat isoften called atwo
dimensional (2D) vortex ring. A view down uponthe
twovortices, showingtheirindependent vel ocity fields,
isshowninFigure(16). Thetotd velocity field of these
two vorticesis the vector sum of the fields from each
vortex.
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Notice that the upper vortex has aforward velocity
field at the lower vortex core. If Helmholtz' stheo-
remisobeyed, thenthisupper velocity field must be
moving the vortex linesin the lower core forward.
Likewisethevelocity field of thelower vortex must
move the core of the upper vortex forward. As a
result thistwo dimensional vortex configurationisa
self propelled, forward moving object.

We can easily calculatetheforward speed of our 2D
vortex ring. Thevelocity field of avortex of circu-
lation K was given by Equation (33a) as

Ve = % , K = %_[
If the separation of the vorticesisd, then the speed

of the fluid at the opposite core, and therefore the
speed of thering will be

(33) repeated

speed of a pair
of oppositely
oriented vortices

Vadring = % (40)

You can see that the ring moves faster (1) if the
circulation K isincreased, or (2) if the vortices are
closer together.

Figure 16
Velocity fields of two oppositely
oriented straight vortices.
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The Circular Vortex Ring

For acircular, or 3D vortex ring, thevortex core has
the shape of adoughnut. If welook at the velocity
field in a plane that dlices through the doughnut, as
shown in Figure (17), the result is in many ways
similar to the velocity field of the 2D vortex in
Figure(16). Inparticular thevelocity field of thetop
part of the ring moves the bottom part of the ring
forward, while the field of the bottom of the ring
moves the top forward.

In addition, the smaller thering, thefaster it moves.
If the ring has a circulation Kk and diameter d, the
speed of theringisapproximately given by thesame
equation Vi, = K/d that applied to the 2D vortex.

The actual velocity field of a vortex ring has the
sameshapeasthemagneticfield of acircular current
loop, (provided the current density in the wire has
thesame shapeasthevorticity inthevortex core). It
isaclassic and rather nasty problemto calculatethe
precise shape of this field. When we get a more
accurate answer for the speed of thering, weend up
with additional terms, one of which involves the
logarithm of the coreradius. Thislogarithm would
gotoinfinity if wetried to makethecoreradiuszero,
but theterm becomessmall for reasonablecoreradii.
We do not need to worry about these small addi-
tional termsnow. Theanalogy tothebehavior of the
two dimensional ring is good enough.

Figure 17
Velocity field in a slice through a vortex ring.

Smoke Rings

In several ways the smoke ring provides a superb
illustration of Helmholtz's theorem. In the days
when smoking was popular and thought to be harm-
less, it was a common stunt to blow a smoke ring.
Today wewould rather create smokeringsusing the
apparatus shown in Figure (18). The apparatus is
simple, and the rings are better.

Start with acardboard box, cut afairly large holein
the front as shown, and replace the back sidewith a
rubber sheet. Fill the box with smoke, and hit the
rubber sheet with your hand. A beautiful ring will
emerge, like the one shown in Figure (19).

(If titanium tetrachl oride solution avail abl e, you can
get a denser smoke ring by squirting this liquid
around the perimeter of the hole in the box. The
titanium tetrachloride quickly turns to titanium di-
oxide smoke and hydrochloric acid. The titanium
dioxideis a coloring agent for white paint, and the
hydrochloric acid is obnoxiousto deal with, but the
resulting rings are quite good.)

Figure 18 a,b
Front and back of apparatus for creating smoke rings.

Figure 18 ¢
Smoke at hole due to titanium tetrachloride.



The most impressive feature of the smoke rings
created by our box is how stable they are. They
move in a straight line, at constant speed, without
changing their shape, just as predicted by our analy-
sisof thetwo and threedimensional vortex rings. If
you hit the rubber sheet harder, you add more circu-
lation k totherings, andthey travel faster. Y ou can
experiment with different size holes in the box,
seeing that smaller rings travel faster than larger
ones.

Oneof theinteresting predictionsthat you can think
about and try to observeisthefollowing. If afaster
ring approaches a sower one in front of it, the
velocity field of the front ring will tend to make the
back ring smaller and thus move till faster. Con-
versely, the velocity fields of the back ring should
expand the front ring making it move more slowly.
(Sketch the velocity fields yourself to check this
prediction.) Asaresult, if the back ring is aimed
right at the front one, the smaller back ring should
shoot through the larger front ring, becoming itself
thefront ring. If theringshave not bumped into each
other, tangled and destroyed themselves (the usual
case), then the new back ring will be squeezed in
size, the front ring expanded, and the process re-
peated. Thisisafamous prediction, but | have not
seen it carried out very well.

While the motion of a smoke ring represents a
successful prediction of Helmholtz' s theorem, the
fact that the smokering isso sharply defined, escap-

Figure 19
Two smoke rings after they have collided.
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ing from the amorphous cloud of smoke around the
cardboard box, isan even more dramatic prediction
of the theorem. When we hit the back of the box to
createthering, air wasexpelled out through the hole
in the front. The vortex ring was created at the
perimeter of the hole from air that contained smoke
particles. These smoke particlesin thevortex core
become attached to the vortex linesin the core and
haveto movewiththe core. Asthevortex ring moves
out of the box, it carriesthetrapped smoke particlesin
its core and leaves the rest of the smoke behind.

Creating the Smoke Ring

The reason why isasfollows. Beforewe hit the
rubber sheet at the back of the box, al theair in the
box was at rest and contained no vorticity. |If
Helmholtz’ s theorem strictly applied, then avortex
line could not move onto fluid particle that initially
had no vorticity.

Aswe mentioned earlier, Helmholtz' s theorem ap-
plied if only conservativeforces(likegravity) were
acting onthefluid. But gravity isnot theonly force
acting on the particles of air in our smoke ring
apparatus. Airisadlightly viscousfluid, and viscous
forcesinafluidarenot curl freeconservativeforces.
Viscousforcesmoveavortex lineontofluid particle
and create a vortex core.
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Introduction to
Fluid Dynamics

One should think of this chapter as an introduction
tofluid dynamics. Init wederivethebasic equations
for the behavior of the velocity field v and the
vorticity field @ in a constant density fluid. We
begin by applying Newton's second law to a fluid
particle to obtain what is known as the Navier-
Sokesequation. Thisequation for thevelocity field
V serves as the fundamental equation of fluid dy-
namics.

Taking the curl of the Navier-Sokes equation gives
usthe basic equation for the dynamics of the vortic-
ity field @. From that equation we derive the
Helmholtztheorem, and anextension of theHelmholtz
theorem that deals with the effect of non potential
forcesactingonfluidcores. Theextended Helmholtz
theoremisused in theanalysis of the experiments of
Rayfield and Reif whofirst measuredthecirculation
k and core radius (a) of a quantized vortex in
superfluid helium. We end the regular part of the
chapter with a discussion of the Magnus effect and
the pseudo force called the Magnus force that
appearsin all the vortex dynamics literature.

There are two major appendices to this chapter.
Appendix 1 deal swith the use of component notation
invector equations. Thisincludesthe Einstein sum-
mation convention, and emphasizes the use of the
permutationtensor & for calculating vector cross
products. There we show you an easy way to derive
vector identities involving cross products.

The second appendix shows how you can interpret
the dynamical behavior of the vorticity field as a
conserved two dimensional flow of vorticity. Appen-
dix 2 begins with an intuitive derivation of that
result, aderivationthat requireslittle mathematical
background. (It can be explained at dinner parties.)
However deriving the formula for the conserved
vortex current requires the use of the permutation
tensor ;) , whichiswhy we delayed thisdiscussion
until after Appendix 1.

The use of vortex currentsturns out to be a particu-
larly effective way to handle vortex motion. We use
it, for example, to derivethe Magnusforce equation
for curved fluid core vortices, a result that has not
been obtained any other way.
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THE NAVIER-STOKES EQUATION

When we apply Newton's second law F = dp/dt to a
particle like a baseball, the analysis is fairly smple.
With p = mv forthebaseball, if misconstant, theresult
is F=mdv/dt. In particular, if V = constant, then
dv/dt =0 and F=0.

Applying Newton's second law to a fluid is more
complicated. Even if we have a steady flow where
V = constant, the fluid particles themselves will be
accel erating when the streamlines go around a corner
or theflow tubesbecomenarrower or wider. Somenet
force acting on the fluid particles is required to
produce thisacceleration. If theflow isnot steady, if
0v/0t is not zero, an additional force is required to
produce this change in the velocity field. The first
problem you encounter in the study of fluid mechanics
is to correctly evauate the acceleration of the fluid
particles taking both of these effectsinto account.

What we will do isto consider avolumeV of fluid
bounded by aclosed surface S'. Thesurface S' is
specia in that it moves with the fluid particles. As
aresult the same fluid particlesremain inside V as
the fluid moves about. We will then calculate the
rate of change of the total momentum of these fluid
particles and equate that to the total force acting on
the particleswithinV. Following thisprocedurewe
will end up with a differential equation called the
Navier-Stokes equation which isvery successful in
describing the behavior of fluids.

(In most textbooks you will find what looks to be a
simpler derivation of the Navier-Stokes equation.
Our derivation involves volume and surface inte-
grals, while the textbooks make what looks like
simpler arguments using what is called a substan-
tive derivative. When the textbook arguments are
applied to non constant density fluids, you also find
some talk about what should be included inside the
substantive derivative and what should not. It
almost seemsthat one includesonlythoseter msthat
give the right answer.

By using surface and volume integrals, our focus
remains on the application of Newton's second law
tothefluid particleswith noambiguitiesof interpre-
tation.)

Fluid Dynamics

Rate of Change of Momentum

Aswe mentioned, we will consider avolume V of
fluid whose surface S' moves with the fluid par-
ticles. Asaresult the same particles remain inside
thevolumeV. Wethen equatetherate of change of
the total momentum of these particles to the total
force acting on them. The main problem involves
calculating the rate of change of the momentum of
the particles in a volume whose surface is moving.

Suppose we have avolume V (t) that isnow, at time
(t), bounded by asurface S'(t) (showninFigure 1).
If thefluid hasadensity p and the velocity field of
thefluid is v then the total momentum P, (t) of the
fludinV(t) is

RO = [ BRodV 5 pser @)
V(0)

At thispoint we are even allowing the density to vary,
sothat both p and v canbefunctionsof spaceandtime.

A short time ot later, thesurfacewill havemovedto
S'(t+ot) and the volume becomes V(t+dt) as
shown in Figure (2).

At thislater time, the momentum of the fluid particles
will be

Figure 1
The volume V bounded by the surface S' at time (t).
S'(t+0t)
N
V(t+0t)
SH—
V(t)

Figure 2
The volumeV a short time ot later.



B (t+3t) = f B(t+3t)d3V @
V(t+3t)
Thechange 5Py, inmomentumof thefluid particlesas
time goesfrom () to (t+0t) is

SR, = Ry (t+5t) —Py(t)

©)

f B(t+3t)d%V — f B(Hd3V

V(t+3t) V(t)
WecandoaTaylor seriesexpansionof p(t+ot) toget

p(t+ot) = p(t) + g?ét +0(5t?) (4)

Thisgives

5B, = f B(Hd3V — f B(H) a3V

V(t+3t) V(1)
+6tJ g?oﬁv + 0(3t2) (5
V(t+3t)

From Figure (2), we see that much of the same
volumeisincluded in both V(t+t) and V(t). Thus,
inthesguarebracketsin Equation (5), theintegral of
p(t) over thecommon volume cancels, and what we
want is an integral of p(t) over the volume that the
fluid has entered during the time &t, minus the
integral of p(t) over the volume the fluid has left
during ot .

In Figure (3a) we show part of the region between
S'(t) and S'(t+ot) where the fluid has entered
during &t. Consider aparticleat point (1) at timet,
moving at a velocity v;. In the short time ot it
moves a distance V40t as shown.

Now let dA; be an dement of the surface S'(t) a
point (1). The standard convention is that a surface
element dA points perpendicularly out of a closed
surface. Thus dA ; points out of surface S'(t) as
shown.
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A time 5t later, the surface element dA ; will have
moved out to the surface S'(t +&t), sweeping out a
volume &V, given by

6\/1 = (\716t) mﬁl (6)

Y ou can see that the dot product is appropriate, for
if v; and dA ; areparallel, wehavearight circular
cylinder of volume (v,0tdA ;) . Thevolumeiszero
if v; and dA 1 are perpendicular, and negative if
oppositely oriented.

In Figure (3b) we show part of the region between
S'(t) and S'(t +ot) wherethefluidin S'(t) hasleft
during the time &t. The diagram is the same as
Figure (3a) except that the vector dA , pointing out
of S'(t) ispointing essentially oppositetothevector
V,. In the formula 8V, = (V,0t) [dA,, the dot
product v, [@A , andtherefore 8V, isnegativeinthe
region where the fluid is leaving.

As aresult, if we calculate the integral of p(t)doV
over both the volumesin Figures (3a) and (3b), we
get an integral of p(t) over the region the fluid is
entering, minus the integral of p(t) over the region
thefluidisleaving. Thisjust givesusthequantity in
the square brackets in Equation (5)

S|(t+6[) i

Figure 3a \
The volume element V4 = vVt [@A %
into which thefluid is flowing.

Figure 3b
The volume element 4V, = vat WA,
out of which thefluid isflowing.
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We get

f B3V — f B(t) d3V

V(t+5t) V(1)

= [ poev) = [ po@wer) O
over entering S0

andleaving
regions

By integrating over the entire area S'(t) we have
included both the entering and leaving regions.

Using Equation (6) for the square bracketsin Equa-
tion (5) gives

5B, = ot f B(t) (VIA) + &t agit)o@v

S(t) V(t+ot)

(7)

plus terms of the order 3t2. At this point, we have
everything expressed at the time (t) except the vol-
ume of integration in the op/dt term. If we inte-
grated over thevolumeV (t) instead of V(t + &t) , we
would beincorrectly handling theintegral of dp/ot
over thenarrow differencevolumeof thickness vét .
Sincethe dp/ot termalready hasafactor ot , thiswould
lead to an error of order 3t2 which we can ignore.

Replacing V(t + ot) by V(t) inthevolumeintegral,
and dividing through by &t gives

5PV f arjo|3v+ f o(t) (VIdA) )
V(1) S'(t)

We now have al quantities in our formula for
OP,,/dt expressed at the time (t).

We have one more step before we are finished with
the oP,,/ot term. We want to convert the surface
integral to avolume integral.

Fluid Dynamics

We have already had some experience converting
surface to volume integrals back in Chapter 7 on
divergence. Therewederived thedivergencetheorem

f E@A = f OEdV (7-21)
where E isany vector field, and thesurface Sbounds
thevolume V.

In Equation (8), we have something that looks more
complex than the surfaceintegral in (7-21), because
of the presence of the extravector p. To handlethis
let us define threefields E 1, E, and E 5 by

; E 3=pPN (9

E1=p ; Ep=pyW

Then we get

| BvaA)
S

xf pxmmyf pyvm/mzf b,V A
S S S

xfElmiA +ny2miA+sz3m|A

S

(10)
Now wecanusethedivergencetheoremonthethree
quantities E 1, E, and E 5 to get

| BvieA)
S

szf ﬁ[ﬁld3v+yfﬁtﬁzd3v+zf OB,V
\Y% V

% f Opv)dV +9 f Oigp,v) dv
\Y \Y

P f Figp,v)d3v (12)
(A quantity like E; = p,V isnot really avector field
becauseit does not transform like avector when we
rotate the coordinate system. But if no rotations are
involved, p, actslikeascalar field p, and p,v acts
like a vector field | =pv in the divergence theo-
rem.)



Einstein Summation Convention

In Equation (11) we have some fairly mixed up
vector components like

X D)llva) = X [ DX(pXVX) + Dy(vay) + |:|Z(pXVZ)]
(12)

Thereisanotation, credited to Eingtein, that makesiit

easy to handle such terms. In Equations (13), wewrite

the dot product of two vectorsin three different ways.

ab = a,b, +ab, +a,b, (134)

= 2 _ab (13b)
1=Xy,z

= gb; (13c)

In(13a) weseetheusual definition of thedot product
of two vectors. In (13b), we used the index (i) to
represent the subscriptsx, y, z and included asumma-
tion sgn to show we are adding up the three terms.
Supposedly Einsteingot tired of writing summation
signs and introduced the notationin (13c). Hesaid
that if the index appears twice, then automatically
takeasum. Asanexample, if you encounter g c;
you would sum over the repeated index (i) to get
abc = 2

i=Xxy,z

abc;
(14)

a.bjc, +a bjc, +a,b;c,

Sincetheindex (j) isnot summedover, itremainsthe
sameindex throughout. Wewould say that a;b j c;
is the (j)th component of the vector a; b Cj.

Using this notation in Equation (12), we have

K[Oy(Pyvi) + Oy(Prvy) + Opyvy)]

(15)
= X[Ui(pxvi)] = Ti([ Xpx]vi)
and Equation (11) can be written as
| By
S
= [ 01 (tny + 90y + 29wV
= [ Eipwdv
Y (16)
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Using Equation (16) in Equation (8) gives

3Ry _

ot

ap

5t + 0ipv) [V

J (17)
V(1)

This is the formula for the rate of change of the
momentum of the fluid particlesinside the volume V
that moveswiththeparticles. Itisall expressedinterms
of variables a the time (t).

Mass Continuity Equation

When we substitute p = pv into Equation (17) we
end up with quite a few terms. The result can be
simplified by using the equation for the conserva-
tion of massduring theflow. Thederivation, which
is worth repeating, is similar to our derivation in
Chapter 10 of the conservation of electric charge.

Consider avolumeV bounded by afixed surface Sin
afluid of density p. Therateat whichmassisflowing
out of V (themassflux) isgiven by theintegral over S

dM .. _.— rateatwhich
- = | (pV)[MA massis flowing
out acrossS

(18)

S
where pv is the mass current. We can use the

divergence theorem to convert this surface integral
to avolumeintegral, giving

- f Aov)d3v (19)

If ma53|stOW| ng out of V, theremust be adecrease
in the density p inside. The rate at which the total

massinsideis decreasing isrelated to the changein
density p by

dM _ 0p 3
— St - dt d°v (20)
Equating our two formulas for —dM/dt gives
f Agev)dV = — f 9P 4y 21)

The two volume mtegrals can be combined to give

I

9% 4 Agev) |dv = 0 22)
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Since Equation (22) must hold for any volumeV or
fixed surface S we can construct, the terms in the
square brackets must be zero, giving

mass continuity
equation

op
ot T Opv) = 0

(23)

Rate of Change of Momentum

when Mass is Conserved

With the continuity equation written down, let us
return to our formula for the rate of change of the
momentum of the fluid particles, replacing the mo-
mentum density p by pv to get

5P R
Rl J (gt ) + 0(pwv. I)]d?’v (24)
Y%
The termsin the square bracket become
op
[ ] = 6'[V+pat +Vi(pv)) + pviLiv
ov . _ 0
=P 5p TULV | F p +0dpv)

(25)
where we wrote O;(pv;) = O{pV) .

Weimmediately see that the second bracket is zero
by the mass continuity equation, and weareleft with
our final result

3R,
&‘fp
\%

Equation (26) holds even when the density of the
fluid is changing.

ov + ( ) d3V

at (26)

Fluid Dynamics

Newton's Second Law

We are now in a position to apply Newton's second
lawtothefluidinour volumeV. Equation (26) gives
us the total rate of change of the momentum of the
particleswithinV. Wenow want to equatethat tothe
total force Fy; acting on the particles. We will
calculate that by adding up theindividual forcesper
unit volume, which are the pressure force, the vis-
cousforce, and the other forces. Then we integrate
the sum over the volume V.

InView 3 of Chapter 3 ondivergence, wefound that
the pressure force per unit volume was

- —

fo=-0p (3.3-2)

In Chapter 4 wefound that the viscousforce per unit
volume for a constant density Newtonian fluid was
f, = pO%v (4-19)

Letting fothe|r represent all other forces per unit
volume, we get for the total force F; acting onthe
fluid within V

Fiot = f [—Dp + POV + fope [V (27)

Y
Equating the total force F; to the rate of change of
momentum 5PV/6t Equations (27) and (26), gives

. 3Py
Ftot = 5

[—Dp +p0% + fother] d®v

v |d3v

(28)
Putting everything under asingleintegra signgivesus

~

QY+ p(VI)V + Op — PO — ey

e

I <
o

(29)



Next we have our usual argument that Equation (29)
must hold for any volumeV. The only way we can
always get the answer zero for theintegral isfor the
integrand, thestuff inthe squarebrackets, to be zero.
Thus we end up with the equation

p| P+ W)V | = —Op+p0% + fope

(30)
Thisis one form of the Navier-Stokes equation.

Itisusually moreconvenienttodividethroughby p,
using

v H ki nemattic
= 5 viscosity R
P coeffienct (4-41)

where v is the so called kinematic viscosity de-
scribed in the pipe flow experiment of Chapter 4
(page Cal 4-9). Wewill aso define § giner bY

-

— f other

. other forces
Gother = —p

per unit mass

(31)

which represents all other forces, but now as force
per unit mass, since we have divided by mass per
unit volume p. We get

—

+ (VD) = 52+ VO2 + G

2

Navier-Stokes Equation

(32)

Equation(32) istheformof theNavier-Stokesequation
you arelikely tofindinthetextbooks. It representsthe
basic arting point for fluid dynamics theory.

Equation (32) isquitegeneral. Only intheformula
vO?V for the viscous force have we made any
assumptions about the density being constant
(i.e., 0 = 0), and that the coefficient of viscosity
v is constant. If we have a non constant density
fluid, or non constant coefficient of viscosity, all we
have to do is correct the viscosity term.
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In Chapter 23 of the Physics text, we began our
discussion of vector fieldswith the velocity field. We
madethischoicebecauseitiseasier topictureavel ocity
field than an dectric field, and we could immediately
derive Bernoulli's equation from some simple energy
arguments. How things have changed in this chapter!
The derivation of the Navier-Stokes equation for the
velocity field was harder to do than deriving the wave
equationsfor E and B, andtheresultismorecomplex.
Wehave seen termsthat resemble v(12V and 8v/dt in
our discussion of wave equations, but we have not
encountered aterm that looks anything like (V) .

Not only does (V[II)V haveapeculiar combination of
components, itisessentialy proportional tothesquare
of the velocity field, which makes the Navier-Stokes
equationanon linear equation. What that meansisas
follows. The equations we have studied so far, the
waveequationsfor E and B, and Schrodinger's equa-
tionfor Y, arelinear equations. Thismeansthat there
arenotermsinvolvingthesquareof E, B or i, andas
aresult we have the rule that waves add. What this
implies is that if you have two solutions to a wave
equation, the sum of these two solutions is dso a
solution. For anon linear equation, the sum of two
solutions is not necessarily a solution.

In the case of water waves, if the amplitudes of the
waves are small, the (VII)V term is not important
and waves add, aswe saw in the ripple tank experi-
ments. However, if the amplitudes become large,
the (VII)V term, being proportional to v2, be-
comes large and we get non linear effects like the
breakers we see when ocean waves come up to the
beach. There is no way you can get the solution
describing a breaking wave from adding up the
solutionsfor many small amplitudewaves. Thenon
linear term bringsin completely new physics.

Despite the apparent complexity of the Navier-
Stokes equation, some fairly simple results can be
derived fromit. Oneis Bernoulli's equation which
we will discuss in the next section, the other is a
generalized Helmholtz theorem which we will de-
rive after that. In our discussion of Bernoulli's
equation we learn more than we did in the Physics
text. Here we will determine the conditions when
Bernoulli's equation applies, and when it does not.



Cal 13-8 Calculus 2000 - Chapter 13

BERNOULLI'S EQUATION

Thereisavector identity which allowsusto change
the form of the Navier-Stokes equation so that the
termsin Bernoulli's equation begin to appear. The
vector identity is
_ _[v2 -

(vi)v = 0O > —Vvx(OxVv)
In Appendix 1 of this chapter we show you arela-
tively easy way to derive vector identitiesinvolving
thecurl. Equation (33) istheexplicit exampleweuse.

(33)

Noting that C1xV isthe vorticity @, we can write
Equation (33) as

v2

5 (339)

(VvIO)v = ﬁ( )—ano
Using Equation (33a) for the (VII)V term in the
Navier-Stokes equation (32) gives

- INEVZAR N
‘l‘t’—vm = —D(V )_Dpp + VOV + Gogher

(34)

Our next step is to extract the gravitational force
from g yner and display it explicitly. The gravita-
tional force per unit volume of fluidfy is

2

fy = pg = p(-Cay) (35)
wherey isthe upward directed coordinate and g the
acceleration dueto gravity. (Takeabreak and show
that —[l(gy) isequal to g, avector of magnitude g
pointing down.)

Theforcetermsin Equation (32) areforces per unit
mass. We get the gravitational force per unit mass,
Qgra\,ity by dividing fg by the density p.

F

Ogravity = p = —LA@Y) (36)
Theforce § giher bECOMES
Gother = _ﬁ(QY) + 0 other (36a)

where g’ e represents other forces not including
gravity.

Fluid Dynamics

Using Equation (36a) in Equation (34) gives

‘l‘t’—vm

2 P
Uptothispoint the only place we assumed that p was
constant was in the viscosity term v2v . But for the
remainder of this chapter we will assume that p is
constant and use that to smplify other terms. For
example, we can pull aconstant p insdethe gradient,

giving

Op _ _=(p
5 = (5]
Using Equation (38) in Equation (37) gives

_[v2 0 : 37

if pis

constant (38)

2

_p V2
—Ux@ = 0| g+ +ay [+VOV +T gy

constant density fluids
(39)
It is in Equation (39) we see the Bernoulli terms
(p/p + V22 + gy) . We can now use the equation
both to derive Bernoulli's equation and to state the
conditions under which it applies.

Suppose we have the following four conditions:
(1) constant density, (2) a steady flow so that
ov/ot = 0, (3) that viscosity isnot important so that
wecan neglect theviscosity term vO2%v,and (4) that
there are no forces other than pressure and gravity
acting on the fluid so that we can set §' g = 0.
These conditions are

p = constant
ov _
ot = 0 steady flow
V0%V = 0 neglectviscosity

(40)

O'other = O noother forces

Under conditions (40) the Navier-Stokes equation
becomes

Lo _=lp . v
VX = D(+2+gy) (41)

Y




Applies Along a Streamline

In Chapter 23 of the Physics text, we caled the
collection of Bernoulli terms the hydrodynamic
voltage. Labeling their sum by @, , we have

_ P v2 hydrodynamic
™= p * 2 oy voltage (42)
With this notation, Equation (41) becomes
vxo = Ogy (43)

We used the name hydrodynamic voltagefor ¢, to
stress the similarity between hydrodynamic volt-
age-drops in a fluid circuit and electric voltage-
dropsin an electric circuit.

L ater inthe Physicstext, inour discussion of electric
voltage in Chapter 25, we changed the name from
voltage to potential, and started constructing con-
tour mapsof thepotential ¢. Our mainexamplewas
themap of theel ectric potential produced by charges
+3and—-1showninFigure(25-15) reproduced again
here. The lines of constant potential are the contour
lines, andthelinesof steepest descent arethefieldlines.

Inour discussion of gradient inthistext, we saw that
thegradient vector Clg pointed along thefield lines.
Or to say it another way, the gradient o was a
maximum in the direction where the slope is the
steepest, and was zero in the direction of a contour
line where the value of ¢ remains constant.

Our Equation (43), vx® = U@y, is an equation
relating the gradient of the potential @, to what at
first looks like a rather complicated term
vx®=vx(OxV). But there is one thing that is
simple about Vx . Because of the cross product,
vV x® isalwaysperpendicular to v, i.e., alwayszero
in the direction of v.
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In afluid flow, the streamlines follow in the direc-
tion of the velocity field v. Thusif we moveinthe
direction of astreamline, we are moving in adirec-
tion where vx @ and thus L@, iszero. But if we
moveinadirectionwherethegradient of @, iszero,
we must be moving along a contour line of ¢, , and
thevalueof @, must beconstant. Thusthephysical
content of the equation U@, =vx® isthat @, is
constant along a streamline. Re-expressing @, as
p/p + V22 + gy, we get the result

_ constant along
~ astreamline

2
PV,

P2
when conditions (40) are obeyed.

(44)

Equation (44), with the associated conditions, isour
precise statement of Bernoulli'sequation. Ittellsus
both when Bernoulli's equation can be used, and
why it should be applied along a streamline. Inthe
special case of potentia flow where ®=0 xV is
zeroeverywhere, then Equation (41) becomes Uq, =
0, which implies Oq, = p/p + v%2 + gy = constant
throughout the fluid. For potential flow we do not
have to apply Bernoulli's equation only along a
streamline.

e

'A%
.

0

Figure 25-15 (repeated)
Thelines of equal height, the contour lines, arethe
lines along which the potential @is constant.
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The Viscosity Term

Although the Navier-Stokes equation is a rather
formidable equation, we are beginning to see some
fairly ssmple or recognizable results emerge. A lot
can belearned by studying the nature of thetermsin
theequation. Herewewill seethat theviscousforce
term vO2V canbe re-expressed in aform that gives
one abetter understanding of the nature of vortices.

Back in Chapter 8 on the curl, we proved the vector
identity
Ox(OxA) = —0%A + O(0R) (8-5)
If we apply thisto the velocity field v of aconstant
density fluid where L[ =0, we get
0% = —Ox(0xv) = -Ox® (45)

Where ® = [ xV . Thustheviscousforceterminthe
Navier-Stokes equation can be written as

viscous force

VO = vOx®|  oinitmass (46)

From Equation (46) we seethat there are no viscous
forceswherethevorticity @ iszero, or evenwhen @
Is constant asin solid body rotation.

Fluid Dynamics

In our discussion of vorticesin the last chapter, we
pictured an ideal vortex as onewhose velocity field
v wasanalogoustothemagneticfield of acurrentin
astraight wire. If the currentinthewireisuniform,
then OxB = p,i isaconstant inside the wire and
zerooutside. Thusinour ideal vortex, @ =0 xV is
uniform inside the core (representing a solid body
rotation of thefluid there), and @ = 0 outsidewhere
we have the 8 directed 1/r velocity field.

With our new formula —vOx@ for the viscous
force, we see that there is no viscous force acting
insidethecorewhere @ = constant. Whatissurpris-
ing is that there is also no viscous force acting
outsidethecoreinthe1/r circular velocity field. The
only place where viscous forces act in an ideal
vortex is at the boundary between the core and the
fluid outside. Thefact that viscousforcesdo not act
either inside or outside the core of anideal vortex is
onereason for the permanence of the vortex structure.

Because the velocity field of avortex ringisanalo-
gousto the magnetic field of acurrent loop, the fact
that OxB=p,i is zero outside the wire loop,
implies that the vorticity@= 0 xV is zero outside
the core of avortex ring. Thusin avortex ring or a
smoke ring, viscous forces do not act on the fluid
outside the core.

Finagnus= —PVg X R actingonthat vortex. But there
iISno extramass associated with afluid core vortex,
SO one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero. That meansthat there must be an externa
force Fogeng &Cting on the vortex to cancel the
Magnus lift force. That is, one must have

IH:external + r:magnus =0 (108)
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THE HELMHOLTZ THEOREM

While Bernoulli's theorem may be the most famous
theorem of fluid dynamics, Helmholtz's theorem is
perhaps the most dramatic. To see a smoke ring
emerge from an amorphous cloud of smoke and
travel acrossaroom in astraight line has to be one
of theimpressivephenomenaof physics. Y etwesaw
that it wasexplained by Helmholtz'stheoremthat inthe
absence of non potentia forces, the fluid particles
become trapped on, and move with, the vortex lines.

In this section we will derive Helmholtz's theorem
fromtheNavier-Stokesequation. Asaresult, all the
phenomena we have seen that are explained by
Helmholtz's theorem can be viewed as being a
consequence of the Navier-Stokes equation.

Equation for Vorticity

Thefirst step in deriving Helmholtz's theorem isto
turnthe Navier-Stokesequation into an equation for
thevorticity field @. We do this by taking the curl
of both sides of Equation (39). We have

= Bx| -0 P+ Y 4 gy | -vixm+ g

= pToToy 9 other
(47)

Whgre we used Equation (46) to replace vO% by

—Vxm.

At this point you might be discouraged by the
number of cross products that appear in Equation
(47). But immediately there is noticeable smplifica-
tion. Recall that thecurl of agradientisidentically zero,

OxOp =0

any ¢ (48)

Thusthe Bernoulli termsall go out in Equation (47)
N 2
DxD(g+V2+gy) =0 (49)

which considerably shortens the equation.
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Next, we note that because we can interchange the
order of partial differentiation, we get

ﬁx% = %(ﬁx?) = 0

Thus Equation (47), the curl of the Navier-Stokes
eguation, becomes

(50)

%—?—ﬁX(VXG)) = Oxg (51)
where g, given by
§ = —VOX®O+T gther (52)

represents all forces per unit mass acting on the
fluid, except pressure and gravity. Equation (51) is
the differential equation for the dynamical behavior
of thevorticity field . Theonly restriction isthat
it applies to constant density fluids. If we wish to
work with non constant density fluidswe haveto go
back and work with Equation (39) and perhaps use
amore general formulafor the viscous force.

Non Potential Forces

Animportant smplification we obtainedin goingto
an equation for the vorticity field @ was the elimi-
nation of the Bernoulli terms. This removes the
pressure and gravitational forces from the equation
for @, implying that pressure and gravity have no
direct effect on the behavior of vorticity. We saw
thisresult in the case of the motion of asmoke ring.
The ring moved in a straight line across the room
completely unaffected by gravity. (Pressure and
gravity can have anindirect effect in that they affect
thevelocity field v which appearsinthe O x (V x )
term.)
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In Equation (51),

0 _ Fix (v =
ot —Ex(vxw) = Uxg

theonly forcetermsthat survivearethosewithanon
zerocurl liketheviscosity term. Let usintroducethe
terminology potential force g, and anon potential
force gy, . Potential forces are those that can be
expressed as the gradient of a potential ¢, and thus
have a zero curl

g(p = —ﬁ(P ;

while non potential forces gy,, have non zero curl

(51) repeated

Oxg, =0 (53)

Oxgnp 2 0 (54)

and thus survive the curl in Equation (51). Asa
result we can write Equation (51) in the form

00 = - - vortex
T2 —Ox(Vx@) = OxPpy | dynamics (55)
equation

ot

We will cal Equation (55) the vortex dynamics
equation.

To be quite general, one might like to separate an
arbitrary forcefield g into its potential part g, and
its non potential part g, , writing
g = gyt Onp (56)
The problem isthat there is no unique separation of
an arbitrary vector field into potential and non po-
tential parts. Theonly thing that isuniqueisthecurl
Oxg = Oxgp, (57)
Physically, Equation (57) is telling us that if we
accidentally included some potential terms in our

formula for g,,, they would disappear when we
took the curl in Equation (57).

For a practical matter, the best thing to do is to
include all obviously potential forces like pressure
and gravity in g, and leave all others that are not
obviously potential forces, like the viscous force
—vOx®, in the non potential category Onp -
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A VECTOR IDENTITY FOR A MOVING CIRCUIT

Before we obtain a redly clear interpretation of the
vortex dynamics equation (55), we need a way of
understanding the impact of the rather complex 1ook-
ingterm —0x (Vx @) . Inthissection, wewill derive
a vector identity that will lead to a strikingly smple
interpretation of the combination of terms
doyot — Ox (Vx ) . Thevector identity involvesthe
rate of change of flux of a solenoida field like @
through a circuit that moves with the fluid particles.

It takes a considerable effort to derive this vector
identity, an effort involving steps somewhat similar
to those we used to calculate the rate of linear
momentum in a moving volume. But the resulting
simplification in the interpretation of the vortex
dynamics equation is more than worth the effort.

To emphasize the general nature of the vector iden-
tity, we will calculate the rate of change of the flux
of avector field A throughthecircuit C' that moves
withthefluid particles. Therestrictionon A will be
that it is a solenoidal field with A =0.

Letthecircuit C'(t) showninFigure(4) beattached
to the fluid particles through which it passes. As
time progressesfrom (t) to (t +4t) , thefluid motion
will carry the circuit from position C'(t) to the
position C'(t +ot) asshown. We will also assume
that thereisadivergencefreevector field A(t) inthe
fluidattime(t). Attime (t +ot) thevector field will

have changed toA (t +3t) . What we wish to cal cu-

lateisthechangeintheflux of A throughthecircuit
C' aswego from (t) to (t +ot). We will do the

_C(t+at)

—CW

Figure 4
The circuit C' moves with the fluid particles.
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calculation throwing out terms of order &t2 com-
pared to ot.

Attimet, theflux ®(t) of A through C'(t) is

o(t) = f A(t) @S
S(t)

where S'is a surface bounded by C'(t). At time
(t +0t) the flux has become

(58)

Ot +3t) = f A(t + 5t) @S (59)
S(t+3t)

The changein flux d® during thetime ot is

5P = f A(t + 5t) S — f AM@ES  (60)
S'(t+3t) S(t)
Using a Taylor series expansi on we can write

A(t+dt) = A(t) +0A
Thus

&+m&% (61)

5P = f A(t) @S — f A(t)mi8+6tj aAmis

S(t+3t) S0) S/(t+3t)
(62)
To calculate the effect of the first two terms in
Equation (62), consider the guitar shaped volume
shown in Figure (5). The top of the volume is
bounded by the curve C'(t + &t), while the bottom

by C'(t). A certain amount of flux ®;

®, = f At @S
S(t)
enters up through the bottom of the volume. Some

more flux, ®, flows in through the sides, and an
amount @,

(63)

®, = f At @S
S'(t+3t)
flows out through the top.

((64)
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Because A(t ) isadivergencefreefield[ IA(t) = 0],
al theflux flowing in through the bottom, ®; , and the
sides, ®,, must flow out through the top, ®5, giving

CD3 = ch + q)z (65)

(Any of thesefluxescould benegative, indicating A
pointing in other directions, but all signs are cor-
rectly handled by the formalism.)

Using Equations (63) and (64), our formula(62) for
0® becomes

5P = Py q>1+5tf aAmis

S'(t+0t)
With CD3 q)]_ + CDZ Weget

5P = P, + Bt j A 43 (66)

s (t+6t)
Equation (66) tells us that the change in the flux of
A(t) through the moving circuit C'(t) is made of
two parts. Oneisdueto the change 0A(t)/dt of the
fielditself, theother toflux cominginfromthesides.

C(t+a

Figure 5 \

Volume bounded by the curves C'(t +dt) and C'(t).
The drawing shows flux entering through the bottom
and sides, and flowing out through the top.



Cal 13-14  Calculus 2000 - Chapter 13

Our problemnow isto calculatetheflux ®, flowing
in through the sides of our volume shown in Figure
(5). Thecalculationof ®, turnsout nottobeso hard.
InFigure(6) weshow asmall pieceof thesideof our
volume. A fluid particle that islocated at position
(1) inthat diagram at time (t), movesto position (2)
during the time &t. The distance from (1) to (2) is
described by the displacement vector vét asshown.

We aso mark a short length dl of the path C'(t)

starting at position (1) . If wetakethe cross product
of vat with d{, we get avector dS that poi ntsinto
the volume, perpendicular to both vt and dl. The
length of dS isequal totheareaof the parallelogram
defined by Vst and d{. Thus dS represents the
inward areavector for the shaded areain Figure (6).

Theflux do, of A(t) inthroughthissideareadS is

do, = A(t) @S = A(t) [[(v3t) x d{] -
= &t| A(t) Qv xdl)

In the appendix to this chapter, where we show you
an easy way to handle vector identities involving
cross products, we derive the identity

AQBxC) = (AxB)IT (68)
Usingthisidentity, wecanwriteEquation (67) inthe
form

do, = St[A(t)xv] @l (69)

C'(t)

The area element dSon the side of our volume.

Figure 6
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Tocaculatethetota flux @, inthroughthesidesof
our volume, all we have to do is integrate the
contributions @, around the circuit C'(t) .We get

®, = 5t36 [A(t)xV] @1 -
c(t)

Stokes'law, derivedin Chapter 8relatestheintegral
of avector field B around a closed path to the flux
of [JxB through the path. We had

@mﬁ:fﬁx
C

S

BdS (8-31)

where Sisthe surface bounded by the closed curve
C.If weset B=A(t)xv, C=C'(t) and S=S'(1),
Equation (8-31) becomes

9§[K(t)x\7]mﬁ - fﬁ x| A(t)xv | @S (72)
C'(t) S'(®

Asaresult, the flux ®, of A(t) flowing in through
the sides of our volumeis

®, = 5tf 0 x| Atyxv |@ (72)
S0

Using thisresult in Equation (66) for the changein
flux &¢ through our moving circuit gives

0P

®, + 3t f LTS
s (t+6t)

(66) repeated

5tfm x| A(t)xv mis+5tf aAmis

S S'(t+3t)
(73)
At this point everything is evaluated at the time (t)
except for theintegral of the flux of dA(t)/dt at the
surface S(t + &t) .
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As we have just seen, the flux of any vector field
through S'(t + &t) is equa to the flux through the
end S'(t) plusatermlike ®, representing aflow in
through the sides. Because the flux in through the
sides is of the order ot smaller than the flow in
throughtheend, and becausethe 9A /0t termalready
hasafactor of t, our neglect of theflux of 9A/dt in
through the sideswill bean error of order 3t2 which
may beignored. Thuswe canreplace S'(t + ot) by
S'(t) inEquation (73). Dividingthrough by ot , and
for later conveniencereplacing A(t) xv by —v xA(t),
we get

6qg(tA) _ [/ 6:05§t)_ﬁx[\7x,5((t)]} [@S

s ()

(74)
Equation (74) isthe general formulafor the rate of
change of flux of the vector A(t) through acircuit
C'(t) thatmoveswiththefluid particles. Thecircuit
C'(t) bounds the surface S'(t), and it is assumed
that A isasolenoidal field (OA = 0).

The Integral Form of the

Vortex Dynamics Equation

Although the derivation of Equation (74) wasrather
lengthy, theresult can beimmediately appliedto our
vortex dynamics Equation (55). If we integrate
Equation (55) over a surface S'(t) bounded by a
circuit C'(t) we get

ﬂ X —EX(V/X@)]ES: f [T o] [0S

S'(t) SO (75)
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Becausethevorticity @ isawaysasolenoidal field,
we can replace A(t) by @Xt) in Equation (74) and
immediately recognizetheleft side of Equation (75)
as the rate of change of the flux of @ through the
moving circuit C'(t). Calling thisrate 0P(®)/5t,
we have

i’(t)
On the right side of Equation (75), we can use
Stokes' theorem to replace the surface integral of
Oxg,, over S'(t) by the line integral of np
arounoF C'(t) giving

| [BxGpl@8 = ) gpfal

S(t) C'(t)
Combining Equations (76) and (77) gives us the
general vortex dynamics Equation (78), a result
which assumes only that p is constant.

0 P(W)
ot (76)

ot

OX1) —Ox(Vxm) ]mié =

(77)

therate of changeof the

flux of @througha W — = @E
circuit C'(t) thatmoves &t Ynp
with thefluid particles C'(t)

extended Helmholtz equation
(78)
It seems rather remarkable that an equation as com-
plex looking as the Navier-Stokes equation can be
converted, by taking the curl, to something simple
enough to be described almost completely inwords.
Inasensetheonly calculationwe havetodoto apply
Equation (78), is to calculate the line integral of a
non potential force g,,around a closed path. For
reasons that will become clear shortly, we will call
Equation (78) the extended Helmholtz equation.
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The Helmholtz Theorem
It is an immediate step to go from Equation (78) to
Helmholtz's famous theorem of 1858. If there are no
non potential forcesacting onthefluid, i.e., if §n,=0,
then we get the Ssmple statement

If there are no non potential forces acting
on the fluid, then there is no changein the
flux of @ through any closed circuit

C'(t) that moves with the fluid particles

Helmholtz theorem
(79)
At thispoint we have reduced much of fluid dynam-
icsto asimple word equation.

Equation (79) is perhaps the most precise statement
of Helmholtz's theorem, but equivalent statements
are also enlightening. Suppose, for example, we
define avortex lineasasmall unit flux tube of @.
Because @ is solenoidal, the flux tubes or vortex
lines cannot stop or start inthefluid. Equation (79)
tells us that, in the absence of non potential forces,
the number of vortex lines threading any circuit
C'(t),i.e, thetota flux of @, remainsconstant asthe
circuit moveswiththefluid particles. Thisclearly will
happen if the lines themsalves move with the fluid.

Equation(79) doesnot actualy require,inal cases, that
thevortex linesmust movewiththefluid particles. As
we saw back in Chapter 12, the vorticity @ isuniform
for solid body rotation. Thustheflux of @ will remain
constant through any circuit C'(t) moving with the
fluid, whether or not we think of the vortex lines
themselves as moving with thefluid. With auniform
®, wecannot tell if thevortex linesaremoving or not.

We saw, however, that thesituationisvery different
when dealing with aquantum fluid wherethevortic-
ity @, although roughly imitating solid body rota-
tion, islumped up in the vortex cores. In this case
Equation (79) clearly requiresthat the separate vor-
tex coresmove around withthefluid. Wecaneasily
tell whether lumped up vorticity is moving.

Thereis, however, no harm in assuming that the vortex
lines move with the fluid for solid body rotation. This
interpretation hasthe advantage that if adight perturba-
tion isintroduced into the vorticity field, we can follow
theperturbationand seethat theassociated linesdomove.
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EXTENDED HELMHOLTZ THEOREM

If the Helmholtz theorem tellsusthat in the absence
of non potential forces, vortex lines move with the
fluid particles, then what happens when non poten-
tial forcesarepresent? What istheeffect onvorticity
of aforce g,,#07? The answer, which we obtain
from our vortex dynamics Equation (78) is quite
simple. Itisthatthenon potential forces g np cause
a relative motion of the vortex lines and the fluid
particles.

It wasthestudy of thebehavior of quantized vortices
insuperfluid helium and superconductorsthat led to
amore complete understanding of the effect of non
potential forces on vortex motion. One experiment
in particular, an experiment by Rayfield and Reif
involving chargedvortex ringsin superfluid helium,
iswhat initiated this detailed study. We will usea
discussion of the Rayfield-Reif experiment to de-
velop theideascontained in the extended Helmholtz
theorem.

The Rayfield-Reif Experiment

Rayfield and Reif were able to create their charged
vortex rings by placing aradioactive substancein a
container of superfluid helium. The radioactive
substanceemitted charged particles, either el ectrons
or protons, depending on the substance. What they
found wasthat the charged particle, moving through
the superfluid, would create quantized vortex rings
in the superfluid, and then in a process still not
perfectly understood, the charged particle would
become trapped in the core of the ring it created,
producing an electrically charged vortex ring.

The interesting part about having an electrically
charged vortex ring, isthat you can apply an electric
field and exert an electric force on the core of the
ring. Wewill seethat thiselectricforceactingonthe
core represents a non potentia force acting on the
fluid in theregion of the core. Asaresult, Rayfield
and Reif were able to study, in detail, the effects of
non potential forces acting on vortex lines. Their
experimentsprovided asuperb verification of EQua-
tion (78) and the interpretation that non potential
forcescausearelative motion of thevortex linesand
the fluid particles.
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To apply Equation (78) to the Rayfield-Reif experi-
ment, consider Figure (7) where we show the cross
section of avortex corewith aforcedensity g acting
on thefluid in the core. Theforce g representsthe
electric force acting on the charged fluid inthe core.
Outside the core thereisno force where the fluid is
electrically neutral.

On Figure(7) we havedrawn three contours|abel ed
C'y, C'5,and C'5. The primesindicate that these
pathsaremovingwiththefluid particles, andthat we
are looking at the paths now at time (t). If we
integrate g around contour C';, we get a positive
contribution along the bottom section of the path,
and no contribution from the other sectionsthat lie
outside the core. Thuswe get

SE g [l = positive number (80)

C'1
For theforcedensity g tobeaconservativepotential
force, we would have to have <ﬁ g Ml =0 for any
possible path. Because the integral is not zero for
circuit C'q, Equation (80) shows that § is a non
potential force.

To seewhat alocalized forcelike g cannot do, look
at the path C' ; that goes completely around the core
andliescompletely inaregionwhere g = 0. For this
path we get

SE gl =0 (81)

C'3
Thus from Equation (78) we find that there is no
changeintheflux of @ throughthepath C'5. Since
C'; goes around the entire core, the flux of @
through C'; isthetotal circulation k of the vortex.
Thusalocalized non potential force, (onewherewe
can draw a circuit like C'5 that is in the fluid but
outsidetheforce) cannot changethecirculation
of the vortex line.

If § cannot change the circulation Kk, what does it
do? To find out we look more closely at the paths
C'; and C'; lyingaboveandbelowtheline. Wesaw
inEquation (80) that ¢ g [d{ wasapositivenumber
for the upper path C';. Thus g must be causing an
increase in the flux of G) through the upper path.
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Whenweintegrate g around thelower path C',, we
get zero except where the path comes back through
thecore, inadirectionoppositeto g, making <ﬁ g d [}
negative there. Asaresult
9@ g [ negative number (©2)
C'2
and wefind that g is causing adecrease in the flux
of @ through the lower path.

What doesit mean whenwe seethat § iscausingthe
flux of @ to decrease in the lower path, increasein
the upper path, but not change the total flux of the
core? It means that g is causing the vortex line to
move upward. Since the paths C'; and C', are
attachedtothefluid particles, theflow of @ fromthe
lower path to the upper path represents an upward
motion of the vortex line relative to the fluid par-
ticles. Thus the non potential force g causes a
relative motion of the vortex lines and the fluid
particles, arelative motion that is absent if there are
no non potential forces acting on the fluid.

Figure 7

An external force g isapplied to the fluid in the core of
avortex. We see that the fgi@d? is positive around the
upper path C’;, meaning that flux of @ isincreasing
through that path. Theintegral is negative through the
lower path C', meaning that flux of @ is decreasing
there. Thisresultsin an upward flow of vorticity. Since
cﬁgw 0 for the big path surrounding the entire core,
thetotal flux, or total circulation k, isunchanged.
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Thisrelative motion of thevortex lineissketchedin
Figure (8), where we designate the rel ative vel ocity
by thevector v,y . Notethat themotionisgyroscope
like; whenwe pushinthe g directionona2 oriented
vortex line, the line moves, not in the direction we
push, but upinthe ¢ direction.

Exercise 1
Use Equation (78) and Figure (9) to show that the vortex
line has norelative velocity inthe direction that g pushes
on the fluid.

Exercise 2

What is the direction of the relative velocity Vg, if § is X
directed as in Figure (8), but @ points in the -2
direction? (I.e.,whathappensifwereverse @?) Explain
using Equation (78).

—
Vrel

z

Figure 8
Therelative velocity v,y of the vortex
caused by the non potential force g.

e —————
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1
1
r

Figure 9
Paths for determining the relative motion
of thelinein thedirection of theforce g.
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Motion of Charged Vortex Rings

Now that we have some idea of the effect of a
localized force acting on avortex line, let usreturn
to our discussion of the Rayfield-Reif experiment.

Aswementioned, Rayfieldand Reif created charged
vortex ringsin superfluid helium by placing aradio-
activesubstanceinthesuperfluidthat emitted charged
particles, either an electron or aproton depending on
the substance. They ended up with charged objects
in the superfluid, objects whose motion they could
control using electric fields, and whose speed they
could measure by timing a pulse of the particles
moving between two grids.

But how could they know that the charged objectsin
the superfluid were actually vortex rings? The
objects were tiny, carrying the charge of only one
proton or one electron. In addition the core of a
guantum vortex is of the order of an atomic diam-
eter, sothat theringsthey weredealingwith could be
assmall asonly afew tensof atomicdiameters. How
could they be surethat these objects, that weremuch
too small to be seen, were actually vortex rings?

The answer was in the peculiar behavior of these
objects, abehavior only exhibited by vortex rings.
Themorethey accel erated these objects, the harder
they pushed on them, with an electric field, the
slower they went! The reason for this behavior
followsdirectly from the extended Helmholtz equa-
tion, Equation (78).
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In Figure (10) we show the cross section of avortex
ring moving to the right, down the x axis. Thisis
essentially Figure (12-15) of thelast chapter, which
shows how the velocity field of the top half of the
ring pushes the bottom half forward, while the
velocity field of the bottom half pushesthe top half
forward. Because the velocity decreases as we go
away from the core, the bigger the ring becomes, the
farther the halves are apart, the d ower thering moves.

In Figure (11), we show the same vortex ring, but
now we are assuming that thereisacharged fluid in
the core, and an external g directed electric field is
pushing on this charged fluid. It looks like we are
attempting to accelerate the ring by pushing onitin
the direction of its motion.

Toseewhat thisforce does, wego back to Figure (8)
and seethat the g directedforce g actingonthefluid
ina +2 oriented core causes the coreto move up in
the+9 direction. Atthebottom of theringwherethe
vorticity pointsin the opposite direction the same R
directed force causes the core to move down (see
Exercise2). Overall theforce g iscausing theentire
ringtogrow insize, whichresultsinthering moving
more slowly.

Thuswe have the peculiar phenomenon that when we
push on aring in the direction the ring is moving, we
maketheringbigger anddow itdown. InExercise(3),
you show that if you push opposite to the direction of
motionof thering, youmaketheringsmal ler andfaster.

Figure 10
Cross section of a vortex ring. Each side of thering

moves the other side forward. The smaller thering, the
greater the velocity field, and the faster the ring moves.
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Exercise 3
Using Equation (78), show that when you push opposite
to the direction of motion of the ring you speed it up.

Conservation of Energy

At first sight you might think you have a problem
with the law of conservation of energy when it
comes to the behavior of vortex rings. When we
push on an object in the direction that it is moving,
wearedoing positivework on the object, and expect
that, in the absence of friction, the energy of the
object would increase. But for avortex ring, when
we pushinthedirection of thering'smotion thering
slowsdown. Doesthering looseenergy asaresult?

No. Unlikebaseballsand other objectswearefamiliar
with, avortex ring's kinetic energy increases when it
dowsdown. Thatisbecauseitsdiameter increasesand
thus there is more length of vortex line. The kinetic
energy of theringisthekineticenergy 1/2 mv2 of the
fluid particleswhosemotioniscaused by thering. The
larger the ring, the more fluid involved in the vortex
motion, and the more kinetic energy associated with
the ring. Thus pushing on aring in the direction of
motion increases its energy, asit should.

Figure 11
An x directed force acting on aring moving in the
X direction causes the ring to expand.

Figure 12
Pushing opposite to the direction
of motion of thering.
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Measurement of the

Quantized Circulation K = h/m,

We have mentioned that Rayfield and Reif could
control and measure the behavior of their charged
vortex rings by sending pulses of the rings between
grids in the superfluid. By timing the pulse, they
could measure the speed of therings. By applying
avoltage difference to the grids, they could change
theenergy of therings. A voltagedifferenceV gjtage
would cause an energy change of magnitude
(eV voitage) for each ring because each ring carried
either one proton of charge (+€) or one electron of
charge (—e). We will give a rough argument as to
how these two kinds of measurements allowed
Rayfield and Reif to accurately measure the quan-
tized circulation K = h/my, of thering.

We have noted that the energy of aringisthekinetic
energy 1/2mv2 of the fluid particles. Since the
velocity field of a vortex is proportional to the
vortex'scirculation k (V = k/2rr for astraight vor-
tex), the fluid kinetic energy is proportional to k2.
Thefluid energy inavortex ringisalso proportional
tothelength 21R of lineinthering. Asaresult the
fluid kinetic energy is proportional to k2R ng

kinetic energy
Ering Ok ZRring of a (83)
vortexring
Exercise 4

Show that p|<2Rring has the dimensions of kinetic
energy.

Wehaveseenthat thevel ocity of apair of oppositely
oriented vorticesis given by the formula

— K (12-40)

V2D ring = ATIR.
ring

and have noted that the speed of acircular ring is
roughly the same but more complex. In any caseit
is proportional to K/R yjng

speed of

K
a vortexring

ring Rring
Neither Equation (83) or (84), or an accurate cal cu-
lation of these quantities, can be used to measurethe
circulation k of thering because you cannot seethe
rings to measure their radius R,g. But in the

Vv

(84)
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product of the two terms, the unmeasurable term
R ing cancels and we are left with the formula

Eri nngring Ok 3 (85)
Equation (85) suggests that an experimental mea-
surement of Ej;,% Vg Will give an experimental
value of k3. A careful (and messy) calculation
showsthat both E (g and V yi,q havefactorsof the
logarithm of the ring radius R g divided by the
core diameter (a). As a result there are factors of
In(Ryiny/@) inamoreaccurate formulafor the prod-
uct Ejng*Viing- However this logarithm is quite
insensitive to the actual value of R jn4/a (increase
theringradiusby 1000 andthelogarithm In(R;;n/2)
increases only by an additional amount of 6.9). By
making a number of measurements of Ejq*Viing,
Rayfieldand Reif werenot only abletodeterminek ,
but also the core diameter (a). That is when they
found that the core diameter was roughly the diam-
eter of a helium atom.

The Magnus Equation
In Figure (8) repeated here we show a 2 directed
vortex line, subjectedtoan X directed force, moving
inthe § direction. Thismotion labeled V 4 isthe
motion of the line relative to the fluid particles due
to the non potential force g. For the special case of
a straight vortex, it is fairly easy to calculate the
magnitude of thisrelative velocity V rel - Theresult
we will call the Magnus equation, named after a
person who first studied sideways motion due to
vortex effects.
y

L

z
Figure 8 (repeated)
They directed motion of a z oriented vortex
line subject to an x directed force.

—_—
Vrel



For this calculation, assume that we have a core of
diameter D, with auniform 2 directed vorticity @
and an g directed force inside, as shown in Figure
(13). We have drawn two paths C'4(t) and C',(t)
attached to the fluid particles. The circuits nearly
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gl =
° (88)
Thus
od
67'[1 =gb ; 0%, = gDdt (89)

touch each other so that half of the flux of @ goes
through C'; and half through C', at the time (t).

A littletime &t later, the core has moved upward a
distance oy relativetothefluid particlesasshownin
Figure (13b). To keep the calculation simple, we
will assume that the force g is strong enough to
movethecoreup areasonabledistance dy beforethe
fluid hasmovedthecircuits C'; and C', noticeably.
(Themoreaccurateca culationin Appendix 2 doesnot
make this assumption, but gets the same answer.)

Because the vorticity is moving up relative to the
fluid particles, and thus up relative to the circuits
C'; and C',, by the time (t+4&t) we have an addi-
tional band of flux of area (Ddy) through circuit
C',. Thustheincrease d®; of fluxincircuit C'y,
aswego from (t) to (t+dt), is

5P, = w(Ddy) (86)

Applying our vortex dynamics Equation (78) to the
upper circuit C';, we have
6¢1 = i gl

rate of increase

of flux of @

throughC' (87)

Looking at Flgure~(13a)ﬁweseethat the only contri-
bution we get to <i> gld{ around C'; isthrough the
center of thecore, where g actsfor adistance D, giving

Cy(tr)

b)  Cited)

Figure 13

As the core moves up relative to the fluid
particles, and thus up relative to the paths
C1 and C; attached to the fluid particles,
we get at time (t + dt) an additional band
of flux of area (D dy) in circuit Cj.

Equating thevaluesof d®; from Equations(86) and
(89) gives

0P, = wbhdy = gDat (90)
The D's cancel, and we are left with
oy _
g = wét WV g (91)

whereV o istherelativevelocity of thevortex core
and the fluid particles.

Equation (91) can beput inamoreuseful formif we
multiply both sidesby p, convertingtheforceg per
unit massto pg = f, theforceper unit volume. Then
integrate f over the area of the core, giving us the
force per unit length acting on the core. We get,
using Equation (91) g = wV,g,

Fo= | podA = p| (@Via)dA
area of areaof
core core
= ere,f wdA (92)
areaof

core
But theintegral of w over the area of the coreisk,
thetotal circulation of the core. Thus Equation (92)
becomes

Fe = PKV g (93)

The final step isto turn Equation (93) into a vector
equation. Welet thevector K = 2k pointinthedirec-
tion of the vorticity @. Theforce F. pointsin the
directionand V o is ¥ directed. Using the right hand
rule, we seethat the cross product Vre, XK pointsinthe
R directionlike F Thuswe have the vector equation

2 5 Magnus
Fo = pVig xR equgtion (94)

which is a remarkably simple result for what looked
like acomplex situation.



Cal 13-22  Calculus 2000 - Chapter 13

In Appendix 2 tothischapter, we derivean equation
for the effect of non potential forceson curved fluid
corevortices. Theresultlooksexactly like Equation
(94), butit tellsushow to define V ;o whenwehave
acurved vortex.

Fo = pV,g XR (94) repeated

When the exact formula is applied to a straight
vortex in a two dimensional flow, the terms in
Equation (94) have the following meaning. If 2 is
thedirection perpendicul ar totheflow, then F, isthe
x-y component of the total force per unit length
acting on the fluid in the core region. The compo-
nent (Fg), parallel to the vortex has no effect. The
circulation K isthetotal flux of @ inthecore, andis
2 oriented.

The relative velocity V o isgiven by the formula

\7rel = \7v0rtex_\7fluid (95)

where the vortex velocity Vorey iSthe velocity of
the center of mass of the vorticity w,, and the fluid
velocity V¢iq 1S the weighted average of the fluid
velocity v in the core region, given by the integral

Viig = %f w,vdxdy (96)

Vrel

R y
F
e, )—x
z

Figure 14
Relative directions of @,Fg, and V.

Fluid Dynamics

Withthese definitions, Equation (94) isan exact equa-
tion for a straight fluid core vortex. The result is
independent of theshapeof thecoreor theforcedensity
g, aslong as both are confined to alocalized region.

Thederivation of theexact Magnus equation, which
we do in Appendix 2, is obtained by going back to
Equation (55) and rewriting that equation as a con-
tinuity equation for the flow of vorticity. In some
waysthecontinuity equationissimpler toderiveand
use than the Helmholtz theorem approach. But the
continuity equationinvolvesthequantity € ik which
we introduce and use in Appendix 1 to derive vari-
ousvector identities. Thusit seemed appropriateto
delay a discussion of the continuity equation until
after the reader has studied Appendix 1.

(The beginning of Appendix 2 gives a complete
physical explanation of the continuity equation ap-
proach with virtually no mathematics and can be
read at any time.)
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IMPULSE OF A VORTEX RING

Although we have discussed the Magnus equation
F=pV rel X K as applied to a straight vortex, the
same ideas can be used for a curved vortex as long
as the radius of curvature of the vortex is large
compared to the core radius. When we apply the
Magnus equation to a vortex ring, we get asimple
formularelating thetotal forceontheringtotherate
of change of the area of the ring. Introducing the
concept of theimpulseof avortex ring, wecanwrite
thisformulaso that looksalot like Newton'slaw for
vortex rings.

In Figure (15) we again show the cross section of a
vortex ring, now showing the force Iﬁ:e per unit
length acting on each section of the core, and the
relative velocity V re Causing the ring to expand.
Forsimplicity let F beinthedirection of themotion
of thering, so that the Magnus equation implies

Fe = PKV(y (94a)
The velocity Vg isjust therate dR;, /dt that the
ring radius is increasing. Thus Equation (94a)
becomes

dR;
Fe = PK—4 (97)
The F,, in Equation (97) isthe force per unit length of
thering. Thetotal length of theringisitscircumference

2TR g, thusthetotal force F gy 1S 2MR g, giving

F o= 2MR.F.= 21pK Ry i
total — T ringTe = <TUPK Rring—q¢ (98)
However
dR _ 1 d ( 2)
Rat = 2t (99)
Figure 15 I_:(;
An external >
force pushing
on theringin V.
the direction of g
motion causes
theringto =
expand. Fe
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Thus Equation (98) can be written in the form

I:total = dt (T[er ng) (100)

But nRﬁng isjustthearea A ;g Of thering, thusweget

Fotal = SF(PKA ing) (100)
Let us define the vector A ng @Savector of magni-
tude T[Rﬁng, pointing in the direction of the motion
of the ring. Then since the total force Fyy aso
pointsin the same direction, we can write Equation
(101) asthe vector equation
IH:total = %(pKR ring) (102)
Of course we have derived Equation (102) only for
the special casethat F, pointsinthedirectionthe
ring ismoving. It becomes an interesting exercise
with the vector form of the Magnus equation to show
that Equation (102) appliesfor any direction of Fyy -

Equation (102) seems to look a lot like Newton's
second law relating the total force F acting on a
particle to the particle's momentum p

z_ dp
F_dt

Equation (102) suggests that the quantity pkA ;.
plays arole for vortex rings similar to the role of
momentum for particles. Asaresult it has become
traditional to give pkA ing @ Specia name, the
impulse T of thering

Newton's second law

impulseof a
vortexring

= pKK ring (103)

With Equation (103) the formulafor Fyy, becomes

_ dl impuise

Ftotal T dt equation (104)

A common error one can make is to associate the
impulse T of avortex ringwith an actual fluid momen-
tum. Suppose, for example, you haveavortex ringin
asededcontainer. If youintegrate pv for thatringover
the entire fluid, the answer is zero! In other words
vortex rings do not carry linear momentum. The
impulse T is a separate quantity with its own specid
properties. One important property isthat it makesit
easy to predict thebehavior of aring subject to external
forces. But it isnot the momentum of thering.
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THE AIRPLANE WING

Inthefluid dynamicsChapter 23 of thePhysicstext, we
used Bernoulli'sequation to provideaquditativeview
of why airplanesfly and sailboatscansail intothewind.
Inthissectionwewill firstlook at theflow patternof the
fluid past an airplanewing, and seethat for thereto be
lift, there hasto beanet circulation of thefluid around
thering. Thismeansthat thereisavortex surrounding
the wing. We then use the Magnus equation (95) to
obtain aformularelating the weight of the airplaneto
theforward speed of theairplaneand thecirculation K

of the vortex about the wing.

Figure (16) is a sketch of the streamlines we might
expect for theflow of afluid past anairplanewing. Our
Bernoulli equationargument wasthat becausethefluid
wasflowing faster over thetop of thewing (wherethe
streamlines are closer together) and dower under the
wing, the pressure must be higher under thewing than
on top so that the sum of the terms (p + pv2/2) be
congtant. (The pgy termistoosmall toworry about for
afluidlikeair.) Thishigher pressure below suggests
that the fluid is exerting a lift force on the wing. In
Figure (16) we have drawn a circuit C' around the
wing. Whenwecalculatetheintegral ¢ vid{ around
thiscircuit, we get abig positive contribution from the
high speed fluid at the top, and a smaler negative
contribution from the dow fluid at the bottom. Thus
there is a net positive circulation K surrounding the
wing. InFigure(16), thecirculation R pointsinthe +2
direction. If there were no net circulation, if the fluid
had the same speeds above and below the wing, there
would be no lift.

_—K :‘[V-d_:?

J—
mg
Figure 16 y
Flow pattern past an airplane wing. X
y4
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Hereiswherewewill adopt arather unconventiona
view inorder to directly apply the Magnus equation
(94) to the airplanewing. Wewill picture the wing
asbeing made of frozen fluid of the same density as
theair flowing over it. Thisway we canthink of the
wing itself as part of the fluid, giving us a constant
density, fluid core vortex to which we can apply
Equation (95). Because the Magnus equation in-
volvesonly thetotal circulation K and not thedetails
of the structure of the core, it makes no difference
that our core now consists of avortex sheet around
the surface of the wing rather than the solid-body
like rotation we assumed in our other vortex cores.

Thepurpose of thewingisto support theweight mg
of theairplane. If wedivide mg by thetotal length
L of the wings, we get the downward, —y directed
force 'Eg per unit length acting on the wings, and
thus on the core of the wing vortex.

Hereistheunconventiona part of theargument. If you
exert adownward, —y directed force on a 2 oriented
vortex, you will get an g directed relative velocity of
the core as shown in Figure (17). (Figure (17) isjust
Figure (8) rotated 90°.) Comparing Figures (16) and
(17), wecan say that thedownwardgravitational force
on thewing, i.e., on the core of the vortex around the
wing, is causing the wing vortex to move forward
relative to the fluid through which the arplane is
flying. The Magnus equation, with F, = Fy is
Fy = PVig xR (104)
Thisgivesusan explicit formularel ating the down-
ward gravitational force F, per unit length, the
circulation K of the wing vortex, and the forward
speed V . of theairplane.

Figure 17
Motion of a vortex subject to a localized force .
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Thefirst thing thisequationtellsyouisthat there must
be a vortex around the wing of an airplane for the
arplanetofly. Inaddition, thevortex cannot stop at the
end of thewing because vortex lines, being solenoidal
(0@ = 0), cannot stop in thefluid. Instead the vorti-
ces trall back behind the airplane and are sometimes
very visible during takeoff on a misty morning.

Equation (94) asotellsusthat for agiven speed V o,
the heavier the airplane, i.e, the grester F is, the
greater thecirculation K hastobe. Tolift theairplane,
the circulation has to be particularly strong during
takeoff wheretheforward vel ocity V re Of theairplane
issmall. Asaresultthemassivejumbojetshavestrong
wing tip vorticestrailing after them, strong enough to
flip smal airplanes taking off behind them. Pilots of
small aircraft arewarnedto stay clear of thejumbojets.

We have just presented the rather different picture
that the forward motion of an airplane is caused by
thegravitational forceactingdownonthecoreof the
wingvortex. Whenthispoint of view was presented
inascience journal article, areviewer repliedthat it
was the airplane motors which pulled the airplane
forward. Our response to that was—what about a
glider that flieswithout motors? Themainroleof the
motorsinlevel flightistoovercometheviscousdrag
on the wings and fusel age.

Althoughitworkswell, our pictureisstill unconven-
tional. When we used the Bernoulli argument in
Chapter 23 of the Physics text, we were using the
conventional picture that the fluid is exerting alift
force on the wing. The conventional derivation of
the lift force involves calculating the momentum
transfer between thefluid and the solid object. This
iIsa somewhat messy calculation involving integra-
tion of pressureforcesover the surface of the object.
When you finish, you find that the lift force is
proportional tothetotal circulation K about thewing
andthevelocity V rel Of thewingrelativetothefluid
through which it is moving. Such alift force on a
moving vortex is called the Magnus Force.
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The Magnus Lift Force

Wearein aposition to write down theformulafor the
lift force on an airplane wing without doing any pres-
sure forceintegrations. Start with Equation (104)

Fy = pV,g xR (104) repeated
which relates the gravitational force T:g per unit
length to the circulation K and the relative velocity
\7re, of thevortex. If theplaneisinlevel flight, then
the downward gravitational force Fy must be ex-
actly balanced by the upward lift force F;, for the
plane not to rise or fall. Thuswe have

Fire = —Fy (105)
which givesus
Fitt = —PVig XK (106)

In addition to airplane wings, spinning objects gen-
erally have a vortex around them. If the object is
moving through the fluid at avelocity V g, it will
experience a sideways lift force given by Equation
(106). Thissidewayslift force on a spinning object
iscalledtheMagnusforce Iﬁ:nr,agnus after G. Magnus
who studied the sideways motion of spinning ob-
jectsin 1852* . TheMagnuslift forceformulafound
in textbooks is

Magnus
lift force

Fragnus = —PVig XK
formula

(107)

*"Onthedeviation of projectiles; andon aremark-
able phenomenon of rotating bodies." G. Magnus,
Memoirs of the Royal Academy, Berlin(1852). En-
glish translation in Scientific Memoirs, Lon-
don(1853)., p.210. Edited by John Tyndall and Wil -
liam Francis.
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The Magnus Force and Fluid Vortices
The extended Helmholtz theorem, Equation (78)
and its application to the motion of vortex lines
through afluid, was developed in the 1960s to help
understand vortex behavior in the Rayfield-Reif
experiment. Beforethat, and still inmost textbooks,
themotion of vorticesthrough afluidisexplainedin
the following way.

The Magnus force formula  Fipgnus=—PVia XK
tellsustheliftforceonasolid object movingthrough
afluid at avelocity Vo, when thereisacirculation
K about the object.

If one hasafluid core vortex moving relative to the
fluid, one says that there must be a lift force
Finagnus= —PVre XK actingonthatvortex. Butthere
ISno extramass associated with afluid core vortex,
SO one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero. That means that there must be an external
force Feyema acting on the vortex to cancel the
Magnus lift force. That is, one must have

r:external + r:magnus =0 (108)

Using the Magnus formula (107) in (108) gives

r:external = _r:magnus = p\7relxR (109)

Thisisjust our Equation (95) relating the relative
motion of a vortex to the localized, non potential
force on the core of the vortex.

What we have shown, by deriving Equation (109)
directly from the Navier-Stokes equation, which
itself camefrom Newton'ssecond law, isthat wecan
describe vortex motion without any reference what-
soever to aMagnuslift force. The Magnusforceis
a pseudo force, which like the centrifugal force,
may be very useful for calculation, but which has no
place in abasic description of the motion of the fluid
itself.
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nendix for Chapter 13

Component Notation and
the Functions 6i J and ¢; jk

In our derivation of the Navier-Stokes equation we
ranintotheterm [J;(Pv;) whichwecould not handle
very well with vector notation like O or Clg. To
handlethistermweresorted to component notation
[; and v; , and introduced the Einstein summation
convention. Herewewill briefly reviewthe summa-
tion convention, and then discusstwo quantities o;;

and €, that play basicroleswhenweworkwithdot
and cross products in component notation. These
quantities also become extremely useful when we
are working out vector identities, like the relation-
ship

(WD) v = ﬁ(";) _ux(Cixv) (13-33)

which we used to get the v%/2 termin Bernoulli's
equation.
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THE SUMMATION CONVENTION

In Equation (12) of this chapter we wrote the dot
product of two vectors al in the following three
forms

alb

a,by, +aby +a,b,
2 ab,

i=xy,z
= ab;
With the summation convention, when we have
repeated indices like a;b;, it is understood that we
aretosumover all valuesof therepeatedindexi. We
gave as an example

(13-12)

abjci = abjc, +abjcy +abic,

wherewe summed over therepeated index i, but the
single index j was not summed. In mixed index-
vector notation, gbjc; could be written

(abc)); = abjc; ()

THE DOT PRODUCT AND 6i i

We will see that the quantity 6”-, defined by the
simple relationship
6” =1 ifi :j
L 2
=0 ifi#]

is closelly related to the dot product in component
notation. Consider the term

0jj;b; 3)
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Herebothindicesi andj arerepeated, sothat wehave
to sum over both to get

6ijai bj = Oyxayby + 6xyaxby + 0y ,80,
+ Oyxayby + dyyayby + 3,80, (4)
+ 0,580y + 6zyazby +0,,8,0,
In Equation (4), the only non zero d; j termsare Oy s
dyy and d,,, leaving
6ija1- b j = Oy by + éyyayby +0,,ab, (5

Since 8, =9, =9,, =1, weget

yy
jaa = ab, +ab, +ab, = ab (6)

In component notation this can be written

Sjab; = ajb; = ab 7)

Y ou can seethat the function &;; turns the product of
two vectors g and b; into adot product.

Another way of handling j;a;b; istofirst work out
the effect of &;; acting on &. Setting theindex j to
X we have

Oixdj = Oy + 6xyay+ Oyz8, = 8
Similarly we get

Siydy = 8y

i = 8,
Thusfor any value of |, 6ijai isequal to EY

08 = g (8

Then when we want to evaluate the product d;a;b;
we can write

(8a)b; = (a))b; = alb 9



THE CROSS PRODUCT AND sij k

Wejust saw that §; i turned the product of two vectors
g and b; intoadot product ar. Wewill now seethat
adi ghtly morecomplex function €;; ik turnstheproduct
of two vectors ;b into across product axb

The cross product axb of two vectors is given by
(axb), = ab,—ab,
(axb), = ab,—ab, (10)

(axb), = ab,—ah,

We will see that this can all be written as the one
eguation

(axb); = gjajby (11)
where the function &;,c has the values
gj = O ifanytwoindicesareequal
Sxyz = 1
&y = —1
Xzy (12)
Epy = *1
0o

What we are indicating by the dots is that if you
permute (interchange) any two neighboring indices,
you change the sign.

For example, what isthesign of €, ? Tofind out we
dothefollowingpermutationsstartingwithey,, = +1

Exyz = +1
g = —1
- (13)
Xy ~ +1
Ezyx = -1

It does not matter how you do the permutation you
aways come out with the same answer. For example

Exyz = *1
€ =-1
e (13a)
Eyzx = *1
€ =-1

zyx
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Because of this permutation property, €ijk is often
called the permutation tensor. (A tensor |savector
like object with more than one index.)

Now wehaveto check that Equation (11), using &; ik
for the cross product, givesthecorrect result. Using
the summation convention and crossing out terms
like £y, Which are zero, we have

(axb)y = g,aby

Eﬁka)&lg + 8xykaybk + 8xzkazbk

= Exyye * Egyly + Exy 30,
ey + 8xzyazby 'p%zazgz

(@axb)y = ExyzyDz * ExzyBrDy (14)

With € +1, &,,,=—1 (one permutation), we get

xyz =
(axb), = ab,-ab

Which is the correct answer.

(15)

Exercise 1
Check that

(é X E))y = eyjkaj bk
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Asan exampleof theuseof the gj;,, let us provethe
vector identity

AQBxC) = (AxB)T (13-68)

which we used in the derivation of the Helmholtz
theorem. We have

AOBxC) = A{(BxC),
= AigiB;iCx
/Kl]gxé) = EijkAiBjCk (16)
(AxB)IT = (AxB),C,
= &jA ByCi
(A)x§)|:€: = EijkAjBkCi (17)

Toshow that Equation (17) isequivaent to (16), we
will first rename the indices in Equation (16). We
will dothisintwo stepsto avoid any possibleerrors.
Changing i - r, j - s, kK >t in Equation (16)
gives

SijkAiBjCk = SrgA I’BSCt (163)
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Wecan do thisbecauseit does not matter what | etter
weusefor arepeatedindex. Now wewishtorename
the indices again so that the vector components in
Equation (16) match thosein (17). If we substitute
r-j, s-k, t-i,Equation(16a) becomes

SrgA I‘BSCI = 5jkiAjBkCi (16b)
which when combined with (17a) gives
sijkAiBjCk = SjkiAjBkCi (16C)

Withsomepractice, youwill not bother goingthrough
steps (16a) and write (16b) directly.

We now have
E\mgxé) = ajkiAjBkCi (16d)
(K\XE)@ = aijkAjBkCi (17) rq:)%ted

The vector components now match, and what we
now haveto doisseehow &;;; compareswith €, .
Wewill start with €;,c and see how many permuta-
tionsit takesto get to €. We have

Ejik = ~&jjk
€ = —&jik = —(~€ij)
Twopermutationsarerequired, wehavee; = &y ,

and thusthetermsin (16) and (17) are equal, which
proves the identity.

Whilethesestepsmay havelooked abit complex the
first timethrough, with some practicethey aremuch
easier, faster, and more accurate than writing out all
the x, y, and z components of the cross products.



Handling Multiple Cross Products

To work out vector identities involving more than
one cross product, there is a special identity that is
worth memorizing. Itis

EijkEkim = Oi1Ojm— Oimd;ji (18)

First of al, note that Equation (18) has the correct
symmetry. It must change sign on theright if you
permute (interchange) i andj or | and m, becausethat
is what € and gy, do on the left side. This
combination of & functions has that property.

Before we try to prove Equation (18), we will give
an example of how useful itis. Consider the rather
messy set of cross products ax (b x ¢). Using the
€jjk hotation for cross products, we have

[ ax(bxg) ]i = gay(bx ¢)y

= &jjk&€mbICm

(19)
= (&jkEum)b1Cm
Using Equation (18) we get
[éx (bx ) ]i = (3;10jm —0im9;;) 8;b,Cry (20)
We will get some practice with the use of the
functions &;;. We have for example

6i|b| = bi , 6ijm = Cj (21)
So that
6i|6jmajb|cm = ajbiCj
and
—Bim51|ajb|cm = —aij-Ci
We get the result
[éx(Bxé)]l = ajbiCj—ajbjCi (22)
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To apply Equation (22) to the problem we had with
the Navier-Stokes equation, let

a=v; b=0; 8=v (23)
giving
[Vx(ﬁ X\7) ]i = VjDiVj—VijVi (24)

By not changing the order of thevectorsin Equation
(22), the equation can be used Whenﬂone or more of
the vectors are the gradient vector [.

Toget Equation (24) intotheformwewant, consider

%DiVZ = %Di(VfJFV;'J’VzZ)

%(ZVxDiVx +2v,Oivy + 2v,0,v,)  (25)

= VjDiVj
Thus Equation (24) can be written
IR v2
[VX(D >(V) ]i = Di 7 +VijVi
To put this in pure vector notation, notice that
Equation (26) is the (i)th component of the vector
equation

(26)

_ L [y2 _
Ux(Oxv) = D(VZ)+(\7D]])\7 (27)
Equation (27) isequivalent to
Lo =(v2) o
(vio)v = -0 > +VXW (28)

which we used to get the Bernoulli term —C(v2/2)
into the Navier-Stokes equation.
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Proof of the € Identity
Wewill usearather brute force method to provethe
identity

EijkErim = Oi1Ojm— dimd;i (18) repeated

L et usconsider thespecial casei =xandj =y. Then
for the & functions we get

0i10jm = 8imdji = Bx1Oym—Oxmdyl (29)
IfI=x,m=y, get+1from d,,0,n (30a)
IfI=y, m=x, get-1from-9,,0,, (30b)
All other valuesof | and mgivezero  (30c)

For thiscase i = x and j =y, the product of €'s,
becomes

EijkEkim = Exyk Ekim (31)
The only non zero value for k is z giving
Sxyksklm = 8xyzszlm (32)

Theonly value of | and mthat give anon zero result
ael=x,m=yandl=y,m=x. Forl =x,m=y,
we get €,y,€,y, . TWO permutations give

Exy U —Exzy UE 4y, = +1

Thus
sxykeklm = +1

forl=x,m=y (333)

which agrees with Equation (30a).
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For thecasel =y, m = x, we get

Exyk‘(':kl m ~— 8xyzezyx
Now

€2yx l €5y Le X2y [l —€yyz = -1

thus
Exyz€zyx = (+D(-1) = (-1)
and we have

forl =y, m=x (33b)

Exyk‘(':klm =-
which agreeswith Equation (30b). All other values
of | and m give zero, in agreement with (30c).

You can see that Equation (18) is correct for the
specia casei =%, ) =Y. Inafew more pages of
essentialy identical work you can, if you want,
show that Equation (18) works for any values of i
andj. For practice, perhapsyoumight try acaselike
i=zj=y.



Appendix for Chapter 13

Part 2

Vortex Currents

In the main part of Chapter 13, we derived the
following equation that describes the behavior of
vorticity in a constant density fluid.

99 _Hx(¥xe) = O xGy (13-55)
It turnsout that there are two rather different ways
tohandlethisequation. Theoneweusedinthemain

part of the chapter was to show that

SD(@) _ Hadﬁ_ﬁx(wa))

5t ot [BA

Sr

rate of change of the flux

of wthroughacircuit S
that moveswith the fluid

(13-74)
Thusif Onp=0 ,thereisnochangeinthefluxandwe
have HelmholtZ's theorem. If thereisa changein
flux, we have the relative motion of the vortex lines
and fluid particles that we discussed in detail.

The other approach, which wediscussin thisappen-
dix, is to turn Equation (13-55) into a continuity
equation for the flow of the vorticity field . The
physical idea of how we get a continuity equationis
very straightforward. The mathematics requires a
fairly extensive use of the tensor €;;, that we dis-
cussed in Appendix 1. That iswhy we have delayed
the discussion of the flow of vorticity and vortex
currents until this appendix.

Of the two approaches, the continuity equation ap-
proach is the more powerful. As we mentioned, it
leads to an exact Magnus formula for curved fluid
corevortices, aresult that had not been obtained any
other way. And theflow of vorticity, intheformof a
vortex current tensor, appearstobeplayingarolein
recent approaches to string theory.
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CONSERVED TWO
DIMENSIONAL CURRENTS

Beforewego through any mathematical steps, let us
look at the physical ideas of why we should expect
to find a conserved flow of vorticity, and why
working with aconserved flow might giveusasmple
way to handle the dynamics of the vorticity field.

In Figure (1a) we have sketched several vortices of
rather arbitrary shape that we imagine are moving
aroundinaconstant density fluid. Whenweoriginally
drew this diagram, we were thinking of quantized
vortex linesmoving around in superfluid helium. But
it turnsout that our analysisappliesto tubesof flux for
any solenoidal field, i.e., any field like @ that haszero
divergence. The significance of a solenoida field is
that theflux tubes cannot stop or start inthefluid. The
tubes have no free endsin thefluid.

\

\ D
a)
,,/
[

I /]

(™

o

i ™~ \ / b)
o

~0
0
~0
4

Figure 1

If you slice the solenoidal vortex lines with an arbitrary
xy plane, the circles, representing the intersection of
thelines and the plane, form the objects of a conserved
two dimensional current. When aloop pulls out of the
plane, asin thelower right corner, two circles of
opposite orientation annihilate each other. Circles can
be created or annihilated only in pairs, or comein
through the edges.
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In Figure (1a) we have also drawn a plane that cuts
through these vortices. Thisis an arbitrary plane,
dicing thefluidin any way wewant. After drawing
the plane, we then align the axis of our coordinate
system so that the z axis is perpendicular to the
plane. Thuswe call thisthe 2 plane.

Whereavortex tubeor linecomesupthroughtheplane,
we havedrawn awhite circle, and whereit goesdown
through—a black circle. Because the flux tubes of a
solenoiddl field cannot start or stop in the fluid, the
circlesinthe 2 planecannot appear or disappear oneat
atime. What can occur isthat aloop may pull out of the
plane as may be happening in the lower right hand
corner. When this happens, awhite circle and ablack
circleannihilate each other. If aloop entersthe plane,
wehavethe creation of awhitecircle-black circlepair.

If theplaneextendswell out beyondtheregion of the
vortex lines, then we have aconservation law. The
number of white circles minus the number of black
circlesis aconstant.

Wecangoastepfarther, and notethat thecirculation
K of each vortex tube is given by the formula

Kzfcm,&:f wdA, (1)
S areaof
Intersection

Weget thesameresult for K nomatter what 2 plane
weuseforintegrating w, , aslongasthe 2 planecuts
through theentiretube. Asaresultthewhitecircles
inFigure (1a) represent anet circulation +k andthe
black circles—« . If al theflux tubesof @ havethe
samecirculation K , thenthetotal flux of @ through
the plane is simply k times the net number of
circles, i.e., the number of white circles minus the
number of black circles.

If thefluid is bounded, or the plane does not extend
out beyondtheregion of thevortex lines, thenthenet
number of circlescan changeby having vortex lines
move in or out across the edges. Thus the more
general conservation law isthat the rate of change
of thenet number of circlesin agiven region of the
plane is equal to the rate at which circles are
flowing in or out across the edges of the region.
Thisisaverba statement of a continuity equation
for the flow of the black and white circles.



CONTINUITY EQUATION FOR VORTICITY

Toobtainthemathematical continuity equationfor the
flow of w,, we start with the dynamic equation for
vorticity, given by Equation (55) of Chapter 13 as

99 _Fx(vx @) = 0x(Gnp) (13-55)
which obvioudly isequivaent to
%‘? = Ox(VX@+ Ypp) (13-55a)

In component notation this can be written as

w.
ot = EikCiVx0+ o), 2

where g\ isthe permutationtensor usedinAppen-
dix 1 to handle cross products. Using the fact that
€jik = —€jjk, We get

a(A)J Y
a5t - _Di[sijk(vxw+gnp)k 3

Rather than try to deal with all the componentsin
Equation (3), let uslook at the z component of the

equation, which becomes

0w, _

ot ~ _Di Eizk(\7 X+ gnp)k (4)
Defining the vector | (w,) by theequation

J(wz)| = 8izk(\7><(70"'(jnp)k (5)
we get the equation

0 o

T = -0 (6)

which ha§ the form of a continuity equation if we
interpret j(w,) asthe current vector for w, .

This current vector f(wz) has the very specia
property that it is two dimensional; it has no 2
component. The formulafor the z component is

()

Thisiszero because €,,, = 0. ThusEquation (6)
is the continuity equation for the two dimensional

j(W,), = €, (VXW+Tpp), = O
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flow of w,, whichisexactly what we expected from
our discussion of Figure (1b).

Theformulafor T(wz) still needs some simplifica-
tion. Thefirst step isto write v x@ in component
notation to get

Eik(VX W)k = & a€kimVithnm

Next, usethe relationship we proved in Appendix 1

EijkEkim = 9i10jm— Oimdji (A1-18)
to get
Eiak(VX @) = (8}107m — Ojmdz) VW, ®

= Vi, =V
The other simplification comes from noting that
(9)

whereweset g;;,.2; = €, becausetheunitvector 2
has only az component.

(ngnp)i = 8ijkzj(gnp)k = Eizk(gnp)k

In Equation (5) using Equation (8) for €;,(V* ),
and Equation (9) for sizk(gnp)kto get

j(wz)i = Vi, =V (2Xgnp)i

We can ssimplify the interpretation by introducing
the notation

(10)

V=(v, V) ©= (0, ay) (113)

where the vectors Y and 0y are vectors represent-
ing the componentsof v and @ parallel to theflow
of w,, i.e., componentsthat lieinthe 2 plane.

Sincethecurrent vector j (w,) hasno 2 component,
it has only a parallel component

j(@) = o) (11b)

With this notation, we can let the index i be the
parallel component in Equation (10), giving

(13)

I(‘*)z) = \7||U)Z_VZQ| + 2x@np

Equation (13) is our final equation for the two
dimensional current or w, inthe 2 plane.
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Roughly speaking, the terms in Equation (13), re-
peated below, have the following interpretation.

I(wz) = \7||0')Z_VZQ| + 2>(gnp (13) repeated

The Vw, term clearly represents the convection of
w, due to the fluid motion v, in the plane. The
2% @y, term whichwecall theMagnusterm, gives
us the sideways motion of the vortex when a non
potential forceis acting on thefluid. For example,
if wehavean g directed force g acting on the core
of a2 directed vortex, weend up witha g directed
flow of vorticity asindicatedin Figure(2), adiagram
we have seen before.

The — v,y term is more of a problem to interpret.
We note, however, that for atwo dimensional flow
with straight vortices, we can orient the 2 planeto
cut thevortex perpendicular tothe coresothat @, is
zeroandthetermvanishes. Wewill seethat for three
dimensional fluid flow with a curved vortex, this
term can be madeto go away by choosing aproperly
oriented 2 plane. From this point of view, the
—V, 0y termtellsuswhich 2 planeto use.

Figure 2
Motion of a vortex line subject to an x directed force.
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A SINGLE VORTEX LINE

To help interpret the equations for vortex motion,
wewill apply Equation (13) tothemotion of asingle
vortex line. We cut thelinewith a 2 plane as shown
inFigure (3a) and look at the behavior of w, inthat
plane, asseenin Figure (3b). The main result isthat
weend upwithaformulafor themotion of thecenter
of massof w,. Thisresult isaconsequence of their
being a conserved two dimensional current of , .

Figure 3a
Cut the vortex linewith a 2 plane.

y
Veom
A
Z plane X
Figure 3b

We will study the motion of @, in the 2 plane.



Center of Mass Motion

Our first step isto show that if we have an isolated
vortex where both , and non potential forces gy,
are confined to acore region, then the vortex veloc-
ity Vyortex defined by

\7vortex = Kf J?(wz)dAz = VCOM

core
area

is the velocity of the center of mass of w, inthe 2
plane.

(14)

To show this, we begin with Figure (4) where we
show the localized core area of avortex asit passes
through the 2 plane. We are assuming that the
dotted rectangle from x, to xy,, and y, to y, lies
outside the core areawhere both w, and | (w,) are
zero.

We definethe area AA(y;), seenin Figure (4), asa
band of thickness Ay that goesfrom x, to X, , and
fromy; to yj+Ay. Thetotal vorticity Ak; in this
band is

Xp

Ak, = Ayf w,(X,y;)dx

Xa

(15

Theformulafor the center of masscoordinate Roy
of acollection of masses m; is(seepage 11-3 of the

Physics text)
MRcow = Z rim; (16)
|

where M is the total mass.

Yot

______________

ya T

Figure 4
Calculating the center of mass of w, .
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Replacing M by the vortex total circulation k , and
m; by AK; , theequation for they component of the
center of mass of the vorticity, Y, becomes

KYcom = iZS/iAKi (17)
Differentiating Equation (17) with respect to time,
noting that the total circulation Kk does not change
with time, gives

OYcom _ _ 0AK;:
KT = KVycom = iZYi 6t|

(18)
Our problemnow isto cal culatetherate of changeof
thecirculation Ak; inour Ay band. We do this by
calculating the net rate of flow of vorticity into the
band due to the vortex current j(w,) , indicated in
Figure (5).

Along theline y = y;, the net current into the band
is

currentin
frombelow

Xb
300 = [ Iyxyi)x

Xa
where jy = j,(c3)

Upat yj+Ay , the component jy(wz) flowsup out of
the band, so that the net inward current up there has
aminussign

Jy(yi +Ay) inward —

(19)

=J, (yi+4y)

Xp
. —f iy yray)ax  (20)

Xa

<
|
|
[
X—— - —— = - - - - - -
) [ .
[
[
[
>
<

Figure 5
Flow of vorticity into band.
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Thetotal rate dAk;/dt at which vorticity isflowing
into the band is thus

ag: L= =3y (yitay) + ()

Using Equation (21) in Equation (18) for Vycoy
gives

(21)

i+Ay) — (i
KVycom = —iZYiAy St Zi/ S (22)

where we multiplied the right hand side by Ay/Ay .

Inthelimit Ay — 0, thesquarebracketsbecomethe
derivative 0J,(y)/0y, evauated at y = y;

aJy(y)

dy Ay (23)

KVycom = — |Z Yi

Y=Y

Thissum Z Ay then becomesanintegral fromy, to

,giving '
Yp, 9Iving y

b
yaJy(y) 4

KV = -
yCOM ay (24)

Ya
The next step, which is called integration by parts,
iIsasimpleway to handlethefactor y that appearsin

Equation (24). We note that, by the rules of differ-
entiation

9 _ oy 0Xy)
@[YJ(Y)] = a*y\]()’) + YW (25)
With dy/oy =1 we get
0Jy)
Yoy = ayIW-3) (26)
Substituting (26) into (24) gives
Yb Yb
Vycou = | Zydmdy + [ 40y 5,
ya ya
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We can explicitly carry out thefirst integral because
the integral of a derivative is simply the function
itself
Yb
- Slyam)dy = vy
ay|” ™y

Ya

Yb
Ya

Yody(Yo) =Yad(Ya (28)
=0

We get zero because both y, and y, lieoutsidethe

core region, where Jy IS zero.

Thuswe areleft with
Y

Vycow = | 3)dy
Ya
Yb Xp
= | [ iyoxyyaxay
Ya Xa
where we used Equation (19) to express Jy(y) in
terms of the vortex current density j,(X.y).

(29)

Because we are assuming thatj,(x,y) is non zero
only over thecorearea, Equation (29) can bewritten
in the more compact form

KWycon = | iy(@)dA, (30)
core
area
where dA , = dxdy .
Similar arguments give
KVycom = f Jx(w)dA, (31)
core
area

Combining Equation (30) and (31), and dividing
through by K gives

— _ 1 - e
Veom = KJ J(@)dA; = Vygrex

core
area

(14) repeated
which isthe result we wanted to show.



MAGNUS FORMULA FOR CURVED VORTICES

Weare now ready to use Equation (13) to derivethe
Magnus effect formula for curved fluid core vorti-
ces. Asareminder, Equation (13) was

jo) = VW, =Vt 2% Gy (13) repeated

Slicing acurved vortex with a 2 plane as shown in
Figure(3), integrating Equation (13) over theareaof
the core, and dividing through by kK gives

%f J(w)dA, = %f W,V dA, (32a)
core
area

v ovmda, @)

+ 1 f 2xgodA,  (320)

Wealready know that the left side of Equation (32)
isthevortex velocity Vygpey - Thefirsttermonthe
right, which we will call Vg

Viiuid = H W,V dA (33)
istheweighted averageof thevelocity field Y| inthe
core region.

Aswe mentioned earlier, thethird term, theintegral
of v, o tellswhat 2 planeto usefor thecalculation.
Therewill besomeplane, moreor lessperpendicular
to the core, which givesazero valuefor theintegral
of v,Gy over the core. Wewill assume that we are
using that 2 plane.
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For this example, let us assume that g, is an
external force g, acting on the fluid in the core, as
sketched in Figure (2) repeated below. Multiplying
thisforce per unitmassby p gives fe = pg, asthe
force per unit volume acting on the core. When fe
isintegrated over the core, we get F,, the externa
force per unit length acting on the vortex.

With this notation the last term in Equation (32)
becomes

1f zx gnpdAz pijkz xf pandAz

K
core core
area area
= Lax f fL0A,
ares (34)
_ 2xF,
- 2

Assuming we have chosen the correct 2 plane to
eliminate the integral of v,y , we get using Equa-
tions (14), (33) and (34) in Equation (32)

— O 1 —
Vvortex - Vfluid + ﬁz X l:e

The Helmholtz equation is now obtained by setting
Fe=0 giving

(35)

Helmholtz
equation for

Fe=0

Viortex = Viiid (36)

In detail, Equation (36) says that when we choose
the 2 plane correctly, the center of mass motion of
the vortex coreis equal to the weighted average of
the fluid velocity in the core region.

Figure 2 (repeated)
Motion of a vortex line subject to an x directed force.
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When F, isnot zero and we have arelative motion
of the vortex line and the fluid, we can define the
relative motion vector V,y as

\7rel = \7vortex_\7fluid (37)
and Equation (35) can be written

\7v0rtex = \7fluid + pijkz X r:e (35) repeated

2xFg = pKV g (38)

We can get further insight from Equation (38) by
writing Fg as

=

Fe = (Fe + Fer) (39)
where Fe; is the component of Fg parallel to the
2 axis, and gy perpendiculartothezaxis. Because
2 crossavector parallel to 2 iszero, 2 x F, = 0 and
we get

2xFg = 2xFgp (40)

Thus our final result for the Magnus equation is

Magnus

Zx r:eD = pK\7reI equation (41)

and we see that only the component of the external
forceperpendicular tothez axis, hasan effect onthe
vortex motion. Thisremindsuswhy it isimportant,
for acurvedvortex, tofind thecorrect 2 planeusing
the condition that the integral of v,Gy be zero.
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If weapply Equation (41) to atwo dimensional flow
inthexy plane, then thevorticity isautomatically 2
directed and wecanturn K intoa 2 directed vector
R . If theflowistoremaintwodimensional, thenthe
external force T:e must bein the xy plane, because a
z component of e would createa 2 directed flow.
Thus Fg must be Fo. With these restrictions,
Equation (33) isequivalent to
Fo = pVig XK (13-95)
which is our Equation (13-95) discussed in the
regular part of the chapter. (Check for yourself that
both Equations (41) and (13-95) predict that an X
directed force F, acting on a 2 directed vortex
causesa y directed relative motion of the vortex.)

What we have learned from deriving the exact
Magnusequationfor curved vortices, that we cannot
predict from atwo dimensional derivation, iswhat
component of F,, isimportant and exactly how V4
is defined.



CREATION OF VORTICITY

So far our emphasis has been on how non potential
forcescausearelativemotion of vortex linesand the
fluid particles. Butthevorticity wefindinafluid has
tohavebeen created somehow. Non potential forces
dothat, and wewant to end thisappendix with abrief
discussion of how. Thediscussionisbrief, because
it is very incomplete. The creation of vorticity,
whichleadstoturbulence, isnot only asubject for an
entire fluid dynamics textbook, it is aso an active
subject of current research. Here we will just indi-
cate how the topic begins.

Non potential forces, at least in a constant density
fluid like water, can create vorticity in two ways.
Oneway isto pull it out of thewallsof the container.
Near thewall, where the velocity field rapidly goes
to zero, we get a boundary layer where the non
potential viscous forces are important. These vis-
cousforces, if they are acting at thewall, will move
vorticity out of thewall into thefluid. For example,
this is how the vorticity in the smoke ring demon-
stration was created. Viscous forces acting on the
high speed fluid at the perimeter of the hole in the
box pulled aring of vorticity in from the perimeter.

It turns out to be atricky question of how viscous
forcesbehaveinaboundary layer. For laminar pipe
flow, there are viscous forces acting at the wall
continually pulling vorticity into the stream. In
contrast, for a boundary layer solution called the
Blasiusprofile, the viscousforces act in the bound-
ary layer but not at the wall. In that theory, the
vorticity isall created upstream and all the viscous
forcesdoismovethevorticity farther into thefluid,
thickeningtheboundary layer. Thevelocity profiles
near the wall look nearly the same for both laminar
pipe flow and the Blasius profile, but the viscous
effectsarequitedifferent. Thisindicatesthekind of
problem one has to deal with when working with
boundary layers and the effects of viscosity.

Non potential forces can also create vorticity in the
fluid away from the walls by creating vortex rings.
In asense, thisisthe way vorticity is created in the
Rayfield-Reif experiment. To give you a rough
classical picture of how a charged particle moving
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through afluid could create a vortex ring, imagine
that thecharged particle, movinginwhat wewill call
the 2 direction exertsalocal, more or less spherical
shaped external force g on the fluid as shown in
Figure (5). Thislooksmuch likethefigurewehave
drawn so many times, except that thereis no vortex
linefor g to push on. Thus g cannot be causing a
relative motion of the line and the fluid. What itis
doing instead is creating a vortex ring around the
region.

We can see the ring creation by applying the ex-
tended Helmholtz equation (12-78) to the circuits
C'y, C'5, and C'; shown in Figure (6). These
circuits are moving with the fluid particles, and
Equation (78) tells usthat the rate of change of flux
of w through any of them is equal to gj)@[dl%

aroundthecircuit. Withthisinmind, weseethat the
flux of w through C'; isincreasingbecause p g [d{

is positive there, and it is decreasing through C',
where ¢ g [d{ isnegative. Since p g (Al iszero
for C'5, thereis no change in the flux of w there.

What does it mean that g is decreasing the flux
through the lower circuit C', when thereis no flux
there to decrease? It means that g is creating
negative flux of @ through C', while at the same
timeit is creating positive flux through C';. What
itisdoingiscreating aband of flux of @ aroundthe
spherical region, aband of flux that isbecoming the
core of avortex ring.

Oncevorticity hasbeenintroduced into thefluid, an
effectivemethod of introducing morevorticity isthe
stretching of existing vortex lines. How vortex line
stretching affectsfluid flowsisatopic that has been
studied for along time by fluid engineers.

external force acting
( on a spherical region

Figure 6
External force creating a vortex ring.
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ENERGY DISSIPATION IN FLUID FLOW

Whileaderivationof theMagnusformulafor curved
vortices demonstrates how mathematically effec-
tive the concept of a vortex current T(u)z) is, (the
result hasnot been obtained any other way), themost
important use so far of the concept isin studying the
relationship between energy dissipation in astream
and the flow of vorticity across the stream. This
rel ationship, discovered by Phillip Andersonin 1966,
appliestosuchdiversesituationsasturbulent flowin
a channel, and the motion of quantized vortices in
both superfluidsand superconductors. Inthecaseof
superconductors, the phenomenon is now involved
in the legal definition of the electric volt.

Weleavethistopicfor alater text, becauseoneof the
most interesting parts is to show how similar the
vortex dynamics equationsarefor charged and neu-
tral fluids. One can make the equations|ook identi-
ca by incorporating the magnetic field B in the
definitionof &, andincludingtheelectricfield E in
Onp - If you want to see this topic now, look at the
article "Vortex Currents in Turbulent Superfluid
and Classical Fluid Channel Flow . . .", Huggins,
E.R., Journal of Low TemperaturePhysics, Vol. 96,
1994,

The 1852 article by Magnusis"On the deviation of
projectiles; and on a remarkable phenomenon of
rotating bodies." G. Magnus, Memoirs of the Royal
Academy, Berlin (1852). Englishtrandationin Sci-
entific Memoirs, London (1853), p.210. Edited by
John Tyndall and William Francis.



Formulary

For Vector Operations

When you are working problems involving quantities
like % incylindrical or spherical coordinates, youdo
not want to derive the formulas yourself because the
chancesof your getting theright answer aretoo small.
You are not likely to memorize them correctly either,
unlessyou usea particular formula often. Instead, the
best procedure is to look up the result in a table of
formulas, sometimes called a formulary.

In this formulary we summarize all the formulas for
gradient, divergence and curl, in Cartesian, cylindri-
cal and spherical coordinates. We also include inte-
gral formulas, formulas for working with cross prod-
ucts, and with tensors. The formulary was adapted
from one developed by David Book of the Naval
Research Laboratory.

We have also added a short table of integrals, and
summarize someof the seriesexpans onswediscussed
inthetext.
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CYLINDRICAL COORDINATES
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SPHERICAL POLAR COORDINATES £
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VECTOR IDENTITIES

Notation: f, g, etc., are scalars; A and B, etc. are vectors

xC[A =C[AxB = CxA[B

os)’

BICxA =
—(
() Ax(BxC)+Bx(CxA)+C x(Ax

o

osl’

(1) ABxC = Ax

oel}
>|

(2 Ax(BxC) = (A[L) [B)C

os)’

)=0

o

4) (A xB)(CxD) = (A L) (B D)-(A D) (B )

(5) (AxB)x(CxD) = (AxB[D)C-(AxB)D
6) O(fg) = O(gf) = fO(g) +g0(f)

(7) OA) = 10 0A + A f

Let 7 = Tx+ jy+ kz betheradius vector of magnituder, from the origin to the point x, y, z. Then

(1) 0¥ =3
A7 dxr =0
(18) Or = tIr

19) T(Vr) = —7/r3

(20) O7/r3) = 4nd(1)



INTEGRAL FORMULAS
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If V isthe volume enclosed by asurface Sand dS = AdS where fi isthe unit normal outward from V

(22)fﬁfd3v . ffoTs
V S
(23)fﬁmid3v - JA’ETS
\Y S

(24)fﬁx/K BV = JoTSxK
\Y S

(25)f(fm2g—gDZf)d3v = J(fﬁg—gﬁf) S
\Y S

If Sisan open surface bounded by the contour C of which thelinedement is dl

(27)J(TS><ﬁf . 9@@
S C
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WORKING WITH CROSS PRODUCTS

Use of the permutation tensor €; ik t0 work effectively with the cross products.
(Reference: Appendix | in Chapter 13.)

The cross product
(A xB); = g;A;By

Product of €'s
EijkEkim = 0iiOjm—Oimd;ji

Example of use

| Dx(@xA) | = ey @xA)
= EijEamjUIAm
(3i1®jm — %imd;j) LjLUA

O,0A; - 0;0A,

1
1
~
>
EI
]
>
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TENSOR FORMULAS

Notation: f, g, etc., are scalars; A and B, etc. arevectors; T isatensor

Definition
If &, &, &5 areorthonormal unit vectors, asecond-order tensor T can be written in the dyadic form

= % Ti jél él
In Cartesian coordinates the divergence of atensor isavector with components

(mT), = JZ(GTjilaxj)

Formulas
OQAB) = (OMRA)B + (AM)B
e T) = Of T + 00T

Divergence of a tensor (cylindrical coordinates)

= aT
(D DT)r = %gr(r-rrr) + - r ae(Ter) = zr %TSG

- 3 6T99 6T9
(O = lai( re)+% 90 + azz +%T9r

0 10Ty, 0T,
67( rz)+? 06 + 0Z

=

(oo, =
Divergence of a tensor (spherical coordinates)
1 aT(pr Too+ Tyo

= = 19,0 _
(OO = Sr(rPTe) + rs,neae(Ters'ne)+ rsnd 0@ r
R aT T
_ 19,2 ler _cotB

(DM)e = 5 (r*Tre) + rgneae(TOO sind) + rsme 6<p ot r T

. oT T
= 2 10,2 99, "¢r  cotB
(D0g = 5o (M) + rano o6 Teesn®) + i dp tr T T
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SHORT TABLE OF INTEGRALS

Intheseintegrals, () isaconstant, and (u) and (v) are
any functions of x.
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15. f x2Ne~ Xy = it gy \/g

0

16 dx - X



SERIES EXPANSIONS

The binomial expansion
(Ch 2, page 6)

n(n—1)
2!

which isvalid for any value of a less than one, but
which gets better as a becomes smaler.

1+a)"=1+na+ a2+ 111 (2-22)

Taylor series expansion
(Ch 2, page 8)

f(x—Xg) = f(Xq) +f'(Xo)(x —X)*
+ 2" (Xo) (X = Xo)?
1f"' (Xo) (X —X) %+ [T

This can be written in the compact form

¢ % fNn N Taylor
(x _XO) " nSo _XO) g%gﬁsion
(2-44)
where we used the notation
_d™(x
(o) = dx(”) (2-45)

Formulary-9

Sine and cosine

(Ch 5, page 4)
82 o*
cosB = 1_§+I+ 000 (13)
snb = 60— g|+%+ 000 (14)

where 8 isinradians. These expansonsarevalid for
any vaueof 6, but most useful for small valueswhere
we do not have to keep many terms.

Exponential
(Ch 1, page 28 and Ch 5, page 4)

2
e = 1+x+%+§+ 000

Whilethisexpansionistruefor any valueof x, itismost
useful for small values of x where we do not have to
keep many termsto get an accurate answer.

Setting x =

(1-136)

i0 gives

i2 3
8% . i%

Dt ood
(Since our previous discussion of exponents only
dealt with real numbers, we can consider Equation
(12) as the definition of what we mean when the

exponent isa complex number).

el® = 1+ig+ (5-12)



Physical Constants in CGS Units

speed of light c = 3x10%m/sec =1000 ft/psec =1 ft/nanosecond
acceleration due to gravity

at the surface of the earth g =980cm/sec? =32 ft/sec?
gravitational constant G =6.67x10"8md/(gm sec?)

charge on an electron e =4.8x10" Yesu

Planck's constant h =6.62x10"%"erg sec (gm cm?¥sec)
Planck constant /2Tt h =1.06x10"?’erg sec (gmcm?/ sec)
Bohr radius a, =.529x10"%m

rest mass of electron me =0.911x10"*'gm

rest mass of proton M, =1.67x10 ~%*gm

rest energy of electron mec® =0.51MeV (=1/2 MeV)

rest energy of proton Mp02 =0.938BeV (=1 BeV)

proton radius r, = 1.0x10"*%cm

Boltzmann's constant k =1.38x10 ~*ergs/kelvin
Avogadro's number Ng =6.02x10 *molecules/mole

absolute zero = 0°K = -273°C

density of mercury = 13.6 gm / cm®

mass of earth = 5.98x10 %’gm

mass of the moon = 7.35x10 ®gm

mass of the sun = 1.97x10 *gm

earth radius = 6.38x10%m = 3960 mi

moon radius = 1.74x108%m = 1080 mi

mean distance to moon = 3.84x10 '%m

mean distance to sun = 1.50x10 *cm

mean earth velocity in orbit about sun = 29.77 km / sec

Conversion Factors

1 meter = 100 cm (100 cm/meter)

lin.=2.54 cm (2.54 cm/in.)

1 mi = 5280 ft (5280 ft/mi)

1 km (kilometer) = 10°cm  (10°cm / km)

1 mi=1.61 km = 1.61x10°cm (1.61x10°cm/mi)

1A (angstrom) =10"%cm (10 %cm /A )

1 day = 86,000 sec (8.6x10%sec/ day)

1year = 3.16x10'sec (3.16x10'sec/year)

1 psec (microsecond ) =10 °sec (10 °sec /psec)
1 nanosecond = 10 ~ °sec (10 ~%sec /nanosecond )
1 mi/hr = 44.7 cm/sec

60 mi/hr = 88 ft/sec

1 kg (kilogram) =10%gm  (10°gm / kg)

1 coulomb = 3x10%su  (3x10°%su/coulomb)

1 ampere = 3x10%tatamps (3 x 10%statamps/ampere)
1 statvolt = 300 volts (300 volts/statvolt)

1joule = 10’ergs  (10’ergs / joule)

1 W (watt) = 10ergs/sec  (10’erg / W)
leV=1.6x10"ergs (1.6x10" ‘%ergs/eV)

1 MeV = 10%V (10%V /MeV)

1BeV = 10°%eV (10%V /BeV)

1 p (micron ) pressure =1.33 dynes /cm?

1 cm Hg pressure = 10"

1 atm =76 cm Hg = 1.01x10%ynes/cm?
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About the Index
Due to an unsolved problem with creating an Acrobat™ file containing very many formulas, we had to place theIndex near the front of the text in order to maintain the links between the Index and the text material. In the Bookmarks and Table of Contents, we could place theIndex refrence where it belongs, near the end.
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